/* * Emulation of Linux signals * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu.h" #include "user-internals.h" #include "signal-common.h" #include "linux-user/trace.h" /* Size of dummy stack frame allocated when calling signal handler. See arch/powerpc/include/asm/ptrace.h. */ #if defined(TARGET_PPC64) #define SIGNAL_FRAMESIZE 128 #else #define SIGNAL_FRAMESIZE 64 #endif /* See arch/powerpc/include/asm/ucontext.h. Only used for 32-bit PPC; on 64-bit PPC, sigcontext and mcontext are one and the same. */ struct target_mcontext { target_ulong mc_gregs[48]; /* Includes fpscr. */ uint64_t mc_fregs[33]; #if defined(TARGET_PPC64) /* Pointer to the vector regs */ target_ulong v_regs; /* * On ppc64, this mcontext structure is naturally *unaligned*, * or rather it is aligned on a 8 bytes boundary but not on * a 16 byte boundary. This pad fixes it up. This is why we * cannot use ppc_avr_t, which would force alignment. This is * also why the vector regs are referenced in the ABI by the * v_regs pointer above so any amount of padding can be added here. */ target_ulong pad; /* VSCR and VRSAVE are saved separately. Also reserve space for VSX. */ struct { uint64_t altivec[34 + 16][2]; } mc_vregs; #else target_ulong mc_pad[2]; /* We need to handle Altivec and SPE at the same time, which no kernel needs to do. Fortunately, the kernel defines this bit to be Altivec-register-large all the time, rather than trying to twiddle it based on the specific platform. */ union { /* SPE vector registers. One extra for SPEFSCR. */ uint32_t spe[33]; /* * Altivec vector registers. One extra for VRSAVE. * On ppc32, we are already aligned to 16 bytes. We could * use ppc_avr_t, but choose to share the same type as ppc64. */ uint64_t altivec[33][2]; } mc_vregs; #endif }; /* See arch/powerpc/include/asm/sigcontext.h. */ struct target_sigcontext { target_ulong _unused[4]; int32_t signal; #if defined(TARGET_PPC64) int32_t pad0; #endif target_ulong handler; target_ulong oldmask; target_ulong regs; /* struct pt_regs __user * */ #if defined(TARGET_PPC64) struct target_mcontext mcontext; #endif }; /* Indices for target_mcontext.mc_gregs, below. See arch/powerpc/include/asm/ptrace.h for details. */ enum { TARGET_PT_R0 = 0, TARGET_PT_R1 = 1, TARGET_PT_R2 = 2, TARGET_PT_R3 = 3, TARGET_PT_R4 = 4, TARGET_PT_R5 = 5, TARGET_PT_R6 = 6, TARGET_PT_R7 = 7, TARGET_PT_R8 = 8, TARGET_PT_R9 = 9, TARGET_PT_R10 = 10, TARGET_PT_R11 = 11, TARGET_PT_R12 = 12, TARGET_PT_R13 = 13, TARGET_PT_R14 = 14, TARGET_PT_R15 = 15, TARGET_PT_R16 = 16, TARGET_PT_R17 = 17, TARGET_PT_R18 = 18, TARGET_PT_R19 = 19, TARGET_PT_R20 = 20, TARGET_PT_R21 = 21, TARGET_PT_R22 = 22, TARGET_PT_R23 = 23, TARGET_PT_R24 = 24, TARGET_PT_R25 = 25, TARGET_PT_R26 = 26, TARGET_PT_R27 = 27, TARGET_PT_R28 = 28, TARGET_PT_R29 = 29, TARGET_PT_R30 = 30, TARGET_PT_R31 = 31, TARGET_PT_NIP = 32, TARGET_PT_MSR = 33, TARGET_PT_ORIG_R3 = 34, TARGET_PT_CTR = 35, TARGET_PT_LNK = 36, TARGET_PT_XER = 37, TARGET_PT_CCR = 38, /* Yes, there are two registers with #39. One is 64-bit only. */ TARGET_PT_MQ = 39, TARGET_PT_SOFTE = 39, TARGET_PT_TRAP = 40, TARGET_PT_DAR = 41, TARGET_PT_DSISR = 42, TARGET_PT_RESULT = 43, TARGET_PT_REGS_COUNT = 44 }; struct target_ucontext { target_ulong tuc_flags; target_ulong tuc_link; /* ucontext_t __user * */ struct target_sigaltstack tuc_stack; #if !defined(TARGET_PPC64) int32_t tuc_pad[7]; target_ulong tuc_regs; /* struct mcontext __user * points to uc_mcontext field */ #endif target_sigset_t tuc_sigmask; #if defined(TARGET_PPC64) target_sigset_t unused[15]; /* Allow for uc_sigmask growth */ struct target_sigcontext tuc_sigcontext; #else int32_t tuc_maskext[30]; int32_t tuc_pad2[3]; struct target_mcontext tuc_mcontext; #endif }; /* See arch/powerpc/kernel/signal_32.c. */ struct target_sigframe { struct target_sigcontext sctx; struct target_mcontext mctx; int32_t abigap[56]; }; #if defined(TARGET_PPC64) #define TARGET_TRAMP_SIZE 6 struct target_rt_sigframe { /* sys_rt_sigreturn requires the ucontext be the first field */ struct target_ucontext uc; target_ulong _unused[2]; uint32_t trampoline[TARGET_TRAMP_SIZE]; target_ulong pinfo; /* struct siginfo __user * */ target_ulong puc; /* void __user * */ struct target_siginfo info; /* 64 bit ABI allows for 288 bytes below sp before decrementing it. */ char abigap[288]; } __attribute__((aligned(16))); #else struct target_rt_sigframe { struct target_siginfo info; struct target_ucontext uc; int32_t abigap[56]; }; #endif #if defined(TARGET_PPC64) struct target_func_ptr { target_ulong entry; target_ulong toc; }; #endif /* We use the mc_pad field for the signal return trampoline. */ #define tramp mc_pad /* See arch/powerpc/kernel/signal.c. */ static target_ulong get_sigframe(struct target_sigaction *ka, CPUPPCState *env, int frame_size) { target_ulong oldsp; oldsp = target_sigsp(get_sp_from_cpustate(env), ka); return (oldsp - frame_size) & ~0xFUL; } #if ((defined(TARGET_WORDS_BIGENDIAN) && defined(HOST_WORDS_BIGENDIAN)) || \ (!defined(HOST_WORDS_BIGENDIAN) && !defined(TARGET_WORDS_BIGENDIAN))) #define PPC_VEC_HI 0 #define PPC_VEC_LO 1 #else #define PPC_VEC_HI 1 #define PPC_VEC_LO 0 #endif static void save_user_regs(CPUPPCState *env, struct target_mcontext *frame) { target_ulong msr = env->msr; int i; target_ulong ccr = 0; /* In general, the kernel attempts to be intelligent about what it needs to save for Altivec/FP/SPE registers. We don't care that much, so we just go ahead and save everything. */ /* Save general registers. */ for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { __put_user(env->gpr[i], &frame->mc_gregs[i]); } __put_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]); __put_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]); __put_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]); __put_user(env->xer, &frame->mc_gregs[TARGET_PT_XER]); for (i = 0; i < ARRAY_SIZE(env->crf); i++) { ccr |= env->crf[i] << (32 - ((i + 1) * 4)); } __put_user(ccr, &frame->mc_gregs[TARGET_PT_CCR]); /* Save Altivec registers if necessary. */ if (env->insns_flags & PPC_ALTIVEC) { uint32_t *vrsave; for (i = 0; i < 32; i++) { ppc_avr_t *avr = cpu_avr_ptr(env, i); ppc_avr_t *vreg = (ppc_avr_t *)&frame->mc_vregs.altivec[i]; __put_user(avr->u64[PPC_VEC_HI], &vreg->u64[0]); __put_user(avr->u64[PPC_VEC_LO], &vreg->u64[1]); } #if defined(TARGET_PPC64) vrsave = (uint32_t *)&frame->mc_vregs.altivec[33]; /* 64-bit needs to put a pointer to the vectors in the frame */ __put_user(h2g(frame->mc_vregs.altivec), &frame->v_regs); #else vrsave = (uint32_t *)&frame->mc_vregs.altivec[32]; #endif __put_user((uint32_t)env->spr[SPR_VRSAVE], vrsave); } #if defined(TARGET_PPC64) /* Save VSX second halves */ if (env->insns_flags2 & PPC2_VSX) { uint64_t *vsregs = (uint64_t *)&frame->mc_vregs.altivec[34]; for (i = 0; i < 32; i++) { uint64_t *vsrl = cpu_vsrl_ptr(env, i); __put_user(*vsrl, &vsregs[i]); } } #endif /* Save floating point registers. */ if (env->insns_flags & PPC_FLOAT) { for (i = 0; i < 32; i++) { uint64_t *fpr = cpu_fpr_ptr(env, i); __put_user(*fpr, &frame->mc_fregs[i]); } __put_user((uint64_t) env->fpscr, &frame->mc_fregs[32]); } #if !defined(TARGET_PPC64) /* Save SPE registers. The kernel only saves the high half. */ if (env->insns_flags & PPC_SPE) { for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { __put_user(env->gprh[i], &frame->mc_vregs.spe[i]); } __put_user(env->spe_fscr, &frame->mc_vregs.spe[32]); } #endif /* Store MSR. */ __put_user(msr, &frame->mc_gregs[TARGET_PT_MSR]); } static void encode_trampoline(int sigret, uint32_t *tramp) { /* Set up the sigreturn trampoline: li r0,sigret; sc. */ if (sigret) { __put_user(0x38000000 | sigret, &tramp[0]); __put_user(0x44000002, &tramp[1]); } } static void restore_user_regs(CPUPPCState *env, struct target_mcontext *frame, int sig) { target_ulong save_r2 = 0; target_ulong msr; target_ulong ccr; int i; if (!sig) { save_r2 = env->gpr[2]; } /* Restore general registers. */ for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { __get_user(env->gpr[i], &frame->mc_gregs[i]); } __get_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]); __get_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]); __get_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]); __get_user(env->xer, &frame->mc_gregs[TARGET_PT_XER]); __get_user(ccr, &frame->mc_gregs[TARGET_PT_CCR]); for (i = 0; i < ARRAY_SIZE(env->crf); i++) { env->crf[i] = (ccr >> (32 - ((i + 1) * 4))) & 0xf; } if (!sig) { env->gpr[2] = save_r2; } /* Restore MSR. */ __get_user(msr, &frame->mc_gregs[TARGET_PT_MSR]); /* If doing signal return, restore the previous little-endian mode. */ if (sig) { ppc_store_msr(env, ((env->msr & ~(1ull << MSR_LE)) | (msr & (1ull << MSR_LE)))); } /* Restore Altivec registers if necessary. */ if (env->insns_flags & PPC_ALTIVEC) { ppc_avr_t *v_regs; uint32_t *vrsave; #if defined(TARGET_PPC64) uint64_t v_addr; /* 64-bit needs to recover the pointer to the vectors from the frame */ __get_user(v_addr, &frame->v_regs); v_regs = g2h(env_cpu(env), v_addr); #else v_regs = (ppc_avr_t *)frame->mc_vregs.altivec; #endif for (i = 0; i < 32; i++) { ppc_avr_t *avr = cpu_avr_ptr(env, i); ppc_avr_t *vreg = &v_regs[i]; __get_user(avr->u64[PPC_VEC_HI], &vreg->u64[0]); __get_user(avr->u64[PPC_VEC_LO], &vreg->u64[1]); } #if defined(TARGET_PPC64) vrsave = (uint32_t *)&v_regs[33]; #else vrsave = (uint32_t *)&v_regs[32]; #endif __get_user(env->spr[SPR_VRSAVE], vrsave); } #if defined(TARGET_PPC64) /* Restore VSX second halves */ if (env->insns_flags2 & PPC2_VSX) { uint64_t *vsregs = (uint64_t *)&frame->mc_vregs.altivec[34]; for (i = 0; i < 32; i++) { uint64_t *vsrl = cpu_vsrl_ptr(env, i); __get_user(*vsrl, &vsregs[i]); } } #endif /* Restore floating point registers. */ if (env->insns_flags & PPC_FLOAT) { uint64_t fpscr; for (i = 0; i < 32; i++) { uint64_t *fpr = cpu_fpr_ptr(env, i); __get_user(*fpr, &frame->mc_fregs[i]); } __get_user(fpscr, &frame->mc_fregs[32]); env->fpscr = (uint32_t) fpscr; } #if !defined(TARGET_PPC64) /* Save SPE registers. The kernel only saves the high half. */ if (env->insns_flags & PPC_SPE) { for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { __get_user(env->gprh[i], &frame->mc_vregs.spe[i]); } __get_user(env->spe_fscr, &frame->mc_vregs.spe[32]); } #endif } #if !defined(TARGET_PPC64) void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUPPCState *env) { struct target_sigframe *frame; struct target_sigcontext *sc; target_ulong frame_addr, newsp; int err = 0; frame_addr = get_sigframe(ka, env, sizeof(*frame)); trace_user_setup_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) goto sigsegv; sc = &frame->sctx; __put_user(ka->_sa_handler, &sc->handler); __put_user(set->sig[0], &sc->oldmask); __put_user(set->sig[1], &sc->_unused[3]); __put_user(h2g(&frame->mctx), &sc->regs); __put_user(sig, &sc->signal); /* Save user regs. */ save_user_regs(env, &frame->mctx); /* Construct the trampoline code on the stack. */ encode_trampoline(TARGET_NR_sigreturn, (uint32_t *)&frame->mctx.tramp); /* The kernel checks for the presence of a VDSO here. We don't emulate a vdso, so use a sigreturn system call. */ env->lr = (target_ulong) h2g(frame->mctx.tramp); /* Turn off all fp exceptions. */ env->fpscr = 0; /* Create a stack frame for the caller of the handler. */ newsp = frame_addr - SIGNAL_FRAMESIZE; err |= put_user(env->gpr[1], newsp, target_ulong); if (err) goto sigsegv; /* Set up registers for signal handler. */ env->gpr[1] = newsp; env->gpr[3] = sig; env->gpr[4] = frame_addr + offsetof(struct target_sigframe, sctx); env->nip = (target_ulong) ka->_sa_handler; /* Signal handlers are entered in big-endian mode. */ ppc_store_msr(env, env->msr & ~(1ull << MSR_LE)); unlock_user_struct(frame, frame_addr, 1); return; sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sigsegv(sig); } #endif /* !defined(TARGET_PPC64) */ void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUPPCState *env) { struct target_rt_sigframe *rt_sf; uint32_t *trampptr = 0; struct target_mcontext *mctx = 0; target_ulong rt_sf_addr, newsp = 0; int i, err = 0; #if defined(TARGET_PPC64) struct target_sigcontext *sc = 0; #if !defined(TARGET_ABI32) struct image_info *image = ((TaskState *)thread_cpu->opaque)->info; #endif #endif rt_sf_addr = get_sigframe(ka, env, sizeof(*rt_sf)); if (!lock_user_struct(VERIFY_WRITE, rt_sf, rt_sf_addr, 1)) goto sigsegv; tswap_siginfo(&rt_sf->info, info); __put_user(0, &rt_sf->uc.tuc_flags); __put_user(0, &rt_sf->uc.tuc_link); target_save_altstack(&rt_sf->uc.tuc_stack, env); #if !defined(TARGET_PPC64) __put_user(h2g (&rt_sf->uc.tuc_mcontext), &rt_sf->uc.tuc_regs); #endif for(i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &rt_sf->uc.tuc_sigmask.sig[i]); } #if defined(TARGET_PPC64) mctx = &rt_sf->uc.tuc_sigcontext.mcontext; trampptr = &rt_sf->trampoline[0]; sc = &rt_sf->uc.tuc_sigcontext; __put_user(h2g(mctx), &sc->regs); __put_user(sig, &sc->signal); #else mctx = &rt_sf->uc.tuc_mcontext; trampptr = (uint32_t *)&rt_sf->uc.tuc_mcontext.tramp; #endif save_user_regs(env, mctx); encode_trampoline(TARGET_NR_rt_sigreturn, trampptr); /* The kernel checks for the presence of a VDSO here. We don't emulate a vdso, so use a sigreturn system call. */ env->lr = (target_ulong) h2g(trampptr); /* Turn off all fp exceptions. */ env->fpscr = 0; /* Create a stack frame for the caller of the handler. */ newsp = rt_sf_addr - (SIGNAL_FRAMESIZE + 16); err |= put_user(env->gpr[1], newsp, target_ulong); if (err) goto sigsegv; /* Set up registers for signal handler. */ env->gpr[1] = newsp; env->gpr[3] = (target_ulong) sig; env->gpr[4] = (target_ulong) h2g(&rt_sf->info); env->gpr[5] = (target_ulong) h2g(&rt_sf->uc); env->gpr[6] = (target_ulong) h2g(rt_sf); #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) if (get_ppc64_abi(image) < 2) { /* ELFv1 PPC64 function pointers are pointers to OPD entries. */ struct target_func_ptr *handler = (struct target_func_ptr *)g2h(env_cpu(env), ka->_sa_handler); env->nip = tswapl(handler->entry); env->gpr[2] = tswapl(handler->toc); } else { /* ELFv2 PPC64 function pointers are entry points. R12 must also be set. */ env->gpr[12] = env->nip = ka->_sa_handler; } #else env->nip = (target_ulong) ka->_sa_handler; #endif #ifdef TARGET_WORDS_BIGENDIAN /* Signal handlers are entered in big-endian mode. */ ppc_store_msr(env, env->msr & ~(1ull << MSR_LE)); #else /* Signal handlers are entered in little-endian mode. */ ppc_store_msr(env, env->msr | (1ull << MSR_LE)); #endif unlock_user_struct(rt_sf, rt_sf_addr, 1); return; sigsegv: unlock_user_struct(rt_sf, rt_sf_addr, 1); force_sigsegv(sig); } #if !defined(TARGET_PPC64) || defined(TARGET_ABI32) long do_sigreturn(CPUPPCState *env) { struct target_sigcontext *sc = NULL; struct target_mcontext *sr = NULL; target_ulong sr_addr = 0, sc_addr; sigset_t blocked; target_sigset_t set; sc_addr = env->gpr[1] + SIGNAL_FRAMESIZE; if (!lock_user_struct(VERIFY_READ, sc, sc_addr, 1)) goto sigsegv; #if defined(TARGET_PPC64) set.sig[0] = sc->oldmask + ((uint64_t)(sc->_unused[3]) << 32); #else __get_user(set.sig[0], &sc->oldmask); __get_user(set.sig[1], &sc->_unused[3]); #endif target_to_host_sigset_internal(&blocked, &set); set_sigmask(&blocked); __get_user(sr_addr, &sc->regs); if (!lock_user_struct(VERIFY_READ, sr, sr_addr, 1)) goto sigsegv; restore_user_regs(env, sr, 1); unlock_user_struct(sr, sr_addr, 1); unlock_user_struct(sc, sc_addr, 1); return -TARGET_QEMU_ESIGRETURN; sigsegv: unlock_user_struct(sr, sr_addr, 1); unlock_user_struct(sc, sc_addr, 1); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } #endif /* !defined(TARGET_PPC64) */ /* See arch/powerpc/kernel/signal_32.c. */ static int do_setcontext(struct target_ucontext *ucp, CPUPPCState *env, int sig) { struct target_mcontext *mcp; target_ulong mcp_addr; sigset_t blocked; target_sigset_t set; if (copy_from_user(&set, h2g(ucp) + offsetof(struct target_ucontext, tuc_sigmask), sizeof (set))) return 1; #if defined(TARGET_PPC64) mcp_addr = h2g(ucp) + offsetof(struct target_ucontext, tuc_sigcontext.mcontext); #else __get_user(mcp_addr, &ucp->tuc_regs); #endif if (!lock_user_struct(VERIFY_READ, mcp, mcp_addr, 1)) return 1; target_to_host_sigset_internal(&blocked, &set); set_sigmask(&blocked); restore_user_regs(env, mcp, sig); unlock_user_struct(mcp, mcp_addr, 1); return 0; } long do_rt_sigreturn(CPUPPCState *env) { struct target_rt_sigframe *rt_sf = NULL; target_ulong rt_sf_addr; rt_sf_addr = env->gpr[1] + SIGNAL_FRAMESIZE + 16; if (!lock_user_struct(VERIFY_READ, rt_sf, rt_sf_addr, 1)) goto sigsegv; if (do_setcontext(&rt_sf->uc, env, 1)) goto sigsegv; target_restore_altstack(&rt_sf->uc.tuc_stack, env); unlock_user_struct(rt_sf, rt_sf_addr, 1); return -TARGET_QEMU_ESIGRETURN; sigsegv: unlock_user_struct(rt_sf, rt_sf_addr, 1); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } /* This syscall implements {get,set,swap}context for userland. */ abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx, abi_ulong unew_ctx, abi_long ctx_size) { struct target_ucontext *uctx; struct target_mcontext *mctx; /* For ppc32, ctx_size is "reserved for future use". * For ppc64, we do not yet support the VSX extension. */ if (ctx_size < sizeof(struct target_ucontext)) { return -TARGET_EINVAL; } if (uold_ctx) { TaskState *ts = (TaskState *)thread_cpu->opaque; if (!lock_user_struct(VERIFY_WRITE, uctx, uold_ctx, 1)) { return -TARGET_EFAULT; } #ifdef TARGET_PPC64 mctx = &uctx->tuc_sigcontext.mcontext; #else /* ??? The kernel aligns the pointer down here into padding, but * in setup_rt_frame we don't. Be self-compatible for now. */ mctx = &uctx->tuc_mcontext; __put_user(h2g(mctx), &uctx->tuc_regs); #endif save_user_regs(env, mctx); host_to_target_sigset(&uctx->tuc_sigmask, &ts->signal_mask); unlock_user_struct(uctx, uold_ctx, 1); } if (unew_ctx) { int err; if (!lock_user_struct(VERIFY_READ, uctx, unew_ctx, 1)) { return -TARGET_EFAULT; } err = do_setcontext(uctx, env, 0); unlock_user_struct(uctx, unew_ctx, 1); if (err) { /* We cannot return to a partially updated context. */ force_sig(TARGET_SIGSEGV); } return -TARGET_QEMU_ESIGRETURN; } return 0; }