/* * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu/log.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #include "exec/helper-proto.h" #include "fpu/softfloat.h" #include "cpu.h" #include "internal.h" #include "macros.h" #include "arch.h" #include "hex_arch_types.h" #include "fma_emu.h" #include "mmvec/mmvec.h" #include "mmvec/macros.h" #include "op_helper.h" #include "translate.h" #define SF_BIAS 127 #define SF_MANTBITS 23 /* Exceptions processing helpers */ static G_NORETURN void do_raise_exception_err(CPUHexagonState *env, uint32_t exception, uintptr_t pc) { CPUState *cs = env_cpu(env); qemu_log_mask(CPU_LOG_INT, "%s: %d\n", __func__, exception); cs->exception_index = exception; cpu_loop_exit_restore(cs, pc); } G_NORETURN void HELPER(raise_exception)(CPUHexagonState *env, uint32_t excp) { do_raise_exception_err(env, excp, 0); } static void log_pred_write(CPUHexagonState *env, int pnum, target_ulong val) { HEX_DEBUG_LOG("log_pred_write[%d] = " TARGET_FMT_ld " (0x" TARGET_FMT_lx ")\n", pnum, val, val); /* Multiple writes to the same preg are and'ed together */ if (env->pred_written & (1 << pnum)) { env->new_pred_value[pnum] &= val & 0xff; } else { env->new_pred_value[pnum] = val & 0xff; env->pred_written |= 1 << pnum; } } void log_store32(CPUHexagonState *env, target_ulong addr, target_ulong val, int width, int slot) { HEX_DEBUG_LOG("log_store%d(0x" TARGET_FMT_lx ", %" PRId32 " [0x08%" PRIx32 "])\n", width, addr, val, val); env->mem_log_stores[slot].va = addr; env->mem_log_stores[slot].width = width; env->mem_log_stores[slot].data32 = val; } void log_store64(CPUHexagonState *env, target_ulong addr, int64_t val, int width, int slot) { HEX_DEBUG_LOG("log_store%d(0x" TARGET_FMT_lx ", %" PRId64 " [0x016%" PRIx64 "])\n", width, addr, val, val); env->mem_log_stores[slot].va = addr; env->mem_log_stores[slot].width = width; env->mem_log_stores[slot].data64 = val; } /* Handy place to set a breakpoint */ void HELPER(debug_start_packet)(CPUHexagonState *env) { HEX_DEBUG_LOG("Start packet: pc = 0x" TARGET_FMT_lx "\n", env->gpr[HEX_REG_PC]); for (int i = 0; i < TOTAL_PER_THREAD_REGS; i++) { env->reg_written[i] = 0; } } /* Checks for bookkeeping errors between disassembly context and runtime */ void HELPER(debug_check_store_width)(CPUHexagonState *env, int slot, int check) { if (env->mem_log_stores[slot].width != check) { HEX_DEBUG_LOG("ERROR: %d != %d\n", env->mem_log_stores[slot].width, check); g_assert_not_reached(); } } void HELPER(commit_store)(CPUHexagonState *env, int slot_num) { uintptr_t ra = GETPC(); uint8_t width = env->mem_log_stores[slot_num].width; target_ulong va = env->mem_log_stores[slot_num].va; switch (width) { case 1: cpu_stb_data_ra(env, va, env->mem_log_stores[slot_num].data32, ra); break; case 2: cpu_stw_data_ra(env, va, env->mem_log_stores[slot_num].data32, ra); break; case 4: cpu_stl_data_ra(env, va, env->mem_log_stores[slot_num].data32, ra); break; case 8: cpu_stq_data_ra(env, va, env->mem_log_stores[slot_num].data64, ra); break; default: g_assert_not_reached(); } } void HELPER(gather_store)(CPUHexagonState *env, uint32_t addr, int slot) { mem_gather_store(env, addr, slot); } void HELPER(commit_hvx_stores)(CPUHexagonState *env) { uintptr_t ra = GETPC(); int i; /* Normal (possibly masked) vector store */ for (i = 0; i < VSTORES_MAX; i++) { if (env->vstore_pending[i]) { env->vstore_pending[i] = 0; target_ulong va = env->vstore[i].va; int size = env->vstore[i].size; for (int j = 0; j < size; j++) { if (test_bit(j, env->vstore[i].mask)) { cpu_stb_data_ra(env, va + j, env->vstore[i].data.ub[j], ra); } } } } /* Scatter store */ if (env->vtcm_pending) { env->vtcm_pending = false; if (env->vtcm_log.op) { /* Need to perform the scatter read/modify/write at commit time */ if (env->vtcm_log.op_size == 2) { SCATTER_OP_WRITE_TO_MEM(uint16_t); } else if (env->vtcm_log.op_size == 4) { /* Word Scatter += */ SCATTER_OP_WRITE_TO_MEM(uint32_t); } else { g_assert_not_reached(); } } else { for (i = 0; i < sizeof(MMVector); i++) { if (test_bit(i, env->vtcm_log.mask)) { cpu_stb_data_ra(env, env->vtcm_log.va[i], env->vtcm_log.data.ub[i], ra); clear_bit(i, env->vtcm_log.mask); env->vtcm_log.data.ub[i] = 0; } } } } } static void print_store(CPUHexagonState *env, int slot) { if (!(env->slot_cancelled & (1 << slot))) { uint8_t width = env->mem_log_stores[slot].width; if (width == 1) { uint32_t data = env->mem_log_stores[slot].data32 & 0xff; HEX_DEBUG_LOG("\tmemb[0x" TARGET_FMT_lx "] = %" PRId32 " (0x%02" PRIx32 ")\n", env->mem_log_stores[slot].va, data, data); } else if (width == 2) { uint32_t data = env->mem_log_stores[slot].data32 & 0xffff; HEX_DEBUG_LOG("\tmemh[0x" TARGET_FMT_lx "] = %" PRId32 " (0x%04" PRIx32 ")\n", env->mem_log_stores[slot].va, data, data); } else if (width == 4) { uint32_t data = env->mem_log_stores[slot].data32; HEX_DEBUG_LOG("\tmemw[0x" TARGET_FMT_lx "] = %" PRId32 " (0x%08" PRIx32 ")\n", env->mem_log_stores[slot].va, data, data); } else if (width == 8) { HEX_DEBUG_LOG("\tmemd[0x" TARGET_FMT_lx "] = %" PRId64 " (0x%016" PRIx64 ")\n", env->mem_log_stores[slot].va, env->mem_log_stores[slot].data64, env->mem_log_stores[slot].data64); } else { HEX_DEBUG_LOG("\tBad store width %d\n", width); g_assert_not_reached(); } } } /* This function is a handy place to set a breakpoint */ void HELPER(debug_commit_end)(CPUHexagonState *env, int has_st0, int has_st1) { bool reg_printed = false; bool pred_printed = false; int i; HEX_DEBUG_LOG("Packet committed: pc = 0x" TARGET_FMT_lx "\n", env->this_PC); HEX_DEBUG_LOG("slot_cancelled = %d\n", env->slot_cancelled); for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) { if (env->reg_written[i]) { if (!reg_printed) { HEX_DEBUG_LOG("Regs written\n"); reg_printed = true; } HEX_DEBUG_LOG("\tr%d = " TARGET_FMT_ld " (0x" TARGET_FMT_lx ")\n", i, env->new_value[i], env->new_value[i]); } } for (i = 0; i < NUM_PREGS; i++) { if (env->pred_written & (1 << i)) { if (!pred_printed) { HEX_DEBUG_LOG("Predicates written\n"); pred_printed = true; } HEX_DEBUG_LOG("\tp%d = 0x" TARGET_FMT_lx "\n", i, env->new_pred_value[i]); } } if (has_st0 || has_st1) { HEX_DEBUG_LOG("Stores\n"); if (has_st0) { print_store(env, 0); } if (has_st1) { print_store(env, 1); } } HEX_DEBUG_LOG("Next PC = " TARGET_FMT_lx "\n", env->gpr[HEX_REG_PC]); HEX_DEBUG_LOG("Exec counters: pkt = " TARGET_FMT_lx ", insn = " TARGET_FMT_lx ", hvx = " TARGET_FMT_lx "\n", env->gpr[HEX_REG_QEMU_PKT_CNT], env->gpr[HEX_REG_QEMU_INSN_CNT], env->gpr[HEX_REG_QEMU_HVX_CNT]); } int32_t HELPER(fcircadd)(int32_t RxV, int32_t offset, int32_t M, int32_t CS) { uint32_t K_const = extract32(M, 24, 4); uint32_t length = extract32(M, 0, 17); uint32_t new_ptr = RxV + offset; uint32_t start_addr; uint32_t end_addr; if (K_const == 0 && length >= 4) { start_addr = CS; end_addr = start_addr + length; } else { /* * Versions v3 and earlier used the K value to specify a power-of-2 size * 2^(K+2) that is greater than the buffer length */ int32_t mask = (1 << (K_const + 2)) - 1; start_addr = RxV & (~mask); end_addr = start_addr | length; } if (new_ptr >= end_addr) { new_ptr -= length; } else if (new_ptr < start_addr) { new_ptr += length; } return new_ptr; } uint32_t HELPER(fbrev)(uint32_t addr) { /* * Bit reverse the low 16 bits of the address */ return deposit32(addr, 0, 16, revbit16(addr)); } static float32 build_float32(uint8_t sign, uint32_t exp, uint32_t mant) { return make_float32( ((sign & 1) << 31) | ((exp & 0xff) << SF_MANTBITS) | (mant & ((1 << SF_MANTBITS) - 1))); } /* * sfrecipa, sfinvsqrta have two 32-bit results * r0,p0=sfrecipa(r1,r2) * r0,p0=sfinvsqrta(r1) * * Since helpers can only return a single value, we pack the two results * into a 64-bit value. */ uint64_t HELPER(sfrecipa)(CPUHexagonState *env, float32 RsV, float32 RtV) { int32_t PeV = 0; float32 RdV; int idx; int adjust; int mant; int exp; arch_fpop_start(env); if (arch_sf_recip_common(&RsV, &RtV, &RdV, &adjust, &env->fp_status)) { PeV = adjust; idx = (RtV >> 16) & 0x7f; mant = (recip_lookup_table[idx] << 15) | 1; exp = SF_BIAS - (float32_getexp(RtV) - SF_BIAS) - 1; RdV = build_float32(extract32(RtV, 31, 1), exp, mant); } arch_fpop_end(env); return ((uint64_t)RdV << 32) | PeV; } uint64_t HELPER(sfinvsqrta)(CPUHexagonState *env, float32 RsV) { int PeV = 0; float32 RdV; int idx; int adjust; int mant; int exp; arch_fpop_start(env); if (arch_sf_invsqrt_common(&RsV, &RdV, &adjust, &env->fp_status)) { PeV = adjust; idx = (RsV >> 17) & 0x7f; mant = (invsqrt_lookup_table[idx] << 15); exp = SF_BIAS - ((float32_getexp(RsV) - SF_BIAS) >> 1) - 1; RdV = build_float32(extract32(RsV, 31, 1), exp, mant); } arch_fpop_end(env); return ((uint64_t)RdV << 32) | PeV; } int64_t HELPER(vacsh_val)(CPUHexagonState *env, int64_t RxxV, int64_t RssV, int64_t RttV) { for (int i = 0; i < 4; i++) { int xv = sextract64(RxxV, i * 16, 16); int sv = sextract64(RssV, i * 16, 16); int tv = sextract64(RttV, i * 16, 16); int max; xv = xv + tv; sv = sv - tv; max = xv > sv ? xv : sv; /* Note that fSATH can set the OVF bit in usr */ RxxV = deposit64(RxxV, i * 16, 16, fSATH(max)); } return RxxV; } int32_t HELPER(vacsh_pred)(CPUHexagonState *env, int64_t RxxV, int64_t RssV, int64_t RttV) { int32_t PeV = 0; for (int i = 0; i < 4; i++) { int xv = sextract64(RxxV, i * 16, 16); int sv = sextract64(RssV, i * 16, 16); int tv = sextract64(RttV, i * 16, 16); xv = xv + tv; sv = sv - tv; PeV = deposit32(PeV, i * 2, 1, (xv > sv)); PeV = deposit32(PeV, i * 2 + 1, 1, (xv > sv)); } return PeV; } static void probe_store(CPUHexagonState *env, int slot, int mmu_idx, bool is_predicated) { if (!is_predicated || !(env->slot_cancelled & (1 << slot))) { size1u_t width = env->mem_log_stores[slot].width; target_ulong va = env->mem_log_stores[slot].va; uintptr_t ra = GETPC(); probe_write(env, va, width, mmu_idx, ra); } } /* * Called from a mem_noshuf packet to make sure the load doesn't * raise an exception */ void HELPER(probe_noshuf_load)(CPUHexagonState *env, target_ulong va, int size, int mmu_idx) { uintptr_t retaddr = GETPC(); probe_read(env, va, size, mmu_idx, retaddr); } /* Called during packet commit when there are two scalar stores */ void HELPER(probe_pkt_scalar_store_s0)(CPUHexagonState *env, int args) { int mmu_idx = FIELD_EX32(args, PROBE_PKT_SCALAR_STORE_S0, MMU_IDX); bool is_predicated = FIELD_EX32(args, PROBE_PKT_SCALAR_STORE_S0, IS_PREDICATED); probe_store(env, 0, mmu_idx, is_predicated); } void HELPER(probe_hvx_stores)(CPUHexagonState *env, int mmu_idx) { uintptr_t retaddr = GETPC(); int i; /* Normal (possibly masked) vector store */ for (i = 0; i < VSTORES_MAX; i++) { if (env->vstore_pending[i]) { target_ulong va = env->vstore[i].va; int size = env->vstore[i].size; for (int j = 0; j < size; j++) { if (test_bit(j, env->vstore[i].mask)) { probe_write(env, va + j, 1, mmu_idx, retaddr); } } } } /* Scatter store */ if (env->vtcm_pending) { if (env->vtcm_log.op) { /* Need to perform the scatter read/modify/write at commit time */ if (env->vtcm_log.op_size == 2) { SCATTER_OP_PROBE_MEM(size2u_t, mmu_idx, retaddr); } else if (env->vtcm_log.op_size == 4) { /* Word Scatter += */ SCATTER_OP_PROBE_MEM(size4u_t, mmu_idx, retaddr); } else { g_assert_not_reached(); } } else { for (int i = 0; i < sizeof(MMVector); i++) { if (test_bit(i, env->vtcm_log.mask)) { probe_write(env, env->vtcm_log.va[i], 1, mmu_idx, retaddr); } } } } } void HELPER(probe_pkt_scalar_hvx_stores)(CPUHexagonState *env, int mask) { bool has_st0 = FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST0); bool has_st1 = FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST1); bool has_hvx_stores = FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_HVX_STORES); bool s0_is_pred = FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, S0_IS_PRED); bool s1_is_pred = FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, S1_IS_PRED); int mmu_idx = FIELD_EX32(mask, PROBE_PKT_SCALAR_HVX_STORES, MMU_IDX); if (has_st0) { probe_store(env, 0, mmu_idx, s0_is_pred); } if (has_st1) { probe_store(env, 1, mmu_idx, s1_is_pred); } if (has_hvx_stores) { HELPER(probe_hvx_stores)(env, mmu_idx); } } /* * mem_noshuf * Section 5.5 of the Hexagon V67 Programmer's Reference Manual * * If the load is in slot 0 and there is a store in slot1 (that * wasn't cancelled), we have to do the store first. */ static void check_noshuf(CPUHexagonState *env, uint32_t slot, target_ulong vaddr, int size) { if (slot == 0 && env->pkt_has_store_s1 && ((env->slot_cancelled & (1 << 1)) == 0)) { HELPER(probe_noshuf_load)(env, vaddr, size, MMU_USER_IDX); HELPER(commit_store)(env, 1); } } uint8_t mem_load1(CPUHexagonState *env, uint32_t slot, target_ulong vaddr) { uintptr_t ra = GETPC(); check_noshuf(env, slot, vaddr, 1); return cpu_ldub_data_ra(env, vaddr, ra); } uint16_t mem_load2(CPUHexagonState *env, uint32_t slot, target_ulong vaddr) { uintptr_t ra = GETPC(); check_noshuf(env, slot, vaddr, 2); return cpu_lduw_data_ra(env, vaddr, ra); } uint32_t mem_load4(CPUHexagonState *env, uint32_t slot, target_ulong vaddr) { uintptr_t ra = GETPC(); check_noshuf(env, slot, vaddr, 4); return cpu_ldl_data_ra(env, vaddr, ra); } uint64_t mem_load8(CPUHexagonState *env, uint32_t slot, target_ulong vaddr) { uintptr_t ra = GETPC(); check_noshuf(env, slot, vaddr, 8); return cpu_ldq_data_ra(env, vaddr, ra); } /* Floating point */ float64 HELPER(conv_sf2df)(CPUHexagonState *env, float32 RsV) { float64 out_f64; arch_fpop_start(env); out_f64 = float32_to_float64(RsV, &env->fp_status); arch_fpop_end(env); return out_f64; } float32 HELPER(conv_df2sf)(CPUHexagonState *env, float64 RssV) { float32 out_f32; arch_fpop_start(env); out_f32 = float64_to_float32(RssV, &env->fp_status); arch_fpop_end(env); return out_f32; } float32 HELPER(conv_uw2sf)(CPUHexagonState *env, int32_t RsV) { float32 RdV; arch_fpop_start(env); RdV = uint32_to_float32(RsV, &env->fp_status); arch_fpop_end(env); return RdV; } float64 HELPER(conv_uw2df)(CPUHexagonState *env, int32_t RsV) { float64 RddV; arch_fpop_start(env); RddV = uint32_to_float64(RsV, &env->fp_status); arch_fpop_end(env); return RddV; } float32 HELPER(conv_w2sf)(CPUHexagonState *env, int32_t RsV) { float32 RdV; arch_fpop_start(env); RdV = int32_to_float32(RsV, &env->fp_status); arch_fpop_end(env); return RdV; } float64 HELPER(conv_w2df)(CPUHexagonState *env, int32_t RsV) { float64 RddV; arch_fpop_start(env); RddV = int32_to_float64(RsV, &env->fp_status); arch_fpop_end(env); return RddV; } float32 HELPER(conv_ud2sf)(CPUHexagonState *env, int64_t RssV) { float32 RdV; arch_fpop_start(env); RdV = uint64_to_float32(RssV, &env->fp_status); arch_fpop_end(env); return RdV; } float64 HELPER(conv_ud2df)(CPUHexagonState *env, int64_t RssV) { float64 RddV; arch_fpop_start(env); RddV = uint64_to_float64(RssV, &env->fp_status); arch_fpop_end(env); return RddV; } float32 HELPER(conv_d2sf)(CPUHexagonState *env, int64_t RssV) { float32 RdV; arch_fpop_start(env); RdV = int64_to_float32(RssV, &env->fp_status); arch_fpop_end(env); return RdV; } float64 HELPER(conv_d2df)(CPUHexagonState *env, int64_t RssV) { float64 RddV; arch_fpop_start(env); RddV = int64_to_float64(RssV, &env->fp_status); arch_fpop_end(env); return RddV; } uint32_t HELPER(conv_sf2uw)(CPUHexagonState *env, float32 RsV) { uint32_t RdV; arch_fpop_start(env); /* Hexagon checks the sign before rounding */ if (float32_is_neg(RsV) && !float32_is_any_nan(RsV)) { float_raise(float_flag_invalid, &env->fp_status); RdV = 0; } else { RdV = float32_to_uint32(RsV, &env->fp_status); } arch_fpop_end(env); return RdV; } int32_t HELPER(conv_sf2w)(CPUHexagonState *env, float32 RsV) { int32_t RdV; arch_fpop_start(env); /* Hexagon returns -1 for NaN */ if (float32_is_any_nan(RsV)) { float_raise(float_flag_invalid, &env->fp_status); RdV = -1; } else { RdV = float32_to_int32(RsV, &env->fp_status); } arch_fpop_end(env); return RdV; } uint64_t HELPER(conv_sf2ud)(CPUHexagonState *env, float32 RsV) { uint64_t RddV; arch_fpop_start(env); /* Hexagon checks the sign before rounding */ if (float32_is_neg(RsV) && !float32_is_any_nan(RsV)) { float_raise(float_flag_invalid, &env->fp_status); RddV = 0; } else { RddV = float32_to_uint64(RsV, &env->fp_status); } arch_fpop_end(env); return RddV; } int64_t HELPER(conv_sf2d)(CPUHexagonState *env, float32 RsV) { int64_t RddV; arch_fpop_start(env); /* Hexagon returns -1 for NaN */ if (float32_is_any_nan(RsV)) { float_raise(float_flag_invalid, &env->fp_status); RddV = -1; } else { RddV = float32_to_int64(RsV, &env->fp_status); } arch_fpop_end(env); return RddV; } uint32_t HELPER(conv_df2uw)(CPUHexagonState *env, float64 RssV) { uint32_t RdV; arch_fpop_start(env); /* Hexagon checks the sign before rounding */ if (float64_is_neg(RssV) && !float64_is_any_nan(RssV)) { float_raise(float_flag_invalid, &env->fp_status); RdV = 0; } else { RdV = float64_to_uint32(RssV, &env->fp_status); } arch_fpop_end(env); return RdV; } int32_t HELPER(conv_df2w)(CPUHexagonState *env, float64 RssV) { int32_t RdV; arch_fpop_start(env); /* Hexagon returns -1 for NaN */ if (float64_is_any_nan(RssV)) { float_raise(float_flag_invalid, &env->fp_status); RdV = -1; } else { RdV = float64_to_int32(RssV, &env->fp_status); } arch_fpop_end(env); return RdV; } uint64_t HELPER(conv_df2ud)(CPUHexagonState *env, float64 RssV) { uint64_t RddV; arch_fpop_start(env); /* Hexagon checks the sign before rounding */ if (float64_is_neg(RssV) && !float64_is_any_nan(RssV)) { float_raise(float_flag_invalid, &env->fp_status); RddV = 0; } else { RddV = float64_to_uint64(RssV, &env->fp_status); } arch_fpop_end(env); return RddV; } int64_t HELPER(conv_df2d)(CPUHexagonState *env, float64 RssV) { int64_t RddV; arch_fpop_start(env); /* Hexagon returns -1 for NaN */ if (float64_is_any_nan(RssV)) { float_raise(float_flag_invalid, &env->fp_status); RddV = -1; } else { RddV = float64_to_int64(RssV, &env->fp_status); } arch_fpop_end(env); return RddV; } uint32_t HELPER(conv_sf2uw_chop)(CPUHexagonState *env, float32 RsV) { uint32_t RdV; arch_fpop_start(env); /* Hexagon checks the sign before rounding */ if (float32_is_neg(RsV) && !float32_is_any_nan(RsV)) { float_raise(float_flag_invalid, &env->fp_status); RdV = 0; } else { RdV = float32_to_uint32_round_to_zero(RsV, &env->fp_status); } arch_fpop_end(env); return RdV; } int32_t HELPER(conv_sf2w_chop)(CPUHexagonState *env, float32 RsV) { int32_t RdV; arch_fpop_start(env); /* Hexagon returns -1 for NaN */ if (float32_is_any_nan(RsV)) { float_raise(float_flag_invalid, &env->fp_status); RdV = -1; } else { RdV = float32_to_int32_round_to_zero(RsV, &env->fp_status); } arch_fpop_end(env); return RdV; } uint64_t HELPER(conv_sf2ud_chop)(CPUHexagonState *env, float32 RsV) { uint64_t RddV; arch_fpop_start(env); /* Hexagon checks the sign before rounding */ if (float32_is_neg(RsV) && !float32_is_any_nan(RsV)) { float_raise(float_flag_invalid, &env->fp_status); RddV = 0; } else { RddV = float32_to_uint64_round_to_zero(RsV, &env->fp_status); } arch_fpop_end(env); return RddV; } int64_t HELPER(conv_sf2d_chop)(CPUHexagonState *env, float32 RsV) { int64_t RddV; arch_fpop_start(env); /* Hexagon returns -1 for NaN */ if (float32_is_any_nan(RsV)) { float_raise(float_flag_invalid, &env->fp_status); RddV = -1; } else { RddV = float32_to_int64_round_to_zero(RsV, &env->fp_status); } arch_fpop_end(env); return RddV; } uint32_t HELPER(conv_df2uw_chop)(CPUHexagonState *env, float64 RssV) { uint32_t RdV; arch_fpop_start(env); /* Hexagon checks the sign before rounding */ if (float64_is_neg(RssV) && !float64_is_any_nan(RssV)) { float_raise(float_flag_invalid, &env->fp_status); RdV = 0; } else { RdV = float64_to_uint32_round_to_zero(RssV, &env->fp_status); } arch_fpop_end(env); return RdV; } int32_t HELPER(conv_df2w_chop)(CPUHexagonState *env, float64 RssV) { int32_t RdV; arch_fpop_start(env); /* Hexagon returns -1 for NaN */ if (float64_is_any_nan(RssV)) { float_raise(float_flag_invalid, &env->fp_status); RdV = -1; } else { RdV = float64_to_int32_round_to_zero(RssV, &env->fp_status); } arch_fpop_end(env); return RdV; } uint64_t HELPER(conv_df2ud_chop)(CPUHexagonState *env, float64 RssV) { uint64_t RddV; arch_fpop_start(env); /* Hexagon checks the sign before rounding */ if (float64_is_neg(RssV) && !float64_is_any_nan(RssV)) { float_raise(float_flag_invalid, &env->fp_status); RddV = 0; } else { RddV = float64_to_uint64_round_to_zero(RssV, &env->fp_status); } arch_fpop_end(env); return RddV; } int64_t HELPER(conv_df2d_chop)(CPUHexagonState *env, float64 RssV) { int64_t RddV; arch_fpop_start(env); /* Hexagon returns -1 for NaN */ if (float64_is_any_nan(RssV)) { float_raise(float_flag_invalid, &env->fp_status); RddV = -1; } else { RddV = float64_to_int64_round_to_zero(RssV, &env->fp_status); } arch_fpop_end(env); return RddV; } float32 HELPER(sfadd)(CPUHexagonState *env, float32 RsV, float32 RtV) { float32 RdV; arch_fpop_start(env); RdV = float32_add(RsV, RtV, &env->fp_status); arch_fpop_end(env); return RdV; } float32 HELPER(sfsub)(CPUHexagonState *env, float32 RsV, float32 RtV) { float32 RdV; arch_fpop_start(env); RdV = float32_sub(RsV, RtV, &env->fp_status); arch_fpop_end(env); return RdV; } int32_t HELPER(sfcmpeq)(CPUHexagonState *env, float32 RsV, float32 RtV) { int32_t PdV; arch_fpop_start(env); PdV = f8BITSOF(float32_eq_quiet(RsV, RtV, &env->fp_status)); arch_fpop_end(env); return PdV; } int32_t HELPER(sfcmpgt)(CPUHexagonState *env, float32 RsV, float32 RtV) { int cmp; int32_t PdV; arch_fpop_start(env); cmp = float32_compare_quiet(RsV, RtV, &env->fp_status); PdV = f8BITSOF(cmp == float_relation_greater); arch_fpop_end(env); return PdV; } int32_t HELPER(sfcmpge)(CPUHexagonState *env, float32 RsV, float32 RtV) { int cmp; int32_t PdV; arch_fpop_start(env); cmp = float32_compare_quiet(RsV, RtV, &env->fp_status); PdV = f8BITSOF(cmp == float_relation_greater || cmp == float_relation_equal); arch_fpop_end(env); return PdV; } int32_t HELPER(sfcmpuo)(CPUHexagonState *env, float32 RsV, float32 RtV) { int32_t PdV; arch_fpop_start(env); PdV = f8BITSOF(float32_unordered_quiet(RsV, RtV, &env->fp_status)); arch_fpop_end(env); return PdV; } float32 HELPER(sfmax)(CPUHexagonState *env, float32 RsV, float32 RtV) { float32 RdV; arch_fpop_start(env); RdV = float32_maximum_number(RsV, RtV, &env->fp_status); arch_fpop_end(env); return RdV; } float32 HELPER(sfmin)(CPUHexagonState *env, float32 RsV, float32 RtV) { float32 RdV; arch_fpop_start(env); RdV = float32_minimum_number(RsV, RtV, &env->fp_status); arch_fpop_end(env); return RdV; } int32_t HELPER(sfclass)(CPUHexagonState *env, float32 RsV, int32_t uiV) { int32_t PdV = 0; arch_fpop_start(env); if (fGETBIT(0, uiV) && float32_is_zero(RsV)) { PdV = 0xff; } if (fGETBIT(1, uiV) && float32_is_normal(RsV)) { PdV = 0xff; } if (fGETBIT(2, uiV) && float32_is_denormal(RsV)) { PdV = 0xff; } if (fGETBIT(3, uiV) && float32_is_infinity(RsV)) { PdV = 0xff; } if (fGETBIT(4, uiV) && float32_is_any_nan(RsV)) { PdV = 0xff; } set_float_exception_flags(0, &env->fp_status); arch_fpop_end(env); return PdV; } float32 HELPER(sffixupn)(CPUHexagonState *env, float32 RsV, float32 RtV) { float32 RdV = 0; int adjust; arch_fpop_start(env); arch_sf_recip_common(&RsV, &RtV, &RdV, &adjust, &env->fp_status); RdV = RsV; arch_fpop_end(env); return RdV; } float32 HELPER(sffixupd)(CPUHexagonState *env, float32 RsV, float32 RtV) { float32 RdV = 0; int adjust; arch_fpop_start(env); arch_sf_recip_common(&RsV, &RtV, &RdV, &adjust, &env->fp_status); RdV = RtV; arch_fpop_end(env); return RdV; } float32 HELPER(sffixupr)(CPUHexagonState *env, float32 RsV) { float32 RdV = 0; int adjust; arch_fpop_start(env); arch_sf_invsqrt_common(&RsV, &RdV, &adjust, &env->fp_status); RdV = RsV; arch_fpop_end(env); return RdV; } float64 HELPER(dfadd)(CPUHexagonState *env, float64 RssV, float64 RttV) { float64 RddV; arch_fpop_start(env); RddV = float64_add(RssV, RttV, &env->fp_status); arch_fpop_end(env); return RddV; } float64 HELPER(dfsub)(CPUHexagonState *env, float64 RssV, float64 RttV) { float64 RddV; arch_fpop_start(env); RddV = float64_sub(RssV, RttV, &env->fp_status); arch_fpop_end(env); return RddV; } float64 HELPER(dfmax)(CPUHexagonState *env, float64 RssV, float64 RttV) { float64 RddV; arch_fpop_start(env); RddV = float64_maximum_number(RssV, RttV, &env->fp_status); arch_fpop_end(env); return RddV; } float64 HELPER(dfmin)(CPUHexagonState *env, float64 RssV, float64 RttV) { float64 RddV; arch_fpop_start(env); RddV = float64_minimum_number(RssV, RttV, &env->fp_status); arch_fpop_end(env); return RddV; } int32_t HELPER(dfcmpeq)(CPUHexagonState *env, float64 RssV, float64 RttV) { int32_t PdV; arch_fpop_start(env); PdV = f8BITSOF(float64_eq_quiet(RssV, RttV, &env->fp_status)); arch_fpop_end(env); return PdV; } int32_t HELPER(dfcmpgt)(CPUHexagonState *env, float64 RssV, float64 RttV) { int cmp; int32_t PdV; arch_fpop_start(env); cmp = float64_compare_quiet(RssV, RttV, &env->fp_status); PdV = f8BITSOF(cmp == float_relation_greater); arch_fpop_end(env); return PdV; } int32_t HELPER(dfcmpge)(CPUHexagonState *env, float64 RssV, float64 RttV) { int cmp; int32_t PdV; arch_fpop_start(env); cmp = float64_compare_quiet(RssV, RttV, &env->fp_status); PdV = f8BITSOF(cmp == float_relation_greater || cmp == float_relation_equal); arch_fpop_end(env); return PdV; } int32_t HELPER(dfcmpuo)(CPUHexagonState *env, float64 RssV, float64 RttV) { int32_t PdV; arch_fpop_start(env); PdV = f8BITSOF(float64_unordered_quiet(RssV, RttV, &env->fp_status)); arch_fpop_end(env); return PdV; } int32_t HELPER(dfclass)(CPUHexagonState *env, float64 RssV, int32_t uiV) { int32_t PdV = 0; arch_fpop_start(env); if (fGETBIT(0, uiV) && float64_is_zero(RssV)) { PdV = 0xff; } if (fGETBIT(1, uiV) && float64_is_normal(RssV)) { PdV = 0xff; } if (fGETBIT(2, uiV) && float64_is_denormal(RssV)) { PdV = 0xff; } if (fGETBIT(3, uiV) && float64_is_infinity(RssV)) { PdV = 0xff; } if (fGETBIT(4, uiV) && float64_is_any_nan(RssV)) { PdV = 0xff; } set_float_exception_flags(0, &env->fp_status); arch_fpop_end(env); return PdV; } float32 HELPER(sfmpy)(CPUHexagonState *env, float32 RsV, float32 RtV) { float32 RdV; arch_fpop_start(env); RdV = internal_mpyf(RsV, RtV, &env->fp_status); arch_fpop_end(env); return RdV; } float32 HELPER(sffma)(CPUHexagonState *env, float32 RxV, float32 RsV, float32 RtV) { arch_fpop_start(env); RxV = internal_fmafx(RsV, RtV, RxV, 0, &env->fp_status); arch_fpop_end(env); return RxV; } static bool is_zero_prod(float32 a, float32 b) { return ((float32_is_zero(a) && is_finite(b)) || (float32_is_zero(b) && is_finite(a))); } static float32 check_nan(float32 dst, float32 x, float_status *fp_status) { float32 ret = dst; if (float32_is_any_nan(x)) { if (extract32(x, 22, 1) == 0) { float_raise(float_flag_invalid, fp_status); } ret = make_float32(0xffffffff); /* nan */ } return ret; } float32 HELPER(sffma_sc)(CPUHexagonState *env, float32 RxV, float32 RsV, float32 RtV, float32 PuV) { size4s_t tmp; arch_fpop_start(env); RxV = check_nan(RxV, RxV, &env->fp_status); RxV = check_nan(RxV, RsV, &env->fp_status); RxV = check_nan(RxV, RtV, &env->fp_status); tmp = internal_fmafx(RsV, RtV, RxV, fSXTN(8, 64, PuV), &env->fp_status); if (!(float32_is_zero(RxV) && is_zero_prod(RsV, RtV))) { RxV = tmp; } arch_fpop_end(env); return RxV; } float32 HELPER(sffms)(CPUHexagonState *env, float32 RxV, float32 RsV, float32 RtV) { float32 neg_RsV; arch_fpop_start(env); neg_RsV = float32_set_sign(RsV, float32_is_neg(RsV) ? 0 : 1); RxV = internal_fmafx(neg_RsV, RtV, RxV, 0, &env->fp_status); arch_fpop_end(env); return RxV; } static bool is_inf_prod(int32_t a, int32_t b) { return (float32_is_infinity(a) && float32_is_infinity(b)) || (float32_is_infinity(a) && is_finite(b) && !float32_is_zero(b)) || (float32_is_infinity(b) && is_finite(a) && !float32_is_zero(a)); } float32 HELPER(sffma_lib)(CPUHexagonState *env, float32 RxV, float32 RsV, float32 RtV) { bool infinp; bool infminusinf; float32 tmp; arch_fpop_start(env); set_float_rounding_mode(float_round_nearest_even, &env->fp_status); infminusinf = float32_is_infinity(RxV) && is_inf_prod(RsV, RtV) && (fGETBIT(31, RsV ^ RxV ^ RtV) != 0); infinp = float32_is_infinity(RxV) || float32_is_infinity(RtV) || float32_is_infinity(RsV); RxV = check_nan(RxV, RxV, &env->fp_status); RxV = check_nan(RxV, RsV, &env->fp_status); RxV = check_nan(RxV, RtV, &env->fp_status); tmp = internal_fmafx(RsV, RtV, RxV, 0, &env->fp_status); if (!(float32_is_zero(RxV) && is_zero_prod(RsV, RtV))) { RxV = tmp; } set_float_exception_flags(0, &env->fp_status); if (float32_is_infinity(RxV) && !infinp) { RxV = RxV - 1; } if (infminusinf) { RxV = 0; } arch_fpop_end(env); return RxV; } float32 HELPER(sffms_lib)(CPUHexagonState *env, float32 RxV, float32 RsV, float32 RtV) { bool infinp; bool infminusinf; float32 tmp; arch_fpop_start(env); set_float_rounding_mode(float_round_nearest_even, &env->fp_status); infminusinf = float32_is_infinity(RxV) && is_inf_prod(RsV, RtV) && (fGETBIT(31, RsV ^ RxV ^ RtV) == 0); infinp = float32_is_infinity(RxV) || float32_is_infinity(RtV) || float32_is_infinity(RsV); RxV = check_nan(RxV, RxV, &env->fp_status); RxV = check_nan(RxV, RsV, &env->fp_status); RxV = check_nan(RxV, RtV, &env->fp_status); float32 minus_RsV = float32_sub(float32_zero, RsV, &env->fp_status); tmp = internal_fmafx(minus_RsV, RtV, RxV, 0, &env->fp_status); if (!(float32_is_zero(RxV) && is_zero_prod(RsV, RtV))) { RxV = tmp; } set_float_exception_flags(0, &env->fp_status); if (float32_is_infinity(RxV) && !infinp) { RxV = RxV - 1; } if (infminusinf) { RxV = 0; } arch_fpop_end(env); return RxV; } float64 HELPER(dfmpyfix)(CPUHexagonState *env, float64 RssV, float64 RttV) { int64_t RddV; arch_fpop_start(env); if (float64_is_denormal(RssV) && (float64_getexp(RttV) >= 512) && float64_is_normal(RttV)) { RddV = float64_mul(RssV, make_float64(0x4330000000000000), &env->fp_status); } else if (float64_is_denormal(RttV) && (float64_getexp(RssV) >= 512) && float64_is_normal(RssV)) { RddV = float64_mul(RssV, make_float64(0x3cb0000000000000), &env->fp_status); } else { RddV = RssV; } arch_fpop_end(env); return RddV; } float64 HELPER(dfmpyhh)(CPUHexagonState *env, float64 RxxV, float64 RssV, float64 RttV) { arch_fpop_start(env); RxxV = internal_mpyhh(RssV, RttV, RxxV, &env->fp_status); arch_fpop_end(env); return RxxV; } /* Histogram instructions */ void HELPER(vhist)(CPUHexagonState *env) { MMVector *input = &env->tmp_VRegs[0]; for (int lane = 0; lane < 8; lane++) { for (int i = 0; i < sizeof(MMVector) / 8; ++i) { unsigned char value = input->ub[(sizeof(MMVector) / 8) * lane + i]; unsigned char regno = value >> 3; unsigned char element = value & 7; env->VRegs[regno].uh[(sizeof(MMVector) / 16) * lane + element]++; } } } void HELPER(vhistq)(CPUHexagonState *env) { MMVector *input = &env->tmp_VRegs[0]; for (int lane = 0; lane < 8; lane++) { for (int i = 0; i < sizeof(MMVector) / 8; ++i) { unsigned char value = input->ub[(sizeof(MMVector) / 8) * lane + i]; unsigned char regno = value >> 3; unsigned char element = value & 7; if (fGETQBIT(env->qtmp, sizeof(MMVector) / 8 * lane + i)) { env->VRegs[regno].uh[ (sizeof(MMVector) / 16) * lane + element]++; } } } } void HELPER(vwhist256)(CPUHexagonState *env) { MMVector *input = &env->tmp_VRegs[0]; for (int i = 0; i < (sizeof(MMVector) / 2); i++) { unsigned int bucket = fGETUBYTE(0, input->h[i]); unsigned int weight = fGETUBYTE(1, input->h[i]); unsigned int vindex = (bucket >> 3) & 0x1F; unsigned int elindex = ((i >> 0) & (~7)) | ((bucket >> 0) & 7); env->VRegs[vindex].uh[elindex] = env->VRegs[vindex].uh[elindex] + weight; } } void HELPER(vwhist256q)(CPUHexagonState *env) { MMVector *input = &env->tmp_VRegs[0]; for (int i = 0; i < (sizeof(MMVector) / 2); i++) { unsigned int bucket = fGETUBYTE(0, input->h[i]); unsigned int weight = fGETUBYTE(1, input->h[i]); unsigned int vindex = (bucket >> 3) & 0x1F; unsigned int elindex = ((i >> 0) & (~7)) | ((bucket >> 0) & 7); if (fGETQBIT(env->qtmp, 2 * i)) { env->VRegs[vindex].uh[elindex] = env->VRegs[vindex].uh[elindex] + weight; } } } void HELPER(vwhist256_sat)(CPUHexagonState *env) { MMVector *input = &env->tmp_VRegs[0]; for (int i = 0; i < (sizeof(MMVector) / 2); i++) { unsigned int bucket = fGETUBYTE(0, input->h[i]); unsigned int weight = fGETUBYTE(1, input->h[i]); unsigned int vindex = (bucket >> 3) & 0x1F; unsigned int elindex = ((i >> 0) & (~7)) | ((bucket >> 0) & 7); env->VRegs[vindex].uh[elindex] = fVSATUH(env->VRegs[vindex].uh[elindex] + weight); } } void HELPER(vwhist256q_sat)(CPUHexagonState *env) { MMVector *input = &env->tmp_VRegs[0]; for (int i = 0; i < (sizeof(MMVector) / 2); i++) { unsigned int bucket = fGETUBYTE(0, input->h[i]); unsigned int weight = fGETUBYTE(1, input->h[i]); unsigned int vindex = (bucket >> 3) & 0x1F; unsigned int elindex = ((i >> 0) & (~7)) | ((bucket >> 0) & 7); if (fGETQBIT(env->qtmp, 2 * i)) { env->VRegs[vindex].uh[elindex] = fVSATUH(env->VRegs[vindex].uh[elindex] + weight); } } } void HELPER(vwhist128)(CPUHexagonState *env) { MMVector *input = &env->tmp_VRegs[0]; for (int i = 0; i < (sizeof(MMVector) / 2); i++) { unsigned int bucket = fGETUBYTE(0, input->h[i]); unsigned int weight = fGETUBYTE(1, input->h[i]); unsigned int vindex = (bucket >> 3) & 0x1F; unsigned int elindex = ((i >> 1) & (~3)) | ((bucket >> 1) & 3); env->VRegs[vindex].uw[elindex] = env->VRegs[vindex].uw[elindex] + weight; } } void HELPER(vwhist128q)(CPUHexagonState *env) { MMVector *input = &env->tmp_VRegs[0]; for (int i = 0; i < (sizeof(MMVector) / 2); i++) { unsigned int bucket = fGETUBYTE(0, input->h[i]); unsigned int weight = fGETUBYTE(1, input->h[i]); unsigned int vindex = (bucket >> 3) & 0x1F; unsigned int elindex = ((i >> 1) & (~3)) | ((bucket >> 1) & 3); if (fGETQBIT(env->qtmp, 2 * i)) { env->VRegs[vindex].uw[elindex] = env->VRegs[vindex].uw[elindex] + weight; } } } void HELPER(vwhist128m)(CPUHexagonState *env, int32_t uiV) { MMVector *input = &env->tmp_VRegs[0]; for (int i = 0; i < (sizeof(MMVector) / 2); i++) { unsigned int bucket = fGETUBYTE(0, input->h[i]); unsigned int weight = fGETUBYTE(1, input->h[i]); unsigned int vindex = (bucket >> 3) & 0x1F; unsigned int elindex = ((i >> 1) & (~3)) | ((bucket >> 1) & 3); if ((bucket & 1) == uiV) { env->VRegs[vindex].uw[elindex] = env->VRegs[vindex].uw[elindex] + weight; } } } void HELPER(vwhist128qm)(CPUHexagonState *env, int32_t uiV) { MMVector *input = &env->tmp_VRegs[0]; for (int i = 0; i < (sizeof(MMVector) / 2); i++) { unsigned int bucket = fGETUBYTE(0, input->h[i]); unsigned int weight = fGETUBYTE(1, input->h[i]); unsigned int vindex = (bucket >> 3) & 0x1F; unsigned int elindex = ((i >> 1) & (~3)) | ((bucket >> 1) & 3); if (((bucket & 1) == uiV) && fGETQBIT(env->qtmp, 2 * i)) { env->VRegs[vindex].uw[elindex] = env->VRegs[vindex].uw[elindex] + weight; } } } /* These macros can be referenced in the generated helper functions */ #define warn(...) /* Nothing */ #define fatal(...) g_assert_not_reached(); #define BOGUS_HELPER(tag) \ printf("ERROR: bogus helper: " #tag "\n") #include "helper_funcs_generated.c.inc"