/* * QEMU RISC-V VirtIO Board * * Copyright (c) 2017 SiFive, Inc. * * RISC-V machine with 16550a UART and VirtIO MMIO * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "hw/boards.h" #include "hw/loader.h" #include "hw/sysbus.h" #include "hw/qdev-properties.h" #include "hw/char/serial.h" #include "target/riscv/cpu.h" #include "hw/riscv/riscv_hart.h" #include "hw/riscv/virt.h" #include "hw/riscv/boot.h" #include "hw/riscv/numa.h" #include "hw/intc/riscv_aclint.h" #include "hw/intc/sifive_plic.h" #include "hw/misc/sifive_test.h" #include "chardev/char.h" #include "sysemu/device_tree.h" #include "sysemu/sysemu.h" #include "hw/pci/pci.h" #include "hw/pci-host/gpex.h" #include "hw/display/ramfb.h" static const MemMapEntry virt_memmap[] = { [VIRT_DEBUG] = { 0x0, 0x100 }, [VIRT_MROM] = { 0x1000, 0xf000 }, [VIRT_TEST] = { 0x100000, 0x1000 }, [VIRT_RTC] = { 0x101000, 0x1000 }, [VIRT_CLINT] = { 0x2000000, 0x10000 }, [VIRT_ACLINT_SSWI] = { 0x2F00000, 0x4000 }, [VIRT_PCIE_PIO] = { 0x3000000, 0x10000 }, [VIRT_PLIC] = { 0xc000000, VIRT_PLIC_SIZE(VIRT_CPUS_MAX * 2) }, [VIRT_UART0] = { 0x10000000, 0x100 }, [VIRT_VIRTIO] = { 0x10001000, 0x1000 }, [VIRT_FW_CFG] = { 0x10100000, 0x18 }, [VIRT_FLASH] = { 0x20000000, 0x4000000 }, [VIRT_PCIE_ECAM] = { 0x30000000, 0x10000000 }, [VIRT_PCIE_MMIO] = { 0x40000000, 0x40000000 }, [VIRT_DRAM] = { 0x80000000, 0x0 }, }; /* PCIe high mmio is fixed for RV32 */ #define VIRT32_HIGH_PCIE_MMIO_BASE 0x300000000ULL #define VIRT32_HIGH_PCIE_MMIO_SIZE (4 * GiB) /* PCIe high mmio for RV64, size is fixed but base depends on top of RAM */ #define VIRT64_HIGH_PCIE_MMIO_SIZE (16 * GiB) static MemMapEntry virt_high_pcie_memmap; #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s, const char *name, const char *alias_prop_name) { /* * Create a single flash device. We use the same parameters as * the flash devices on the ARM virt board. */ DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); qdev_prop_set_uint8(dev, "width", 4); qdev_prop_set_uint8(dev, "device-width", 2); qdev_prop_set_bit(dev, "big-endian", false); qdev_prop_set_uint16(dev, "id0", 0x89); qdev_prop_set_uint16(dev, "id1", 0x18); qdev_prop_set_uint16(dev, "id2", 0x00); qdev_prop_set_uint16(dev, "id3", 0x00); qdev_prop_set_string(dev, "name", name); object_property_add_child(OBJECT(s), name, OBJECT(dev)); object_property_add_alias(OBJECT(s), alias_prop_name, OBJECT(dev), "drive"); return PFLASH_CFI01(dev); } static void virt_flash_create(RISCVVirtState *s) { s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0"); s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1"); } static void virt_flash_map1(PFlashCFI01 *flash, hwaddr base, hwaddr size, MemoryRegion *sysmem) { DeviceState *dev = DEVICE(flash); assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); memory_region_add_subregion(sysmem, base, sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0)); } static void virt_flash_map(RISCVVirtState *s, MemoryRegion *sysmem) { hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2; hwaddr flashbase = virt_memmap[VIRT_FLASH].base; virt_flash_map1(s->flash[0], flashbase, flashsize, sysmem); virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize, sysmem); } static void create_pcie_irq_map(void *fdt, char *nodename, uint32_t plic_phandle) { int pin, dev; uint32_t full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS * FDT_INT_MAP_WIDTH] = {}; uint32_t *irq_map = full_irq_map; /* This code creates a standard swizzle of interrupts such that * each device's first interrupt is based on it's PCI_SLOT number. * (See pci_swizzle_map_irq_fn()) * * We only need one entry per interrupt in the table (not one per * possible slot) seeing the interrupt-map-mask will allow the table * to wrap to any number of devices. */ for (dev = 0; dev < GPEX_NUM_IRQS; dev++) { int devfn = dev * 0x8; for (pin = 0; pin < GPEX_NUM_IRQS; pin++) { int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS); int i = 0; irq_map[i] = cpu_to_be32(devfn << 8); i += FDT_PCI_ADDR_CELLS; irq_map[i] = cpu_to_be32(pin + 1); i += FDT_PCI_INT_CELLS; irq_map[i++] = cpu_to_be32(plic_phandle); i += FDT_PLIC_ADDR_CELLS; irq_map[i] = cpu_to_be32(irq_nr); irq_map += FDT_INT_MAP_WIDTH; } } qemu_fdt_setprop(fdt, nodename, "interrupt-map", full_irq_map, sizeof(full_irq_map)); qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask", 0x1800, 0, 0, 0x7); } static void create_fdt_socket_cpus(RISCVVirtState *s, int socket, char *clust_name, uint32_t *phandle, bool is_32_bit, uint32_t *intc_phandles) { int cpu; uint32_t cpu_phandle; MachineState *mc = MACHINE(s); char *name, *cpu_name, *core_name, *intc_name; for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) { cpu_phandle = (*phandle)++; cpu_name = g_strdup_printf("/cpus/cpu@%d", s->soc[socket].hartid_base + cpu); qemu_fdt_add_subnode(mc->fdt, cpu_name); qemu_fdt_setprop_string(mc->fdt, cpu_name, "mmu-type", (is_32_bit) ? "riscv,sv32" : "riscv,sv48"); name = riscv_isa_string(&s->soc[socket].harts[cpu]); qemu_fdt_setprop_string(mc->fdt, cpu_name, "riscv,isa", name); g_free(name); qemu_fdt_setprop_string(mc->fdt, cpu_name, "compatible", "riscv"); qemu_fdt_setprop_string(mc->fdt, cpu_name, "status", "okay"); qemu_fdt_setprop_cell(mc->fdt, cpu_name, "reg", s->soc[socket].hartid_base + cpu); qemu_fdt_setprop_string(mc->fdt, cpu_name, "device_type", "cpu"); riscv_socket_fdt_write_id(mc, mc->fdt, cpu_name, socket); qemu_fdt_setprop_cell(mc->fdt, cpu_name, "phandle", cpu_phandle); intc_phandles[cpu] = (*phandle)++; intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name); qemu_fdt_add_subnode(mc->fdt, intc_name); qemu_fdt_setprop_cell(mc->fdt, intc_name, "phandle", intc_phandles[cpu]); qemu_fdt_setprop_string(mc->fdt, intc_name, "compatible", "riscv,cpu-intc"); qemu_fdt_setprop(mc->fdt, intc_name, "interrupt-controller", NULL, 0); qemu_fdt_setprop_cell(mc->fdt, intc_name, "#interrupt-cells", 1); core_name = g_strdup_printf("%s/core%d", clust_name, cpu); qemu_fdt_add_subnode(mc->fdt, core_name); qemu_fdt_setprop_cell(mc->fdt, core_name, "cpu", cpu_phandle); g_free(core_name); g_free(intc_name); g_free(cpu_name); } } static void create_fdt_socket_memory(RISCVVirtState *s, const MemMapEntry *memmap, int socket) { char *mem_name; uint64_t addr, size; MachineState *mc = MACHINE(s); addr = memmap[VIRT_DRAM].base + riscv_socket_mem_offset(mc, socket); size = riscv_socket_mem_size(mc, socket); mem_name = g_strdup_printf("/memory@%lx", (long)addr); qemu_fdt_add_subnode(mc->fdt, mem_name); qemu_fdt_setprop_cells(mc->fdt, mem_name, "reg", addr >> 32, addr, size >> 32, size); qemu_fdt_setprop_string(mc->fdt, mem_name, "device_type", "memory"); riscv_socket_fdt_write_id(mc, mc->fdt, mem_name, socket); g_free(mem_name); } static void create_fdt_socket_clint(RISCVVirtState *s, const MemMapEntry *memmap, int socket, uint32_t *intc_phandles) { int cpu; char *clint_name; uint32_t *clint_cells; unsigned long clint_addr; MachineState *mc = MACHINE(s); static const char * const clint_compat[2] = { "sifive,clint0", "riscv,clint0" }; clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4); for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) { clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]); clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT); clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]); clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER); } clint_addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket); clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr); qemu_fdt_add_subnode(mc->fdt, clint_name); qemu_fdt_setprop_string_array(mc->fdt, clint_name, "compatible", (char **)&clint_compat, ARRAY_SIZE(clint_compat)); qemu_fdt_setprop_cells(mc->fdt, clint_name, "reg", 0x0, clint_addr, 0x0, memmap[VIRT_CLINT].size); qemu_fdt_setprop(mc->fdt, clint_name, "interrupts-extended", clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4); riscv_socket_fdt_write_id(mc, mc->fdt, clint_name, socket); g_free(clint_name); g_free(clint_cells); } static void create_fdt_socket_aclint(RISCVVirtState *s, const MemMapEntry *memmap, int socket, uint32_t *intc_phandles) { int cpu; char *name; unsigned long addr; uint32_t aclint_cells_size; uint32_t *aclint_mswi_cells; uint32_t *aclint_sswi_cells; uint32_t *aclint_mtimer_cells; MachineState *mc = MACHINE(s); aclint_mswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2); aclint_mtimer_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2); aclint_sswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2); for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) { aclint_mswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]); aclint_mswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_SOFT); aclint_mtimer_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]); aclint_mtimer_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_TIMER); aclint_sswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]); aclint_sswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_SOFT); } aclint_cells_size = s->soc[socket].num_harts * sizeof(uint32_t) * 2; addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket); name = g_strdup_printf("/soc/mswi@%lx", addr); qemu_fdt_add_subnode(mc->fdt, name); qemu_fdt_setprop_string(mc->fdt, name, "compatible", "riscv,aclint-mswi"); qemu_fdt_setprop_cells(mc->fdt, name, "reg", 0x0, addr, 0x0, RISCV_ACLINT_SWI_SIZE); qemu_fdt_setprop(mc->fdt, name, "interrupts-extended", aclint_mswi_cells, aclint_cells_size); qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0); qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0); riscv_socket_fdt_write_id(mc, mc->fdt, name, socket); g_free(name); addr = memmap[VIRT_CLINT].base + RISCV_ACLINT_SWI_SIZE + (memmap[VIRT_CLINT].size * socket); name = g_strdup_printf("/soc/mtimer@%lx", addr); qemu_fdt_add_subnode(mc->fdt, name); qemu_fdt_setprop_string(mc->fdt, name, "compatible", "riscv,aclint-mtimer"); qemu_fdt_setprop_cells(mc->fdt, name, "reg", 0x0, addr + RISCV_ACLINT_DEFAULT_MTIME, 0x0, memmap[VIRT_CLINT].size - RISCV_ACLINT_SWI_SIZE - RISCV_ACLINT_DEFAULT_MTIME, 0x0, addr + RISCV_ACLINT_DEFAULT_MTIMECMP, 0x0, RISCV_ACLINT_DEFAULT_MTIME); qemu_fdt_setprop(mc->fdt, name, "interrupts-extended", aclint_mtimer_cells, aclint_cells_size); riscv_socket_fdt_write_id(mc, mc->fdt, name, socket); g_free(name); addr = memmap[VIRT_ACLINT_SSWI].base + (memmap[VIRT_ACLINT_SSWI].size * socket); name = g_strdup_printf("/soc/sswi@%lx", addr); qemu_fdt_add_subnode(mc->fdt, name); qemu_fdt_setprop_string(mc->fdt, name, "compatible", "riscv,aclint-sswi"); qemu_fdt_setprop_cells(mc->fdt, name, "reg", 0x0, addr, 0x0, memmap[VIRT_ACLINT_SSWI].size); qemu_fdt_setprop(mc->fdt, name, "interrupts-extended", aclint_sswi_cells, aclint_cells_size); qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0); qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0); riscv_socket_fdt_write_id(mc, mc->fdt, name, socket); g_free(name); g_free(aclint_mswi_cells); g_free(aclint_mtimer_cells); g_free(aclint_sswi_cells); } static void create_fdt_socket_plic(RISCVVirtState *s, const MemMapEntry *memmap, int socket, uint32_t *phandle, uint32_t *intc_phandles, uint32_t *plic_phandles) { int cpu; char *plic_name; uint32_t *plic_cells; unsigned long plic_addr; MachineState *mc = MACHINE(s); static const char * const plic_compat[2] = { "sifive,plic-1.0.0", "riscv,plic0" }; plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4); for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) { plic_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]); plic_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT); plic_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]); plic_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT); } plic_phandles[socket] = (*phandle)++; plic_addr = memmap[VIRT_PLIC].base + (memmap[VIRT_PLIC].size * socket); plic_name = g_strdup_printf("/soc/plic@%lx", plic_addr); qemu_fdt_add_subnode(mc->fdt, plic_name); qemu_fdt_setprop_cell(mc->fdt, plic_name, "#address-cells", FDT_PLIC_ADDR_CELLS); qemu_fdt_setprop_cell(mc->fdt, plic_name, "#interrupt-cells", FDT_PLIC_INT_CELLS); qemu_fdt_setprop_string_array(mc->fdt, plic_name, "compatible", (char **)&plic_compat, ARRAY_SIZE(plic_compat)); qemu_fdt_setprop(mc->fdt, plic_name, "interrupt-controller", NULL, 0); qemu_fdt_setprop(mc->fdt, plic_name, "interrupts-extended", plic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4); qemu_fdt_setprop_cells(mc->fdt, plic_name, "reg", 0x0, plic_addr, 0x0, memmap[VIRT_PLIC].size); qemu_fdt_setprop_cell(mc->fdt, plic_name, "riscv,ndev", VIRTIO_NDEV); riscv_socket_fdt_write_id(mc, mc->fdt, plic_name, socket); qemu_fdt_setprop_cell(mc->fdt, plic_name, "phandle", plic_phandles[socket]); g_free(plic_name); g_free(plic_cells); } static void create_fdt_sockets(RISCVVirtState *s, const MemMapEntry *memmap, bool is_32_bit, uint32_t *phandle, uint32_t *irq_mmio_phandle, uint32_t *irq_pcie_phandle, uint32_t *irq_virtio_phandle) { int socket; char *clust_name; uint32_t *intc_phandles; MachineState *mc = MACHINE(s); uint32_t xplic_phandles[MAX_NODES]; qemu_fdt_add_subnode(mc->fdt, "/cpus"); qemu_fdt_setprop_cell(mc->fdt, "/cpus", "timebase-frequency", RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ); qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#size-cells", 0x0); qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#address-cells", 0x1); qemu_fdt_add_subnode(mc->fdt, "/cpus/cpu-map"); for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) { clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket); qemu_fdt_add_subnode(mc->fdt, clust_name); intc_phandles = g_new0(uint32_t, s->soc[socket].num_harts); create_fdt_socket_cpus(s, socket, clust_name, phandle, is_32_bit, intc_phandles); create_fdt_socket_memory(s, memmap, socket); if (s->have_aclint) { create_fdt_socket_aclint(s, memmap, socket, intc_phandles); } else { create_fdt_socket_clint(s, memmap, socket, intc_phandles); } create_fdt_socket_plic(s, memmap, socket, phandle, intc_phandles, xplic_phandles); g_free(intc_phandles); g_free(clust_name); } for (socket = 0; socket < riscv_socket_count(mc); socket++) { if (socket == 0) { *irq_mmio_phandle = xplic_phandles[socket]; *irq_virtio_phandle = xplic_phandles[socket]; *irq_pcie_phandle = xplic_phandles[socket]; } if (socket == 1) { *irq_virtio_phandle = xplic_phandles[socket]; *irq_pcie_phandle = xplic_phandles[socket]; } if (socket == 2) { *irq_pcie_phandle = xplic_phandles[socket]; } } riscv_socket_fdt_write_distance_matrix(mc, mc->fdt); } static void create_fdt_virtio(RISCVVirtState *s, const MemMapEntry *memmap, uint32_t irq_virtio_phandle) { int i; char *name; MachineState *mc = MACHINE(s); for (i = 0; i < VIRTIO_COUNT; i++) { name = g_strdup_printf("/soc/virtio_mmio@%lx", (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size)); qemu_fdt_add_subnode(mc->fdt, name); qemu_fdt_setprop_string(mc->fdt, name, "compatible", "virtio,mmio"); qemu_fdt_setprop_cells(mc->fdt, name, "reg", 0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size, 0x0, memmap[VIRT_VIRTIO].size); qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent", irq_virtio_phandle); qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", VIRTIO_IRQ + i); g_free(name); } } static void create_fdt_pcie(RISCVVirtState *s, const MemMapEntry *memmap, uint32_t irq_pcie_phandle) { char *name; MachineState *mc = MACHINE(s); name = g_strdup_printf("/soc/pci@%lx", (long) memmap[VIRT_PCIE_ECAM].base); qemu_fdt_add_subnode(mc->fdt, name); qemu_fdt_setprop_cell(mc->fdt, name, "#address-cells", FDT_PCI_ADDR_CELLS); qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", FDT_PCI_INT_CELLS); qemu_fdt_setprop_cell(mc->fdt, name, "#size-cells", 0x2); qemu_fdt_setprop_string(mc->fdt, name, "compatible", "pci-host-ecam-generic"); qemu_fdt_setprop_string(mc->fdt, name, "device_type", "pci"); qemu_fdt_setprop_cell(mc->fdt, name, "linux,pci-domain", 0); qemu_fdt_setprop_cells(mc->fdt, name, "bus-range", 0, memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1); qemu_fdt_setprop(mc->fdt, name, "dma-coherent", NULL, 0); qemu_fdt_setprop_cells(mc->fdt, name, "reg", 0, memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size); qemu_fdt_setprop_sized_cells(mc->fdt, name, "ranges", 1, FDT_PCI_RANGE_IOPORT, 2, 0, 2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size, 1, FDT_PCI_RANGE_MMIO, 2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size, 1, FDT_PCI_RANGE_MMIO_64BIT, 2, virt_high_pcie_memmap.base, 2, virt_high_pcie_memmap.base, 2, virt_high_pcie_memmap.size); create_pcie_irq_map(mc->fdt, name, irq_pcie_phandle); g_free(name); } static void create_fdt_reset(RISCVVirtState *s, const MemMapEntry *memmap, uint32_t *phandle) { char *name; uint32_t test_phandle; MachineState *mc = MACHINE(s); test_phandle = (*phandle)++; name = g_strdup_printf("/soc/test@%lx", (long)memmap[VIRT_TEST].base); qemu_fdt_add_subnode(mc->fdt, name); { static const char * const compat[3] = { "sifive,test1", "sifive,test0", "syscon" }; qemu_fdt_setprop_string_array(mc->fdt, name, "compatible", (char **)&compat, ARRAY_SIZE(compat)); } qemu_fdt_setprop_cells(mc->fdt, name, "reg", 0x0, memmap[VIRT_TEST].base, 0x0, memmap[VIRT_TEST].size); qemu_fdt_setprop_cell(mc->fdt, name, "phandle", test_phandle); test_phandle = qemu_fdt_get_phandle(mc->fdt, name); g_free(name); name = g_strdup_printf("/soc/reboot"); qemu_fdt_add_subnode(mc->fdt, name); qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-reboot"); qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle); qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0); qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_RESET); g_free(name); name = g_strdup_printf("/soc/poweroff"); qemu_fdt_add_subnode(mc->fdt, name); qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-poweroff"); qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle); qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0); qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_PASS); g_free(name); } static void create_fdt_uart(RISCVVirtState *s, const MemMapEntry *memmap, uint32_t irq_mmio_phandle) { char *name; MachineState *mc = MACHINE(s); name = g_strdup_printf("/soc/uart@%lx", (long)memmap[VIRT_UART0].base); qemu_fdt_add_subnode(mc->fdt, name); qemu_fdt_setprop_string(mc->fdt, name, "compatible", "ns16550a"); qemu_fdt_setprop_cells(mc->fdt, name, "reg", 0x0, memmap[VIRT_UART0].base, 0x0, memmap[VIRT_UART0].size); qemu_fdt_setprop_cell(mc->fdt, name, "clock-frequency", 3686400); qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent", irq_mmio_phandle); qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", UART0_IRQ); qemu_fdt_add_subnode(mc->fdt, "/chosen"); qemu_fdt_setprop_string(mc->fdt, "/chosen", "stdout-path", name); g_free(name); } static void create_fdt_rtc(RISCVVirtState *s, const MemMapEntry *memmap, uint32_t irq_mmio_phandle) { char *name; MachineState *mc = MACHINE(s); name = g_strdup_printf("/soc/rtc@%lx", (long)memmap[VIRT_RTC].base); qemu_fdt_add_subnode(mc->fdt, name); qemu_fdt_setprop_string(mc->fdt, name, "compatible", "google,goldfish-rtc"); qemu_fdt_setprop_cells(mc->fdt, name, "reg", 0x0, memmap[VIRT_RTC].base, 0x0, memmap[VIRT_RTC].size); qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent", irq_mmio_phandle); qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", RTC_IRQ); g_free(name); } static void create_fdt_flash(RISCVVirtState *s, const MemMapEntry *memmap) { char *name; MachineState *mc = MACHINE(s); hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2; hwaddr flashbase = virt_memmap[VIRT_FLASH].base; name = g_strdup_printf("/flash@%" PRIx64, flashbase); qemu_fdt_add_subnode(mc->fdt, name); qemu_fdt_setprop_string(mc->fdt, name, "compatible", "cfi-flash"); qemu_fdt_setprop_sized_cells(mc->fdt, name, "reg", 2, flashbase, 2, flashsize, 2, flashbase + flashsize, 2, flashsize); qemu_fdt_setprop_cell(mc->fdt, name, "bank-width", 4); g_free(name); } static void create_fdt(RISCVVirtState *s, const MemMapEntry *memmap, uint64_t mem_size, const char *cmdline, bool is_32_bit) { MachineState *mc = MACHINE(s); uint32_t phandle = 1, irq_mmio_phandle = 1; uint32_t irq_pcie_phandle = 1, irq_virtio_phandle = 1; if (mc->dtb) { mc->fdt = load_device_tree(mc->dtb, &s->fdt_size); if (!mc->fdt) { error_report("load_device_tree() failed"); exit(1); } goto update_bootargs; } else { mc->fdt = create_device_tree(&s->fdt_size); if (!mc->fdt) { error_report("create_device_tree() failed"); exit(1); } } qemu_fdt_setprop_string(mc->fdt, "/", "model", "riscv-virtio,qemu"); qemu_fdt_setprop_string(mc->fdt, "/", "compatible", "riscv-virtio"); qemu_fdt_setprop_cell(mc->fdt, "/", "#size-cells", 0x2); qemu_fdt_setprop_cell(mc->fdt, "/", "#address-cells", 0x2); qemu_fdt_add_subnode(mc->fdt, "/soc"); qemu_fdt_setprop(mc->fdt, "/soc", "ranges", NULL, 0); qemu_fdt_setprop_string(mc->fdt, "/soc", "compatible", "simple-bus"); qemu_fdt_setprop_cell(mc->fdt, "/soc", "#size-cells", 0x2); qemu_fdt_setprop_cell(mc->fdt, "/soc", "#address-cells", 0x2); create_fdt_sockets(s, memmap, is_32_bit, &phandle, &irq_mmio_phandle, &irq_pcie_phandle, &irq_virtio_phandle); create_fdt_virtio(s, memmap, irq_virtio_phandle); create_fdt_pcie(s, memmap, irq_pcie_phandle); create_fdt_reset(s, memmap, &phandle); create_fdt_uart(s, memmap, irq_mmio_phandle); create_fdt_rtc(s, memmap, irq_mmio_phandle); create_fdt_flash(s, memmap); update_bootargs: if (cmdline) { qemu_fdt_setprop_string(mc->fdt, "/chosen", "bootargs", cmdline); } } static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem, hwaddr ecam_base, hwaddr ecam_size, hwaddr mmio_base, hwaddr mmio_size, hwaddr high_mmio_base, hwaddr high_mmio_size, hwaddr pio_base, DeviceState *plic) { DeviceState *dev; MemoryRegion *ecam_alias, *ecam_reg; MemoryRegion *mmio_alias, *high_mmio_alias, *mmio_reg; qemu_irq irq; int i; dev = qdev_new(TYPE_GPEX_HOST); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); ecam_alias = g_new0(MemoryRegion, 1); ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", ecam_reg, 0, ecam_size); memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias); mmio_alias = g_new0(MemoryRegion, 1); mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", mmio_reg, mmio_base, mmio_size); memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias); /* Map high MMIO space */ high_mmio_alias = g_new0(MemoryRegion, 1); memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", mmio_reg, high_mmio_base, high_mmio_size); memory_region_add_subregion(get_system_memory(), high_mmio_base, high_mmio_alias); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base); for (i = 0; i < GPEX_NUM_IRQS; i++) { irq = qdev_get_gpio_in(plic, PCIE_IRQ + i); sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq); gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i); } return dev; } static FWCfgState *create_fw_cfg(const MachineState *mc) { hwaddr base = virt_memmap[VIRT_FW_CFG].base; hwaddr size = virt_memmap[VIRT_FW_CFG].size; FWCfgState *fw_cfg; char *nodename; fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, &address_space_memory); fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)mc->smp.cpus); nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); qemu_fdt_add_subnode(mc->fdt, nodename); qemu_fdt_setprop_string(mc->fdt, nodename, "compatible", "qemu,fw-cfg-mmio"); qemu_fdt_setprop_sized_cells(mc->fdt, nodename, "reg", 2, base, 2, size); qemu_fdt_setprop(mc->fdt, nodename, "dma-coherent", NULL, 0); g_free(nodename); return fw_cfg; } /* * Return the per-socket PLIC hart topology configuration string * (caller must free with g_free()) */ static char *plic_hart_config_string(int hart_count) { g_autofree const char **vals = g_new(const char *, hart_count + 1); int i; for (i = 0; i < hart_count; i++) { vals[i] = "MS"; } vals[i] = NULL; /* g_strjoinv() obliges us to cast away const here */ return g_strjoinv(",", (char **)vals); } static void virt_machine_init(MachineState *machine) { const MemMapEntry *memmap = virt_memmap; RISCVVirtState *s = RISCV_VIRT_MACHINE(machine); MemoryRegion *system_memory = get_system_memory(); MemoryRegion *mask_rom = g_new(MemoryRegion, 1); char *plic_hart_config, *soc_name; target_ulong start_addr = memmap[VIRT_DRAM].base; target_ulong firmware_end_addr, kernel_start_addr; uint32_t fdt_load_addr; uint64_t kernel_entry; DeviceState *mmio_plic, *virtio_plic, *pcie_plic; int i, base_hartid, hart_count; /* Check socket count limit */ if (VIRT_SOCKETS_MAX < riscv_socket_count(machine)) { error_report("number of sockets/nodes should be less than %d", VIRT_SOCKETS_MAX); exit(1); } /* Initialize sockets */ mmio_plic = virtio_plic = pcie_plic = NULL; for (i = 0; i < riscv_socket_count(machine); i++) { if (!riscv_socket_check_hartids(machine, i)) { error_report("discontinuous hartids in socket%d", i); exit(1); } base_hartid = riscv_socket_first_hartid(machine, i); if (base_hartid < 0) { error_report("can't find hartid base for socket%d", i); exit(1); } hart_count = riscv_socket_hart_count(machine, i); if (hart_count < 0) { error_report("can't find hart count for socket%d", i); exit(1); } soc_name = g_strdup_printf("soc%d", i); object_initialize_child(OBJECT(machine), soc_name, &s->soc[i], TYPE_RISCV_HART_ARRAY); g_free(soc_name); object_property_set_str(OBJECT(&s->soc[i]), "cpu-type", machine->cpu_type, &error_abort); object_property_set_int(OBJECT(&s->soc[i]), "hartid-base", base_hartid, &error_abort); object_property_set_int(OBJECT(&s->soc[i]), "num-harts", hart_count, &error_abort); sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort); /* Per-socket CLINT */ riscv_aclint_swi_create( memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size, base_hartid, hart_count, false); riscv_aclint_mtimer_create( memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size + RISCV_ACLINT_SWI_SIZE, RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count, RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME, RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true); /* Per-socket ACLINT SSWI */ if (s->have_aclint) { riscv_aclint_swi_create( memmap[VIRT_ACLINT_SSWI].base + i * memmap[VIRT_ACLINT_SSWI].size, base_hartid, hart_count, true); } /* Per-socket PLIC hart topology configuration string */ plic_hart_config = plic_hart_config_string(hart_count); /* Per-socket PLIC */ s->plic[i] = sifive_plic_create( memmap[VIRT_PLIC].base + i * memmap[VIRT_PLIC].size, plic_hart_config, hart_count, base_hartid, VIRT_PLIC_NUM_SOURCES, VIRT_PLIC_NUM_PRIORITIES, VIRT_PLIC_PRIORITY_BASE, VIRT_PLIC_PENDING_BASE, VIRT_PLIC_ENABLE_BASE, VIRT_PLIC_ENABLE_STRIDE, VIRT_PLIC_CONTEXT_BASE, VIRT_PLIC_CONTEXT_STRIDE, memmap[VIRT_PLIC].size); g_free(plic_hart_config); /* Try to use different PLIC instance based device type */ if (i == 0) { mmio_plic = s->plic[i]; virtio_plic = s->plic[i]; pcie_plic = s->plic[i]; } if (i == 1) { virtio_plic = s->plic[i]; pcie_plic = s->plic[i]; } if (i == 2) { pcie_plic = s->plic[i]; } } if (riscv_is_32bit(&s->soc[0])) { #if HOST_LONG_BITS == 64 /* limit RAM size in a 32-bit system */ if (machine->ram_size > 10 * GiB) { machine->ram_size = 10 * GiB; error_report("Limiting RAM size to 10 GiB"); } #endif virt_high_pcie_memmap.base = VIRT32_HIGH_PCIE_MMIO_BASE; virt_high_pcie_memmap.size = VIRT32_HIGH_PCIE_MMIO_SIZE; } else { virt_high_pcie_memmap.size = VIRT64_HIGH_PCIE_MMIO_SIZE; virt_high_pcie_memmap.base = memmap[VIRT_DRAM].base + machine->ram_size; virt_high_pcie_memmap.base = ROUND_UP(virt_high_pcie_memmap.base, virt_high_pcie_memmap.size); } /* register system main memory (actual RAM) */ memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base, machine->ram); /* create device tree */ create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline, riscv_is_32bit(&s->soc[0])); /* boot rom */ memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom", memmap[VIRT_MROM].size, &error_fatal); memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base, mask_rom); if (riscv_is_32bit(&s->soc[0])) { firmware_end_addr = riscv_find_and_load_firmware(machine, RISCV32_BIOS_BIN, start_addr, NULL); } else { firmware_end_addr = riscv_find_and_load_firmware(machine, RISCV64_BIOS_BIN, start_addr, NULL); } if (machine->kernel_filename) { kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0], firmware_end_addr); kernel_entry = riscv_load_kernel(machine->kernel_filename, kernel_start_addr, NULL); if (machine->initrd_filename) { hwaddr start; hwaddr end = riscv_load_initrd(machine->initrd_filename, machine->ram_size, kernel_entry, &start); qemu_fdt_setprop_cell(machine->fdt, "/chosen", "linux,initrd-start", start); qemu_fdt_setprop_cell(machine->fdt, "/chosen", "linux,initrd-end", end); } } else { /* * If dynamic firmware is used, it doesn't know where is the next mode * if kernel argument is not set. */ kernel_entry = 0; } if (drive_get(IF_PFLASH, 0, 0)) { /* * Pflash was supplied, let's overwrite the address we jump to after * reset to the base of the flash. */ start_addr = virt_memmap[VIRT_FLASH].base; } /* * Init fw_cfg. Must be done before riscv_load_fdt, otherwise the device * tree cannot be altered and we get FDT_ERR_NOSPACE. */ s->fw_cfg = create_fw_cfg(machine); rom_set_fw(s->fw_cfg); /* Compute the fdt load address in dram */ fdt_load_addr = riscv_load_fdt(memmap[VIRT_DRAM].base, machine->ram_size, machine->fdt); /* load the reset vector */ riscv_setup_rom_reset_vec(machine, &s->soc[0], start_addr, virt_memmap[VIRT_MROM].base, virt_memmap[VIRT_MROM].size, kernel_entry, fdt_load_addr, machine->fdt); /* SiFive Test MMIO device */ sifive_test_create(memmap[VIRT_TEST].base); /* VirtIO MMIO devices */ for (i = 0; i < VIRTIO_COUNT; i++) { sysbus_create_simple("virtio-mmio", memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size, qdev_get_gpio_in(DEVICE(virtio_plic), VIRTIO_IRQ + i)); } gpex_pcie_init(system_memory, memmap[VIRT_PCIE_ECAM].base, memmap[VIRT_PCIE_ECAM].size, memmap[VIRT_PCIE_MMIO].base, memmap[VIRT_PCIE_MMIO].size, virt_high_pcie_memmap.base, virt_high_pcie_memmap.size, memmap[VIRT_PCIE_PIO].base, DEVICE(pcie_plic)); serial_mm_init(system_memory, memmap[VIRT_UART0].base, 0, qdev_get_gpio_in(DEVICE(mmio_plic), UART0_IRQ), 399193, serial_hd(0), DEVICE_LITTLE_ENDIAN); sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base, qdev_get_gpio_in(DEVICE(mmio_plic), RTC_IRQ)); virt_flash_create(s); for (i = 0; i < ARRAY_SIZE(s->flash); i++) { /* Map legacy -drive if=pflash to machine properties */ pflash_cfi01_legacy_drive(s->flash[i], drive_get(IF_PFLASH, 0, i)); } virt_flash_map(s, system_memory); } static void virt_machine_instance_init(Object *obj) { } static bool virt_get_aclint(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); RISCVVirtState *s = RISCV_VIRT_MACHINE(ms); return s->have_aclint; } static void virt_set_aclint(Object *obj, bool value, Error **errp) { MachineState *ms = MACHINE(obj); RISCVVirtState *s = RISCV_VIRT_MACHINE(ms); s->have_aclint = value; } static void virt_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "RISC-V VirtIO board"; mc->init = virt_machine_init; mc->max_cpus = VIRT_CPUS_MAX; mc->default_cpu_type = TYPE_RISCV_CPU_BASE; mc->pci_allow_0_address = true; mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids; mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props; mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id; mc->numa_mem_supported = true; mc->default_ram_id = "riscv_virt_board.ram"; machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); object_class_property_add_bool(oc, "aclint", virt_get_aclint, virt_set_aclint); object_class_property_set_description(oc, "aclint", "Set on/off to enable/disable " "emulating ACLINT devices"); } static const TypeInfo virt_machine_typeinfo = { .name = MACHINE_TYPE_NAME("virt"), .parent = TYPE_MACHINE, .class_init = virt_machine_class_init, .instance_init = virt_machine_instance_init, .instance_size = sizeof(RISCVVirtState), }; static void virt_machine_init_register_types(void) { type_register_static(&virt_machine_typeinfo); } type_init(virt_machine_init_register_types)