/* * QEMU NVM Express Virtual Namespace * * Copyright (c) 2019 CNEX Labs * Copyright (c) 2020 Samsung Electronics * * Authors: * Klaus Jensen * * This work is licensed under the terms of the GNU GPL, version 2. See the * COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/cutils.h" #include "qemu/log.h" #include "qemu/error-report.h" #include "hw/block/block.h" #include "hw/pci/pci.h" #include "sysemu/sysemu.h" #include "sysemu/block-backend.h" #include "qapi/error.h" #include "hw/qdev-properties.h" #include "hw/qdev-core.h" #include "trace.h" #include "nvme.h" #include "nvme-ns.h" #define MIN_DISCARD_GRANULARITY (4 * KiB) static int nvme_ns_init(NvmeNamespace *ns, Error **errp) { BlockDriverInfo bdi; NvmeIdNs *id_ns = &ns->id_ns; int lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas); int npdg; ns->id_ns.dlfeat = 0x9; id_ns->lbaf[lba_index].ds = 31 - clz32(ns->blkconf.logical_block_size); id_ns->nsze = cpu_to_le64(nvme_ns_nlbas(ns)); ns->csi = NVME_CSI_NVM; /* no thin provisioning */ id_ns->ncap = id_ns->nsze; id_ns->nuse = id_ns->ncap; /* support DULBE and I/O optimization fields */ id_ns->nsfeat |= (0x4 | 0x10); npdg = ns->blkconf.discard_granularity / ns->blkconf.logical_block_size; if (bdrv_get_info(blk_bs(ns->blkconf.blk), &bdi) >= 0 && bdi.cluster_size > ns->blkconf.discard_granularity) { npdg = bdi.cluster_size / ns->blkconf.logical_block_size; } id_ns->npda = id_ns->npdg = npdg - 1; if (nvme_ns_shared(ns)) { id_ns->nmic |= NVME_NMIC_NS_SHARED; } /* simple copy */ id_ns->mssrl = cpu_to_le16(ns->params.mssrl); id_ns->mcl = cpu_to_le32(ns->params.mcl); id_ns->msrc = ns->params.msrc; return 0; } static int nvme_ns_init_blk(NvmeNamespace *ns, Error **errp) { bool read_only; if (!blkconf_blocksizes(&ns->blkconf, errp)) { return -1; } read_only = !blk_supports_write_perm(ns->blkconf.blk); if (!blkconf_apply_backend_options(&ns->blkconf, read_only, false, errp)) { return -1; } if (ns->blkconf.discard_granularity == -1) { ns->blkconf.discard_granularity = MAX(ns->blkconf.logical_block_size, MIN_DISCARD_GRANULARITY); } ns->size = blk_getlength(ns->blkconf.blk); if (ns->size < 0) { error_setg_errno(errp, -ns->size, "could not get blockdev size"); return -1; } return 0; } static int nvme_ns_zoned_check_calc_geometry(NvmeNamespace *ns, Error **errp) { uint64_t zone_size, zone_cap; uint32_t lbasz = ns->blkconf.logical_block_size; /* Make sure that the values of ZNS properties are sane */ if (ns->params.zone_size_bs) { zone_size = ns->params.zone_size_bs; } else { zone_size = NVME_DEFAULT_ZONE_SIZE; } if (ns->params.zone_cap_bs) { zone_cap = ns->params.zone_cap_bs; } else { zone_cap = zone_size; } if (zone_cap > zone_size) { error_setg(errp, "zone capacity %"PRIu64"B exceeds " "zone size %"PRIu64"B", zone_cap, zone_size); return -1; } if (zone_size < lbasz) { error_setg(errp, "zone size %"PRIu64"B too small, " "must be at least %"PRIu32"B", zone_size, lbasz); return -1; } if (zone_cap < lbasz) { error_setg(errp, "zone capacity %"PRIu64"B too small, " "must be at least %"PRIu32"B", zone_cap, lbasz); return -1; } /* * Save the main zone geometry values to avoid * calculating them later again. */ ns->zone_size = zone_size / lbasz; ns->zone_capacity = zone_cap / lbasz; ns->num_zones = ns->size / lbasz / ns->zone_size; /* Do a few more sanity checks of ZNS properties */ if (!ns->num_zones) { error_setg(errp, "insufficient drive capacity, must be at least the size " "of one zone (%"PRIu64"B)", zone_size); return -1; } if (ns->params.max_open_zones > ns->num_zones) { error_setg(errp, "max_open_zones value %u exceeds the number of zones %u", ns->params.max_open_zones, ns->num_zones); return -1; } if (ns->params.max_active_zones > ns->num_zones) { error_setg(errp, "max_active_zones value %u exceeds the number of zones %u", ns->params.max_active_zones, ns->num_zones); return -1; } if (ns->params.max_active_zones) { if (ns->params.max_open_zones > ns->params.max_active_zones) { error_setg(errp, "max_open_zones (%u) exceeds max_active_zones (%u)", ns->params.max_open_zones, ns->params.max_active_zones); return -1; } if (!ns->params.max_open_zones) { ns->params.max_open_zones = ns->params.max_active_zones; } } if (ns->params.zd_extension_size) { if (ns->params.zd_extension_size & 0x3f) { error_setg(errp, "zone descriptor extension size must be a multiple of 64B"); return -1; } if ((ns->params.zd_extension_size >> 6) > 0xff) { error_setg(errp, "zone descriptor extension size is too large"); return -1; } } return 0; } static void nvme_ns_zoned_init_state(NvmeNamespace *ns) { uint64_t start = 0, zone_size = ns->zone_size; uint64_t capacity = ns->num_zones * zone_size; NvmeZone *zone; int i; ns->zone_array = g_new0(NvmeZone, ns->num_zones); if (ns->params.zd_extension_size) { ns->zd_extensions = g_malloc0(ns->params.zd_extension_size * ns->num_zones); } QTAILQ_INIT(&ns->exp_open_zones); QTAILQ_INIT(&ns->imp_open_zones); QTAILQ_INIT(&ns->closed_zones); QTAILQ_INIT(&ns->full_zones); zone = ns->zone_array; for (i = 0; i < ns->num_zones; i++, zone++) { if (start + zone_size > capacity) { zone_size = capacity - start; } zone->d.zt = NVME_ZONE_TYPE_SEQ_WRITE; nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY); zone->d.za = 0; zone->d.zcap = ns->zone_capacity; zone->d.zslba = start; zone->d.wp = start; zone->w_ptr = start; start += zone_size; } ns->zone_size_log2 = 0; if (is_power_of_2(ns->zone_size)) { ns->zone_size_log2 = 63 - clz64(ns->zone_size); } } static void nvme_ns_init_zoned(NvmeNamespace *ns, int lba_index) { NvmeIdNsZoned *id_ns_z; nvme_ns_zoned_init_state(ns); id_ns_z = g_malloc0(sizeof(NvmeIdNsZoned)); /* MAR/MOR are zeroes-based, 0xffffffff means no limit */ id_ns_z->mar = cpu_to_le32(ns->params.max_active_zones - 1); id_ns_z->mor = cpu_to_le32(ns->params.max_open_zones - 1); id_ns_z->zoc = 0; id_ns_z->ozcs = ns->params.cross_zone_read ? 0x01 : 0x00; id_ns_z->lbafe[lba_index].zsze = cpu_to_le64(ns->zone_size); id_ns_z->lbafe[lba_index].zdes = ns->params.zd_extension_size >> 6; /* Units of 64B */ ns->csi = NVME_CSI_ZONED; ns->id_ns.nsze = cpu_to_le64(ns->num_zones * ns->zone_size); ns->id_ns.ncap = ns->id_ns.nsze; ns->id_ns.nuse = ns->id_ns.ncap; /* * The device uses the BDRV_BLOCK_ZERO flag to determine the "deallocated" * status of logical blocks. Since the spec defines that logical blocks * SHALL be deallocated when then zone is in the Empty or Offline states, * we can only support DULBE if the zone size is a multiple of the * calculated NPDG. */ if (ns->zone_size % (ns->id_ns.npdg + 1)) { warn_report("the zone size (%"PRIu64" blocks) is not a multiple of " "the calculated deallocation granularity (%d blocks); " "DULBE support disabled", ns->zone_size, ns->id_ns.npdg + 1); ns->id_ns.nsfeat &= ~0x4; } ns->id_ns_zoned = id_ns_z; } static void nvme_clear_zone(NvmeNamespace *ns, NvmeZone *zone) { uint8_t state; zone->w_ptr = zone->d.wp; state = nvme_get_zone_state(zone); if (zone->d.wp != zone->d.zslba || (zone->d.za & NVME_ZA_ZD_EXT_VALID)) { if (state != NVME_ZONE_STATE_CLOSED) { trace_pci_nvme_clear_ns_close(state, zone->d.zslba); nvme_set_zone_state(zone, NVME_ZONE_STATE_CLOSED); } nvme_aor_inc_active(ns); QTAILQ_INSERT_HEAD(&ns->closed_zones, zone, entry); } else { trace_pci_nvme_clear_ns_reset(state, zone->d.zslba); nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY); } } /* * Close all the zones that are currently open. */ static void nvme_zoned_ns_shutdown(NvmeNamespace *ns) { NvmeZone *zone, *next; QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) { QTAILQ_REMOVE(&ns->closed_zones, zone, entry); nvme_aor_dec_active(ns); nvme_clear_zone(ns, zone); } QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) { QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); nvme_aor_dec_open(ns); nvme_aor_dec_active(ns); nvme_clear_zone(ns, zone); } QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) { QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry); nvme_aor_dec_open(ns); nvme_aor_dec_active(ns); nvme_clear_zone(ns, zone); } assert(ns->nr_open_zones == 0); } static int nvme_ns_check_constraints(NvmeNamespace *ns, Error **errp) { if (!ns->blkconf.blk) { error_setg(errp, "block backend not configured"); return -1; } return 0; } int nvme_ns_setup(NvmeNamespace *ns, Error **errp) { if (nvme_ns_check_constraints(ns, errp)) { return -1; } if (nvme_ns_init_blk(ns, errp)) { return -1; } if (nvme_ns_init(ns, errp)) { return -1; } if (ns->params.zoned) { if (nvme_ns_zoned_check_calc_geometry(ns, errp) != 0) { return -1; } nvme_ns_init_zoned(ns, 0); } return 0; } void nvme_ns_drain(NvmeNamespace *ns) { blk_drain(ns->blkconf.blk); } void nvme_ns_shutdown(NvmeNamespace *ns) { blk_flush(ns->blkconf.blk); if (ns->params.zoned) { nvme_zoned_ns_shutdown(ns); } } void nvme_ns_cleanup(NvmeNamespace *ns) { if (ns->params.zoned) { g_free(ns->id_ns_zoned); g_free(ns->zone_array); g_free(ns->zd_extensions); } } static void nvme_ns_realize(DeviceState *dev, Error **errp) { NvmeNamespace *ns = NVME_NS(dev); BusState *s = qdev_get_parent_bus(dev); NvmeCtrl *n = NVME(s->parent); if (nvme_ns_setup(ns, errp)) { return; } if (ns->subsys) { if (nvme_subsys_register_ns(ns, errp)) { return; } } else { if (nvme_register_namespace(n, ns, errp)) { return; } } } static Property nvme_ns_props[] = { DEFINE_BLOCK_PROPERTIES(NvmeNamespace, blkconf), DEFINE_PROP_LINK("subsys", NvmeNamespace, subsys, TYPE_NVME_SUBSYS, NvmeSubsystem *), DEFINE_PROP_BOOL("detached", NvmeNamespace, params.detached, false), DEFINE_PROP_UINT32("nsid", NvmeNamespace, params.nsid, 0), DEFINE_PROP_UUID("uuid", NvmeNamespace, params.uuid), DEFINE_PROP_UINT16("mssrl", NvmeNamespace, params.mssrl, 128), DEFINE_PROP_UINT32("mcl", NvmeNamespace, params.mcl, 128), DEFINE_PROP_UINT8("msrc", NvmeNamespace, params.msrc, 127), DEFINE_PROP_BOOL("zoned", NvmeNamespace, params.zoned, false), DEFINE_PROP_SIZE("zoned.zone_size", NvmeNamespace, params.zone_size_bs, NVME_DEFAULT_ZONE_SIZE), DEFINE_PROP_SIZE("zoned.zone_capacity", NvmeNamespace, params.zone_cap_bs, 0), DEFINE_PROP_BOOL("zoned.cross_read", NvmeNamespace, params.cross_zone_read, false), DEFINE_PROP_UINT32("zoned.max_active", NvmeNamespace, params.max_active_zones, 0), DEFINE_PROP_UINT32("zoned.max_open", NvmeNamespace, params.max_open_zones, 0), DEFINE_PROP_UINT32("zoned.descr_ext_size", NvmeNamespace, params.zd_extension_size, 0), DEFINE_PROP_END_OF_LIST(), }; static void nvme_ns_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); dc->bus_type = TYPE_NVME_BUS; dc->realize = nvme_ns_realize; device_class_set_props(dc, nvme_ns_props); dc->desc = "Virtual NVMe namespace"; } static void nvme_ns_instance_init(Object *obj) { NvmeNamespace *ns = NVME_NS(obj); char *bootindex = g_strdup_printf("/namespace@%d,0", ns->params.nsid); device_add_bootindex_property(obj, &ns->bootindex, "bootindex", bootindex, DEVICE(obj)); g_free(bootindex); } static const TypeInfo nvme_ns_info = { .name = TYPE_NVME_NS, .parent = TYPE_DEVICE, .class_init = nvme_ns_class_init, .instance_size = sizeof(NvmeNamespace), .instance_init = nvme_ns_instance_init, }; static void nvme_ns_register_types(void) { type_register_static(&nvme_ns_info); } type_init(nvme_ns_register_types)