/* * Arm SSE (Subsystems for Embedded): IoTKit * * Copyright (c) 2018 Linaro Limited * Written by Peter Maydell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 or * (at your option) any later version. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qapi/error.h" #include "trace.h" #include "hw/sysbus.h" #include "hw/registerfields.h" #include "hw/arm/armsse.h" #include "hw/arm/arm.h" struct ARMSSEInfo { const char *name; int sram_banks; int num_cpus; }; static const ARMSSEInfo armsse_variants[] = { { .name = TYPE_IOTKIT, .sram_banks = 1, .num_cpus = 1, }, }; /* Clock frequency in HZ of the 32KHz "slow clock" */ #define S32KCLK (32 * 1000) /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */ static bool irq_is_common[32] = { [0 ... 5] = true, /* 6, 7: per-CPU MHU interrupts */ [8 ... 12] = true, /* 13: per-CPU icache interrupt */ /* 14: reserved */ [15 ... 20] = true, /* 21: reserved */ [22 ... 26] = true, /* 27: reserved */ /* 28, 29: per-CPU CTI interrupts */ /* 30, 31: reserved */ }; /* Create an alias region of @size bytes starting at @base * which mirrors the memory starting at @orig. */ static void make_alias(ARMSSE *s, MemoryRegion *mr, const char *name, hwaddr base, hwaddr size, hwaddr orig) { memory_region_init_alias(mr, NULL, name, &s->container, orig, size); /* The alias is even lower priority than unimplemented_device regions */ memory_region_add_subregion_overlap(&s->container, base, mr, -1500); } static void irq_status_forwarder(void *opaque, int n, int level) { qemu_irq destirq = opaque; qemu_set_irq(destirq, level); } static void nsccfg_handler(void *opaque, int n, int level) { ARMSSE *s = ARMSSE(opaque); s->nsccfg = level; } static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum) { /* Each of the 4 AHB and 4 APB PPCs that might be present in a * system using the ARMSSE has a collection of control lines which * are provided by the security controller and which we want to * expose as control lines on the ARMSSE device itself, so the * code using the ARMSSE can wire them up to the PPCs. */ SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum]; DeviceState *armssedev = DEVICE(s); DeviceState *dev_secctl = DEVICE(&s->secctl); DeviceState *dev_splitter = DEVICE(splitter); char *name; name = g_strdup_printf("%s_nonsec", ppcname); qdev_pass_gpios(dev_secctl, armssedev, name); g_free(name); name = g_strdup_printf("%s_ap", ppcname); qdev_pass_gpios(dev_secctl, armssedev, name); g_free(name); name = g_strdup_printf("%s_irq_enable", ppcname); qdev_pass_gpios(dev_secctl, armssedev, name); g_free(name); name = g_strdup_printf("%s_irq_clear", ppcname); qdev_pass_gpios(dev_secctl, armssedev, name); g_free(name); /* irq_status is a little more tricky, because we need to * split it so we can send it both to the security controller * and to our OR gate for the NVIC interrupt line. * Connect up the splitter's outputs, and create a GPIO input * which will pass the line state to the input splitter. */ name = g_strdup_printf("%s_irq_status", ppcname); qdev_connect_gpio_out(dev_splitter, 0, qdev_get_gpio_in_named(dev_secctl, name, 0)); qdev_connect_gpio_out(dev_splitter, 1, qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum)); s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0); qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder, s->irq_status_in[ppcnum], name, 1); g_free(name); } static void armsse_forward_sec_resp_cfg(ARMSSE *s) { /* Forward the 3rd output from the splitter device as a * named GPIO output of the armsse object. */ DeviceState *dev = DEVICE(s); DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter); qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1); s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder, s->sec_resp_cfg, 1); qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in); } static void armsse_init(Object *obj) { ARMSSE *s = ARMSSE(obj); ARMSSEClass *asc = ARMSSE_GET_CLASS(obj); const ARMSSEInfo *info = asc->info; int i; assert(info->sram_banks <= MAX_SRAM_BANKS); assert(info->num_cpus <= SSE_MAX_CPUS); memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX); for (i = 0; i < info->num_cpus; i++) { char *name = g_strdup_printf("armv7m%d", i); sysbus_init_child_obj(obj, name, &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M); qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", ARM_CPU_TYPE_NAME("cortex-m33")); g_free(name); } sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl), TYPE_IOTKIT_SECCTL); sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0), TYPE_TZ_PPC); sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1), TYPE_TZ_PPC); for (i = 0; i < info->sram_banks; i++) { char *name = g_strdup_printf("mpc%d", i); sysbus_init_child_obj(obj, name, &s->mpc[i], sizeof(s->mpc[i]), TYPE_TZ_MPC); g_free(name); } object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate, sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ, &error_abort, NULL); for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { char *name = g_strdup_printf("mpc-irq-splitter-%d", i); SplitIRQ *splitter = &s->mpc_irq_splitter[i]; object_initialize_child(obj, name, splitter, sizeof(*splitter), TYPE_SPLIT_IRQ, &error_abort, NULL); g_free(name); } sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0), TYPE_CMSDK_APB_TIMER); sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1), TYPE_CMSDK_APB_TIMER); sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer), TYPE_CMSDK_APB_TIMER); sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer), TYPE_CMSDK_APB_DUALTIMER); sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog, sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG); sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog, sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG); sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog, sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG); sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl, sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL); sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo, sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO); object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, sizeof(s->nmi_orgate), TYPE_OR_IRQ, &error_abort, NULL); object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate, sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ, &error_abort, NULL); object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter, sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ, &error_abort, NULL); for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { char *name = g_strdup_printf("ppc-irq-splitter-%d", i); SplitIRQ *splitter = &s->ppc_irq_splitter[i]; object_initialize_child(obj, name, splitter, sizeof(*splitter), TYPE_SPLIT_IRQ, &error_abort, NULL); g_free(name); } if (info->num_cpus > 1) { for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { if (irq_is_common[i]) { char *name = g_strdup_printf("cpu-irq-splitter%d", i); SplitIRQ *splitter = &s->cpu_irq_splitter[i]; object_initialize_child(obj, name, splitter, sizeof(*splitter), TYPE_SPLIT_IRQ, &error_abort, NULL); g_free(name); } } } } static void armsse_exp_irq(void *opaque, int n, int level) { qemu_irq *irqarray = opaque; qemu_set_irq(irqarray[n], level); } static void armsse_mpcexp_status(void *opaque, int n, int level) { ARMSSE *s = ARMSSE(opaque); qemu_set_irq(s->mpcexp_status_in[n], level); } static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno) { /* * Return a qemu_irq which can be used to signal IRQ n to * all CPUs in the SSE. */ ARMSSEClass *asc = ARMSSE_GET_CLASS(s); const ARMSSEInfo *info = asc->info; assert(irq_is_common[irqno]); if (info->num_cpus == 1) { /* Only one CPU -- just connect directly to it */ return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno); } else { /* Connect to the splitter which feeds all CPUs */ return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0); } } static void armsse_realize(DeviceState *dev, Error **errp) { ARMSSE *s = ARMSSE(dev); ARMSSEClass *asc = ARMSSE_GET_CLASS(dev); const ARMSSEInfo *info = asc->info; int i; MemoryRegion *mr; Error *err = NULL; SysBusDevice *sbd_apb_ppc0; SysBusDevice *sbd_secctl; DeviceState *dev_apb_ppc0; DeviceState *dev_apb_ppc1; DeviceState *dev_secctl; DeviceState *dev_splitter; uint32_t addr_width_max; if (!s->board_memory) { error_setg(errp, "memory property was not set"); return; } if (!s->mainclk_frq) { error_setg(errp, "MAINCLK property was not set"); return; } /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */ assert(is_power_of_2(info->sram_banks)); addr_width_max = 24 - ctz32(info->sram_banks); if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) { error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d", addr_width_max); return; } /* Handling of which devices should be available only to secure * code is usually done differently for M profile than for A profile. * Instead of putting some devices only into the secure address space, * devices exist in both address spaces but with hard-wired security * permissions that will cause the CPU to fault for non-secure accesses. * * The ARMSSE has an IDAU (Implementation Defined Access Unit), * which specifies hard-wired security permissions for different * areas of the physical address space. For the ARMSSE IDAU, the * top 4 bits of the physical address are the IDAU region ID, and * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS * region, otherwise it is an S region. * * The various devices and RAMs are generally all mapped twice, * once into a region that the IDAU defines as secure and once * into a non-secure region. They sit behind either a Memory * Protection Controller (for RAM) or a Peripheral Protection * Controller (for devices), which allow a more fine grained * configuration of whether non-secure accesses are permitted. * * (The other place that guest software can configure security * permissions is in the architected SAU (Security Attribution * Unit), which is entirely inside the CPU. The IDAU can upgrade * the security attributes for a region to more restrictive than * the SAU specifies, but cannot downgrade them.) * * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff * 0x20000000..0x2007ffff 32KB FPGA block RAM * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff * 0x40000000..0x4000ffff base peripheral region 1 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE) * 0x40020000..0x4002ffff system control element peripherals * 0x40080000..0x400fffff base peripheral region 2 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff */ memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1); for (i = 0; i < info->num_cpus; i++) { DeviceState *cpudev = DEVICE(&s->armv7m[i]); Object *cpuobj = OBJECT(&s->armv7m[i]); int j; char *gpioname; qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32); /* * In real hardware the initial Secure VTOR is set from the INITSVTOR0 * register in the IoT Kit System Control Register block, and the * initial value of that is in turn specifiable by the FPGA that * instantiates the IoT Kit. In QEMU we don't implement this wrinkle, * and simply set the CPU's init-svtor to the IoT Kit default value. * In SSE-200 the situation is similar, except that the default value * is a reset-time signal input. Typically a board using the SSE-200 * will have a system control processor whose boot firmware initializes * the INITSVTOR* registers before powering up the CPUs in any case, * so the hardware's default value doesn't matter. QEMU doesn't emulate * the control processor, so instead we behave in the way that the * firmware does. All boards currently known about have firmware that * sets the INITSVTOR0 and INITSVTOR1 registers to 0x10000000, like the * IoTKit default. We can make this more configurable if necessary. */ qdev_prop_set_uint32(cpudev, "init-svtor", 0x10000000); /* * Start all CPUs except CPU0 powered down. In real hardware it is * a configurable property of the SSE-200 which CPUs start powered up * (via the CPUWAIT0_RST and CPUWAIT1_RST parameters), but since all * the boards we care about start CPU0 and leave CPU1 powered off, * we hard-code that for now. We can add QOM properties for this * later if necessary. */ if (i > 0) { object_property_set_bool(cpuobj, true, "start-powered-off", &err); if (err) { error_propagate(errp, err); return; } } object_property_set_link(cpuobj, OBJECT(&s->container), "memory", &err); if (err) { error_propagate(errp, err); return; } object_property_set_link(cpuobj, OBJECT(s), "idau", &err); if (err) { error_propagate(errp, err); return; } object_property_set_bool(cpuobj, true, "realized", &err); if (err) { error_propagate(errp, err); return; } /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */ s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq); for (j = 0; j < s->exp_numirq; j++) { s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, i + 32); } if (i == 0) { gpioname = g_strdup("EXP_IRQ"); } else { gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i); } qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq, s->exp_irqs[i], gpioname, s->exp_numirq); g_free(gpioname); } /* Wire up the splitters that connect common IRQs to all CPUs */ if (info->num_cpus > 1) { for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { if (irq_is_common[i]) { Object *splitter = OBJECT(&s->cpu_irq_splitter[i]); DeviceState *devs = DEVICE(splitter); int cpunum; object_property_set_int(splitter, info->num_cpus, "num-lines", &err); if (err) { error_propagate(errp, err); return; } object_property_set_bool(splitter, true, "realized", &err); if (err) { error_propagate(errp, err); return; } for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); qdev_connect_gpio_out(devs, cpunum, qdev_get_gpio_in(cpudev, i)); } } } } /* Set up the big aliases first */ make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000); make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000); /* The 0x50000000..0x5fffffff region is not a pure alias: it has * a few extra devices that only appear there (generally the * control interfaces for the protection controllers). * We implement this by mapping those devices over the top of this * alias MR at a higher priority. */ make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000); /* Security controller */ object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err); if (err) { error_propagate(errp, err); return; } sbd_secctl = SYS_BUS_DEVICE(&s->secctl); dev_secctl = DEVICE(&s->secctl); sysbus_mmio_map(sbd_secctl, 0, 0x50080000); sysbus_mmio_map(sbd_secctl, 1, 0x40080000); s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1); qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in); /* The sec_resp_cfg output from the security controller must be split into * multiple lines, one for each of the PPCs within the ARMSSE and one * that will be an output from the ARMSSE to the system. */ object_property_set_int(OBJECT(&s->sec_resp_splitter), 3, "num-lines", &err); if (err) { error_propagate(errp, err); return; } object_property_set_bool(OBJECT(&s->sec_resp_splitter), true, "realized", &err); if (err) { error_propagate(errp, err); return; } dev_splitter = DEVICE(&s->sec_resp_splitter); qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0, qdev_get_gpio_in(dev_splitter, 0)); /* Each SRAM bank lives behind its own Memory Protection Controller */ for (i = 0; i < info->sram_banks; i++) { char *ramname = g_strdup_printf("armsse.sram%d", i); SysBusDevice *sbd_mpc; uint32_t sram_bank_size = 1 << s->sram_addr_width; memory_region_init_ram(&s->sram[i], NULL, ramname, sram_bank_size, &err); g_free(ramname); if (err) { error_propagate(errp, err); return; } object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]), "downstream", &err); if (err) { error_propagate(errp, err); return; } object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err); if (err) { error_propagate(errp, err); return; } /* Map the upstream end of the MPC into the right place... */ sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]); memory_region_add_subregion(&s->container, 0x20000000 + i * sram_bank_size, sysbus_mmio_get_region(sbd_mpc, 1)); /* ...and its register interface */ memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000, sysbus_mmio_get_region(sbd_mpc, 0)); } /* We must OR together lines from the MPC splitters to go to the NVIC */ object_property_set_int(OBJECT(&s->mpc_irq_orgate), IOTS_NUM_EXP_MPC + info->sram_banks, "num-lines", &err); if (err) { error_propagate(errp, err); return; } object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true, "realized", &err); if (err) { error_propagate(errp, err); return; } qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0, armsse_get_common_irq_in(s, 9)); /* Devices behind APB PPC0: * 0x40000000: timer0 * 0x40001000: timer1 * 0x40002000: dual timer * We must configure and realize each downstream device and connect * it to the appropriate PPC port; then we can realize the PPC and * map its upstream ends to the right place in the container. */ qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq); object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err); if (err) { error_propagate(errp, err); return; } sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0, armsse_get_common_irq_in(s, 3)); mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0); object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err); if (err) { error_propagate(errp, err); return; } qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq); object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err); if (err) { error_propagate(errp, err); return; } sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0, armsse_get_common_irq_in(s, 4)); mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0); object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err); if (err) { error_propagate(errp, err); return; } qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq); object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err); if (err) { error_propagate(errp, err); return; } sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0, armsse_get_common_irq_in(s, 5)); mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0); object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err); if (err) { error_propagate(errp, err); return; } object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err); if (err) { error_propagate(errp, err); return; } sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0); dev_apb_ppc0 = DEVICE(&s->apb_ppc0); mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0); memory_region_add_subregion(&s->container, 0x40000000, mr); mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1); memory_region_add_subregion(&s->container, 0x40001000, mr); mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2); memory_region_add_subregion(&s->container, 0x40002000, mr); for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) { qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i, qdev_get_gpio_in_named(dev_apb_ppc0, "cfg_nonsec", i)); qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i, qdev_get_gpio_in_named(dev_apb_ppc0, "cfg_ap", i)); } qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0, qdev_get_gpio_in_named(dev_apb_ppc0, "irq_enable", 0)); qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0, qdev_get_gpio_in_named(dev_apb_ppc0, "irq_clear", 0)); qdev_connect_gpio_out(dev_splitter, 0, qdev_get_gpio_in_named(dev_apb_ppc0, "cfg_sec_resp", 0)); /* All the PPC irq lines (from the 2 internal PPCs and the 8 external * ones) are sent individually to the security controller, and also * ORed together to give a single combined PPC interrupt to the NVIC. */ object_property_set_int(OBJECT(&s->ppc_irq_orgate), NUM_PPCS, "num-lines", &err); if (err) { error_propagate(errp, err); return; } object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true, "realized", &err); if (err) { error_propagate(errp, err); return; } qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0, armsse_get_common_irq_in(s, 10)); /* 0x40010000 .. 0x4001ffff: private CPU region: unused in IoTKit */ /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */ /* Devices behind APB PPC1: * 0x4002f000: S32K timer */ qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK); object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err); if (err) { error_propagate(errp, err); return; } sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0, armsse_get_common_irq_in(s, 2)); mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0); object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err); if (err) { error_propagate(errp, err); return; } object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err); if (err) { error_propagate(errp, err); return; } mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0); memory_region_add_subregion(&s->container, 0x4002f000, mr); dev_apb_ppc1 = DEVICE(&s->apb_ppc1); qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0, qdev_get_gpio_in_named(dev_apb_ppc1, "cfg_nonsec", 0)); qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0, qdev_get_gpio_in_named(dev_apb_ppc1, "cfg_ap", 0)); qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0, qdev_get_gpio_in_named(dev_apb_ppc1, "irq_enable", 0)); qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0, qdev_get_gpio_in_named(dev_apb_ppc1, "irq_clear", 0)); qdev_connect_gpio_out(dev_splitter, 1, qdev_get_gpio_in_named(dev_apb_ppc1, "cfg_sec_resp", 0)); object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err); if (err) { error_propagate(errp, err); return; } /* System information registers */ sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000); /* System control registers */ object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err); if (err) { error_propagate(errp, err); return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000); /* This OR gate wires together outputs from the secure watchdogs to NMI */ object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err); if (err) { error_propagate(errp, err); return; } object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err); if (err) { error_propagate(errp, err); return; } qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0, qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0)); qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK); object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err); if (err) { error_propagate(errp, err); return; } sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0)); sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000); /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */ qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq); object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err); if (err) { error_propagate(errp, err); return; } sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0, armsse_get_common_irq_in(s, 1)); sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000); qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq); object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err); if (err) { error_propagate(errp, err); return; } sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0, qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1)); sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000); for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { Object *splitter = OBJECT(&s->ppc_irq_splitter[i]); object_property_set_int(splitter, 2, "num-lines", &err); if (err) { error_propagate(errp, err); return; } object_property_set_bool(splitter, true, "realized", &err); if (err) { error_propagate(errp, err); return; } } for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) { char *ppcname = g_strdup_printf("ahb_ppcexp%d", i); armsse_forward_ppc(s, ppcname, i); g_free(ppcname); } for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) { char *ppcname = g_strdup_printf("apb_ppcexp%d", i); armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC); g_free(ppcname); } for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) { /* Wire up IRQ splitter for internal PPCs */ DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]); char *gpioname = g_strdup_printf("apb_ppc%d_irq_status", i - NUM_EXTERNAL_PPCS); TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1; qdev_connect_gpio_out(devs, 0, qdev_get_gpio_in_named(dev_secctl, gpioname, 0)); qdev_connect_gpio_out(devs, 1, qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i)); qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0, qdev_get_gpio_in(devs, 0)); g_free(gpioname); } /* Wire up the splitters for the MPC IRQs */ for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { SplitIRQ *splitter = &s->mpc_irq_splitter[i]; DeviceState *dev_splitter = DEVICE(splitter); object_property_set_int(OBJECT(splitter), 2, "num-lines", &err); if (err) { error_propagate(errp, err); return; } object_property_set_bool(OBJECT(splitter), true, "realized", &err); if (err) { error_propagate(errp, err); return; } if (i < IOTS_NUM_EXP_MPC) { /* Splitter input is from GPIO input line */ s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0); qdev_connect_gpio_out(dev_splitter, 0, qdev_get_gpio_in_named(dev_secctl, "mpcexp_status", i)); } else { /* Splitter input is from our own MPC */ qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]), "irq", 0, qdev_get_gpio_in(dev_splitter, 0)); qdev_connect_gpio_out(dev_splitter, 0, qdev_get_gpio_in_named(dev_secctl, "mpc_status", 0)); } qdev_connect_gpio_out(dev_splitter, 1, qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i)); } /* Create GPIO inputs which will pass the line state for our * mpcexp_irq inputs to the correct splitter devices. */ qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status", IOTS_NUM_EXP_MPC); armsse_forward_sec_resp_cfg(s); /* Forward the MSC related signals */ qdev_pass_gpios(dev_secctl, dev, "mscexp_status"); qdev_pass_gpios(dev_secctl, dev, "mscexp_clear"); qdev_pass_gpios(dev_secctl, dev, "mscexp_ns"); qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0, armsse_get_common_irq_in(s, 11)); /* * Expose our container region to the board model; this corresponds * to the AHB Slave Expansion ports which allow bus master devices * (eg DMA controllers) in the board model to make transactions into * devices in the ARMSSE. */ sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container); system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq; } static void armsse_idau_check(IDAUInterface *ii, uint32_t address, int *iregion, bool *exempt, bool *ns, bool *nsc) { /* * For ARMSSE systems the IDAU responses are simple logical functions * of the address bits. The NSC attribute is guest-adjustable via the * NSCCFG register in the security controller. */ ARMSSE *s = ARMSSE(ii); int region = extract32(address, 28, 4); *ns = !(region & 1); *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2)); /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ *exempt = (address & 0xeff00000) == 0xe0000000; *iregion = region; } static const VMStateDescription armsse_vmstate = { .name = "iotkit", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(nsccfg, ARMSSE), VMSTATE_END_OF_LIST() } }; static Property armsse_properties[] = { DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, MemoryRegion *), DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0), DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15), DEFINE_PROP_END_OF_LIST() }; static void armsse_reset(DeviceState *dev) { ARMSSE *s = ARMSSE(dev); s->nsccfg = 0; } static void armsse_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass); ARMSSEClass *asc = ARMSSE_CLASS(klass); dc->realize = armsse_realize; dc->vmsd = &armsse_vmstate; dc->props = armsse_properties; dc->reset = armsse_reset; iic->check = armsse_idau_check; asc->info = data; } static const TypeInfo armsse_info = { .name = TYPE_ARMSSE, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(ARMSSE), .instance_init = armsse_init, .abstract = true, .interfaces = (InterfaceInfo[]) { { TYPE_IDAU_INTERFACE }, { } } }; static void armsse_register_types(void) { int i; type_register_static(&armsse_info); for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) { TypeInfo ti = { .name = armsse_variants[i].name, .parent = TYPE_ARMSSE, .class_init = armsse_class_init, .class_data = (void *)&armsse_variants[i], }; type_register(&ti); } } type_init(armsse_register_types);