/* * QEMU MC146818 RTC emulation * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "qemu-timer.h" #include "sysemu.h" #include "pc.h" #include "isa.h" #include "hpet_emul.h" //#define DEBUG_CMOS #define RTC_SECONDS 0 #define RTC_SECONDS_ALARM 1 #define RTC_MINUTES 2 #define RTC_MINUTES_ALARM 3 #define RTC_HOURS 4 #define RTC_HOURS_ALARM 5 #define RTC_ALARM_DONT_CARE 0xC0 #define RTC_DAY_OF_WEEK 6 #define RTC_DAY_OF_MONTH 7 #define RTC_MONTH 8 #define RTC_YEAR 9 #define RTC_REG_A 10 #define RTC_REG_B 11 #define RTC_REG_C 12 #define RTC_REG_D 13 #define REG_A_UIP 0x80 #define REG_B_SET 0x80 #define REG_B_PIE 0x40 #define REG_B_AIE 0x20 #define REG_B_UIE 0x10 #define REG_B_SQWE 0x08 #define REG_B_DM 0x04 #define REG_C_UF 0x10 #define REG_C_IRQF 0x80 #define REG_C_PF 0x40 #define REG_C_AF 0x20 struct RTCState { ISADevice dev; uint8_t cmos_data[128]; uint8_t cmos_index; struct tm current_tm; int32_t base_year; qemu_irq irq; qemu_irq sqw_irq; int it_shift; /* periodic timer */ QEMUTimer *periodic_timer; int64_t next_periodic_time; /* second update */ int64_t next_second_time; #ifdef TARGET_I386 uint32_t irq_coalesced; uint32_t period; QEMUTimer *coalesced_timer; #endif QEMUTimer *second_timer; QEMUTimer *second_timer2; }; static void rtc_irq_raise(qemu_irq irq) { /* When HPET is operating in legacy mode, RTC interrupts are disabled * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy * mode is established while interrupt is raised. We want it to * be lowered in any case */ #if defined TARGET_I386 || defined TARGET_X86_64 if (!hpet_in_legacy_mode()) #endif qemu_irq_raise(irq); } static void rtc_set_time(RTCState *s); static void rtc_copy_date(RTCState *s); #ifdef TARGET_I386 static void rtc_coalesced_timer_update(RTCState *s) { if (s->irq_coalesced == 0) { qemu_del_timer(s->coalesced_timer); } else { /* divide each RTC interval to 2 - 8 smaller intervals */ int c = MIN(s->irq_coalesced, 7) + 1; int64_t next_clock = qemu_get_clock(vm_clock) + muldiv64(s->period / c, ticks_per_sec, 32768); qemu_mod_timer(s->coalesced_timer, next_clock); } } static void rtc_coalesced_timer(void *opaque) { RTCState *s = opaque; if (s->irq_coalesced != 0) { apic_reset_irq_delivered(); s->cmos_data[RTC_REG_C] |= 0xc0; rtc_irq_raise(s->irq); if (apic_get_irq_delivered()) { s->irq_coalesced--; } } rtc_coalesced_timer_update(s); } #endif static void rtc_timer_update(RTCState *s, int64_t current_time) { int period_code, period; int64_t cur_clock, next_irq_clock; int enable_pie; period_code = s->cmos_data[RTC_REG_A] & 0x0f; #if defined TARGET_I386 || defined TARGET_X86_64 /* disable periodic timer if hpet is in legacy mode, since interrupts are * disabled anyway. */ enable_pie = !hpet_in_legacy_mode(); #else enable_pie = 1; #endif if (period_code != 0 && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie) || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) { if (period_code <= 2) period_code += 7; /* period in 32 Khz cycles */ period = 1 << (period_code - 1); #ifdef TARGET_I386 if(period != s->period) s->irq_coalesced = (s->irq_coalesced * s->period) / period; s->period = period; #endif /* compute 32 khz clock */ cur_clock = muldiv64(current_time, 32768, ticks_per_sec); next_irq_clock = (cur_clock & ~(period - 1)) + period; s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1; qemu_mod_timer(s->periodic_timer, s->next_periodic_time); } else { #ifdef TARGET_I386 s->irq_coalesced = 0; #endif qemu_del_timer(s->periodic_timer); } } static void rtc_periodic_timer(void *opaque) { RTCState *s = opaque; rtc_timer_update(s, s->next_periodic_time); if (s->cmos_data[RTC_REG_B] & REG_B_PIE) { s->cmos_data[RTC_REG_C] |= 0xc0; #ifdef TARGET_I386 if(rtc_td_hack) { apic_reset_irq_delivered(); rtc_irq_raise(s->irq); if (!apic_get_irq_delivered()) { s->irq_coalesced++; rtc_coalesced_timer_update(s); } } else #endif rtc_irq_raise(s->irq); } if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) { /* Not square wave at all but we don't want 2048Hz interrupts! Must be seen as a pulse. */ qemu_irq_raise(s->sqw_irq); } } static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data) { RTCState *s = opaque; if ((addr & 1) == 0) { s->cmos_index = data & 0x7f; } else { #ifdef DEBUG_CMOS printf("cmos: write index=0x%02x val=0x%02x\n", s->cmos_index, data); #endif switch(s->cmos_index) { case RTC_SECONDS_ALARM: case RTC_MINUTES_ALARM: case RTC_HOURS_ALARM: /* XXX: not supported */ s->cmos_data[s->cmos_index] = data; break; case RTC_SECONDS: case RTC_MINUTES: case RTC_HOURS: case RTC_DAY_OF_WEEK: case RTC_DAY_OF_MONTH: case RTC_MONTH: case RTC_YEAR: s->cmos_data[s->cmos_index] = data; /* if in set mode, do not update the time */ if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { rtc_set_time(s); } break; case RTC_REG_A: /* UIP bit is read only */ s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) | (s->cmos_data[RTC_REG_A] & REG_A_UIP); rtc_timer_update(s, qemu_get_clock(vm_clock)); break; case RTC_REG_B: if (data & REG_B_SET) { /* set mode: reset UIP mode */ s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; data &= ~REG_B_UIE; } else { /* if disabling set mode, update the time */ if (s->cmos_data[RTC_REG_B] & REG_B_SET) { rtc_set_time(s); } } s->cmos_data[RTC_REG_B] = data; rtc_timer_update(s, qemu_get_clock(vm_clock)); break; case RTC_REG_C: case RTC_REG_D: /* cannot write to them */ break; default: s->cmos_data[s->cmos_index] = data; break; } } } static inline int to_bcd(RTCState *s, int a) { if (s->cmos_data[RTC_REG_B] & REG_B_DM) { return a; } else { return ((a / 10) << 4) | (a % 10); } } static inline int from_bcd(RTCState *s, int a) { if (s->cmos_data[RTC_REG_B] & REG_B_DM) { return a; } else { return ((a >> 4) * 10) + (a & 0x0f); } } static void rtc_set_time(RTCState *s) { struct tm *tm = &s->current_tm; tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]); tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]); tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f); if (!(s->cmos_data[RTC_REG_B] & 0x02) && (s->cmos_data[RTC_HOURS] & 0x80)) { tm->tm_hour += 12; } tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1; tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]); tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1; tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900; } static void rtc_copy_date(RTCState *s) { const struct tm *tm = &s->current_tm; int year; s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec); s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min); if (s->cmos_data[RTC_REG_B] & 0x02) { /* 24 hour format */ s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour); } else { /* 12 hour format */ s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12); if (tm->tm_hour >= 12) s->cmos_data[RTC_HOURS] |= 0x80; } s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday + 1); s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday); s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1); year = (tm->tm_year - s->base_year) % 100; if (year < 0) year += 100; s->cmos_data[RTC_YEAR] = to_bcd(s, year); } /* month is between 0 and 11. */ static int get_days_in_month(int month, int year) { static const int days_tab[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; int d; if ((unsigned )month >= 12) return 31; d = days_tab[month]; if (month == 1) { if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0)) d++; } return d; } /* update 'tm' to the next second */ static void rtc_next_second(struct tm *tm) { int days_in_month; tm->tm_sec++; if ((unsigned)tm->tm_sec >= 60) { tm->tm_sec = 0; tm->tm_min++; if ((unsigned)tm->tm_min >= 60) { tm->tm_min = 0; tm->tm_hour++; if ((unsigned)tm->tm_hour >= 24) { tm->tm_hour = 0; /* next day */ tm->tm_wday++; if ((unsigned)tm->tm_wday >= 7) tm->tm_wday = 0; days_in_month = get_days_in_month(tm->tm_mon, tm->tm_year + 1900); tm->tm_mday++; if (tm->tm_mday < 1) { tm->tm_mday = 1; } else if (tm->tm_mday > days_in_month) { tm->tm_mday = 1; tm->tm_mon++; if (tm->tm_mon >= 12) { tm->tm_mon = 0; tm->tm_year++; } } } } } } static void rtc_update_second(void *opaque) { RTCState *s = opaque; int64_t delay; /* if the oscillator is not in normal operation, we do not update */ if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) { s->next_second_time += ticks_per_sec; qemu_mod_timer(s->second_timer, s->next_second_time); } else { rtc_next_second(&s->current_tm); if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { /* update in progress bit */ s->cmos_data[RTC_REG_A] |= REG_A_UIP; } /* should be 244 us = 8 / 32768 seconds, but currently the timers do not have the necessary resolution. */ delay = (ticks_per_sec * 1) / 100; if (delay < 1) delay = 1; qemu_mod_timer(s->second_timer2, s->next_second_time + delay); } } static void rtc_update_second2(void *opaque) { RTCState *s = opaque; if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { rtc_copy_date(s); } /* check alarm */ if (s->cmos_data[RTC_REG_B] & REG_B_AIE) { if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 || s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) && ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 || s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) && ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 || s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) { s->cmos_data[RTC_REG_C] |= 0xa0; rtc_irq_raise(s->irq); } } /* update ended interrupt */ s->cmos_data[RTC_REG_C] |= REG_C_UF; if (s->cmos_data[RTC_REG_B] & REG_B_UIE) { s->cmos_data[RTC_REG_C] |= REG_C_IRQF; rtc_irq_raise(s->irq); } /* clear update in progress bit */ s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; s->next_second_time += ticks_per_sec; qemu_mod_timer(s->second_timer, s->next_second_time); } static uint32_t cmos_ioport_read(void *opaque, uint32_t addr) { RTCState *s = opaque; int ret; if ((addr & 1) == 0) { return 0xff; } else { switch(s->cmos_index) { case RTC_SECONDS: case RTC_MINUTES: case RTC_HOURS: case RTC_DAY_OF_WEEK: case RTC_DAY_OF_MONTH: case RTC_MONTH: case RTC_YEAR: ret = s->cmos_data[s->cmos_index]; break; case RTC_REG_A: ret = s->cmos_data[s->cmos_index]; break; case RTC_REG_C: ret = s->cmos_data[s->cmos_index]; qemu_irq_lower(s->irq); s->cmos_data[RTC_REG_C] = 0x00; break; default: ret = s->cmos_data[s->cmos_index]; break; } #ifdef DEBUG_CMOS printf("cmos: read index=0x%02x val=0x%02x\n", s->cmos_index, ret); #endif return ret; } } void rtc_set_memory(RTCState *s, int addr, int val) { if (addr >= 0 && addr <= 127) s->cmos_data[addr] = val; } void rtc_set_date(RTCState *s, const struct tm *tm) { s->current_tm = *tm; rtc_copy_date(s); } /* PC cmos mappings */ #define REG_IBM_CENTURY_BYTE 0x32 #define REG_IBM_PS2_CENTURY_BYTE 0x37 static void rtc_set_date_from_host(RTCState *s) { struct tm tm; int val; /* set the CMOS date */ qemu_get_timedate(&tm, 0); rtc_set_date(s, &tm); val = to_bcd(s, (tm.tm_year / 100) + 19); rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val); rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val); } static void rtc_save(QEMUFile *f, void *opaque) { RTCState *s = opaque; qemu_put_buffer(f, s->cmos_data, 128); qemu_put_8s(f, &s->cmos_index); qemu_put_be32(f, s->current_tm.tm_sec); qemu_put_be32(f, s->current_tm.tm_min); qemu_put_be32(f, s->current_tm.tm_hour); qemu_put_be32(f, s->current_tm.tm_wday); qemu_put_be32(f, s->current_tm.tm_mday); qemu_put_be32(f, s->current_tm.tm_mon); qemu_put_be32(f, s->current_tm.tm_year); qemu_put_timer(f, s->periodic_timer); qemu_put_be64(f, s->next_periodic_time); qemu_put_be64(f, s->next_second_time); qemu_put_timer(f, s->second_timer); qemu_put_timer(f, s->second_timer2); } static int rtc_load(QEMUFile *f, void *opaque, int version_id) { RTCState *s = opaque; if (version_id != 1) return -EINVAL; qemu_get_buffer(f, s->cmos_data, 128); qemu_get_8s(f, &s->cmos_index); s->current_tm.tm_sec=qemu_get_be32(f); s->current_tm.tm_min=qemu_get_be32(f); s->current_tm.tm_hour=qemu_get_be32(f); s->current_tm.tm_wday=qemu_get_be32(f); s->current_tm.tm_mday=qemu_get_be32(f); s->current_tm.tm_mon=qemu_get_be32(f); s->current_tm.tm_year=qemu_get_be32(f); qemu_get_timer(f, s->periodic_timer); s->next_periodic_time=qemu_get_be64(f); s->next_second_time=qemu_get_be64(f); qemu_get_timer(f, s->second_timer); qemu_get_timer(f, s->second_timer2); return 0; } #ifdef TARGET_I386 static void rtc_save_td(QEMUFile *f, void *opaque) { RTCState *s = opaque; qemu_put_be32(f, s->irq_coalesced); qemu_put_be32(f, s->period); } static int rtc_load_td(QEMUFile *f, void *opaque, int version_id) { RTCState *s = opaque; if (version_id != 1) return -EINVAL; s->irq_coalesced = qemu_get_be32(f); s->period = qemu_get_be32(f); rtc_coalesced_timer_update(s); return 0; } #endif static void rtc_reset(void *opaque) { RTCState *s = opaque; s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE); s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF); qemu_irq_lower(s->irq); #ifdef TARGET_I386 if (rtc_td_hack) s->irq_coalesced = 0; #endif } static int rtc_initfn(ISADevice *dev) { RTCState *s = DO_UPCAST(RTCState, dev, dev); int base = 0x70; int isairq = 8; isa_init_irq(dev, &s->irq, isairq); s->cmos_data[RTC_REG_A] = 0x26; s->cmos_data[RTC_REG_B] = 0x02; s->cmos_data[RTC_REG_C] = 0x00; s->cmos_data[RTC_REG_D] = 0x80; rtc_set_date_from_host(s); s->periodic_timer = qemu_new_timer(vm_clock, rtc_periodic_timer, s); #ifdef TARGET_I386 if (rtc_td_hack) s->coalesced_timer = qemu_new_timer(vm_clock, rtc_coalesced_timer, s); #endif s->second_timer = qemu_new_timer(vm_clock, rtc_update_second, s); s->second_timer2 = qemu_new_timer(vm_clock, rtc_update_second2, s); s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100; qemu_mod_timer(s->second_timer2, s->next_second_time); register_ioport_write(base, 2, 1, cmos_ioport_write, s); register_ioport_read(base, 2, 1, cmos_ioport_read, s); register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s); #ifdef TARGET_I386 if (rtc_td_hack) register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s); #endif qemu_register_reset(rtc_reset, s); return 0; } RTCState *rtc_init(int base_year) { ISADevice *dev; dev = isa_create("mc146818rtc"); qdev_prop_set_int32(&dev->qdev, "base_year", base_year); qdev_init(&dev->qdev); return DO_UPCAST(RTCState, dev, dev); } static ISADeviceInfo mc146818rtc_info = { .qdev.name = "mc146818rtc", .qdev.size = sizeof(RTCState), .qdev.no_user = 1, .init = rtc_initfn, .qdev.props = (Property[]) { DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980), DEFINE_PROP_END_OF_LIST(), } }; static void mc146818rtc_register(void) { isa_qdev_register(&mc146818rtc_info); } device_init(mc146818rtc_register) /* Memory mapped interface */ static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr) { RTCState *s = opaque; return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF; } static void cmos_mm_writeb (void *opaque, target_phys_addr_t addr, uint32_t value) { RTCState *s = opaque; cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF); } static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr) { RTCState *s = opaque; uint32_t val; val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF; #ifdef TARGET_WORDS_BIGENDIAN val = bswap16(val); #endif return val; } static void cmos_mm_writew (void *opaque, target_phys_addr_t addr, uint32_t value) { RTCState *s = opaque; #ifdef TARGET_WORDS_BIGENDIAN value = bswap16(value); #endif cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF); } static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr) { RTCState *s = opaque; uint32_t val; val = cmos_ioport_read(s, addr >> s->it_shift); #ifdef TARGET_WORDS_BIGENDIAN val = bswap32(val); #endif return val; } static void cmos_mm_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { RTCState *s = opaque; #ifdef TARGET_WORDS_BIGENDIAN value = bswap32(value); #endif cmos_ioport_write(s, addr >> s->it_shift, value); } static CPUReadMemoryFunc * const rtc_mm_read[] = { &cmos_mm_readb, &cmos_mm_readw, &cmos_mm_readl, }; static CPUWriteMemoryFunc * const rtc_mm_write[] = { &cmos_mm_writeb, &cmos_mm_writew, &cmos_mm_writel, }; RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq, int base_year) { RTCState *s; int io_memory; s = qemu_mallocz(sizeof(RTCState)); s->irq = irq; s->cmos_data[RTC_REG_A] = 0x26; s->cmos_data[RTC_REG_B] = 0x02; s->cmos_data[RTC_REG_C] = 0x00; s->cmos_data[RTC_REG_D] = 0x80; s->base_year = base_year; rtc_set_date_from_host(s); s->periodic_timer = qemu_new_timer(vm_clock, rtc_periodic_timer, s); s->second_timer = qemu_new_timer(vm_clock, rtc_update_second, s); s->second_timer2 = qemu_new_timer(vm_clock, rtc_update_second2, s); s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100; qemu_mod_timer(s->second_timer2, s->next_second_time); io_memory = cpu_register_io_memory(rtc_mm_read, rtc_mm_write, s); cpu_register_physical_memory(base, 2 << it_shift, io_memory); register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s); #ifdef TARGET_I386 if (rtc_td_hack) register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s); #endif qemu_register_reset(rtc_reset, s); return s; }