/* * QEMU PPC PREP hardware System Emulator * * Copyright (c) 2003-2007 Jocelyn Mayer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "nvram.h" #include "pc.h" #include "fdc.h" #include "net.h" #include "sysemu.h" #include "isa.h" #include "pci.h" #include "ppc.h" #include "boards.h" #include "qemu-log.h" //#define HARD_DEBUG_PPC_IO //#define DEBUG_PPC_IO /* SMP is not enabled, for now */ #define MAX_CPUS 1 #define MAX_IDE_BUS 2 #define BIOS_FILENAME "ppc_rom.bin" #define KERNEL_LOAD_ADDR 0x01000000 #define INITRD_LOAD_ADDR 0x01800000 #if defined (HARD_DEBUG_PPC_IO) && !defined (DEBUG_PPC_IO) #define DEBUG_PPC_IO #endif #if defined (HARD_DEBUG_PPC_IO) #define PPC_IO_DPRINTF(fmt, args...) \ do { \ if (qemu_loglevel_mask(CPU_LOG_IOPORT)) { \ qemu_log("%s: " fmt, __func__ , ##args); \ } else { \ printf("%s : " fmt, __func__ , ##args); \ } \ } while (0) #elif defined (DEBUG_PPC_IO) #define PPC_IO_DPRINTF(fmt, args...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__) #else #define PPC_IO_DPRINTF(fmt, args...) do { } while (0) #endif /* Constants for devices init */ static const int ide_iobase[2] = { 0x1f0, 0x170 }; static const int ide_iobase2[2] = { 0x3f6, 0x376 }; static const int ide_irq[2] = { 13, 13 }; #define NE2000_NB_MAX 6 static uint32_t ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 0x280, 0x380 }; static int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; //static PITState *pit; /* ISA IO ports bridge */ #define PPC_IO_BASE 0x80000000 #if 0 /* Speaker port 0x61 */ static int speaker_data_on; static int dummy_refresh_clock; #endif static void speaker_ioport_write (void *opaque, uint32_t addr, uint32_t val) { #if 0 speaker_data_on = (val >> 1) & 1; pit_set_gate(pit, 2, val & 1); #endif } static uint32_t speaker_ioport_read (void *opaque, uint32_t addr) { #if 0 int out; out = pit_get_out(pit, 2, qemu_get_clock(vm_clock)); dummy_refresh_clock ^= 1; return (speaker_data_on << 1) | pit_get_gate(pit, 2) | (out << 5) | (dummy_refresh_clock << 4); #endif return 0; } /* PCI intack register */ /* Read-only register (?) */ static void _PPC_intack_write (void *opaque, target_phys_addr_t addr, uint32_t value) { // printf("%s: 0x" PADDRX " => 0x%08" PRIx32 "\n", __func__, addr, value); } static always_inline uint32_t _PPC_intack_read (target_phys_addr_t addr) { uint32_t retval = 0; if ((addr & 0xf) == 0) retval = pic_intack_read(isa_pic); // printf("%s: 0x" PADDRX " <= %08" PRIx32 "\n", __func__, addr, retval); return retval; } static uint32_t PPC_intack_readb (void *opaque, target_phys_addr_t addr) { return _PPC_intack_read(addr); } static uint32_t PPC_intack_readw (void *opaque, target_phys_addr_t addr) { #ifdef TARGET_WORDS_BIGENDIAN return bswap16(_PPC_intack_read(addr)); #else return _PPC_intack_read(addr); #endif } static uint32_t PPC_intack_readl (void *opaque, target_phys_addr_t addr) { #ifdef TARGET_WORDS_BIGENDIAN return bswap32(_PPC_intack_read(addr)); #else return _PPC_intack_read(addr); #endif } static CPUWriteMemoryFunc *PPC_intack_write[] = { &_PPC_intack_write, &_PPC_intack_write, &_PPC_intack_write, }; static CPUReadMemoryFunc *PPC_intack_read[] = { &PPC_intack_readb, &PPC_intack_readw, &PPC_intack_readl, }; /* PowerPC control and status registers */ #if 0 // Not used static struct { /* IDs */ uint32_t veni_devi; uint32_t revi; /* Control and status */ uint32_t gcsr; uint32_t xcfr; uint32_t ct32; uint32_t mcsr; /* General purpose registers */ uint32_t gprg[6]; /* Exceptions */ uint32_t feen; uint32_t fest; uint32_t fema; uint32_t fecl; uint32_t eeen; uint32_t eest; uint32_t eecl; uint32_t eeint; uint32_t eemck0; uint32_t eemck1; /* Error diagnostic */ } XCSR; static void PPC_XCSR_writeb (void *opaque, target_phys_addr_t addr, uint32_t value) { printf("%s: 0x" PADDRX " => 0x%08" PRIx32 "\n", __func__, addr, value); } static void PPC_XCSR_writew (void *opaque, target_phys_addr_t addr, uint32_t value) { #ifdef TARGET_WORDS_BIGENDIAN value = bswap16(value); #endif printf("%s: 0x" PADDRX " => 0x%08" PRIx32 "\n", __func__, addr, value); } static void PPC_XCSR_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { #ifdef TARGET_WORDS_BIGENDIAN value = bswap32(value); #endif printf("%s: 0x" PADDRX " => 0x%08" PRIx32 "\n", __func__, addr, value); } static uint32_t PPC_XCSR_readb (void *opaque, target_phys_addr_t addr) { uint32_t retval = 0; printf("%s: 0x" PADDRX " <= %08" PRIx32 "\n", __func__, addr, retval); return retval; } static uint32_t PPC_XCSR_readw (void *opaque, target_phys_addr_t addr) { uint32_t retval = 0; printf("%s: 0x" PADDRX " <= %08" PRIx32 "\n", __func__, addr, retval); #ifdef TARGET_WORDS_BIGENDIAN retval = bswap16(retval); #endif return retval; } static uint32_t PPC_XCSR_readl (void *opaque, target_phys_addr_t addr) { uint32_t retval = 0; printf("%s: 0x" PADDRX " <= %08" PRIx32 "\n", __func__, addr, retval); #ifdef TARGET_WORDS_BIGENDIAN retval = bswap32(retval); #endif return retval; } static CPUWriteMemoryFunc *PPC_XCSR_write[] = { &PPC_XCSR_writeb, &PPC_XCSR_writew, &PPC_XCSR_writel, }; static CPUReadMemoryFunc *PPC_XCSR_read[] = { &PPC_XCSR_readb, &PPC_XCSR_readw, &PPC_XCSR_readl, }; #endif /* Fake super-io ports for PREP platform (Intel 82378ZB) */ typedef struct sysctrl_t { qemu_irq reset_irq; m48t59_t *nvram; uint8_t state; uint8_t syscontrol; uint8_t fake_io[2]; int contiguous_map; int endian; } sysctrl_t; enum { STATE_HARDFILE = 0x01, }; static sysctrl_t *sysctrl; static void PREP_io_write (void *opaque, uint32_t addr, uint32_t val) { sysctrl_t *sysctrl = opaque; PPC_IO_DPRINTF("0x%08" PRIx32 " => 0x%02" PRIx32 "\n", addr - PPC_IO_BASE, val); sysctrl->fake_io[addr - 0x0398] = val; } static uint32_t PREP_io_read (void *opaque, uint32_t addr) { sysctrl_t *sysctrl = opaque; PPC_IO_DPRINTF("0x%08" PRIx32 " <= 0x%02" PRIx32 "\n", addr - PPC_IO_BASE, sysctrl->fake_io[addr - 0x0398]); return sysctrl->fake_io[addr - 0x0398]; } static void PREP_io_800_writeb (void *opaque, uint32_t addr, uint32_t val) { sysctrl_t *sysctrl = opaque; PPC_IO_DPRINTF("0x%08" PRIx32 " => 0x%02" PRIx32 "\n", addr - PPC_IO_BASE, val); switch (addr) { case 0x0092: /* Special port 92 */ /* Check soft reset asked */ if (val & 0x01) { qemu_irq_raise(sysctrl->reset_irq); } else { qemu_irq_lower(sysctrl->reset_irq); } /* Check LE mode */ if (val & 0x02) { sysctrl->endian = 1; } else { sysctrl->endian = 0; } break; case 0x0800: /* Motorola CPU configuration register : read-only */ break; case 0x0802: /* Motorola base module feature register : read-only */ break; case 0x0803: /* Motorola base module status register : read-only */ break; case 0x0808: /* Hardfile light register */ if (val & 1) sysctrl->state |= STATE_HARDFILE; else sysctrl->state &= ~STATE_HARDFILE; break; case 0x0810: /* Password protect 1 register */ if (sysctrl->nvram != NULL) m48t59_toggle_lock(sysctrl->nvram, 1); break; case 0x0812: /* Password protect 2 register */ if (sysctrl->nvram != NULL) m48t59_toggle_lock(sysctrl->nvram, 2); break; case 0x0814: /* L2 invalidate register */ // tlb_flush(first_cpu, 1); break; case 0x081C: /* system control register */ sysctrl->syscontrol = val & 0x0F; break; case 0x0850: /* I/O map type register */ sysctrl->contiguous_map = val & 0x01; break; default: printf("ERROR: unaffected IO port write: %04" PRIx32 " => %02" PRIx32"\n", addr, val); break; } } static uint32_t PREP_io_800_readb (void *opaque, uint32_t addr) { sysctrl_t *sysctrl = opaque; uint32_t retval = 0xFF; switch (addr) { case 0x0092: /* Special port 92 */ retval = 0x00; break; case 0x0800: /* Motorola CPU configuration register */ retval = 0xEF; /* MPC750 */ break; case 0x0802: /* Motorola Base module feature register */ retval = 0xAD; /* No ESCC, PMC slot neither ethernet */ break; case 0x0803: /* Motorola base module status register */ retval = 0xE0; /* Standard MPC750 */ break; case 0x080C: /* Equipment present register: * no L2 cache * no upgrade processor * no cards in PCI slots * SCSI fuse is bad */ retval = 0x3C; break; case 0x0810: /* Motorola base module extended feature register */ retval = 0x39; /* No USB, CF and PCI bridge. NVRAM present */ break; case 0x0814: /* L2 invalidate: don't care */ break; case 0x0818: /* Keylock */ retval = 0x00; break; case 0x081C: /* system control register * 7 - 6 / 1 - 0: L2 cache enable */ retval = sysctrl->syscontrol; break; case 0x0823: /* */ retval = 0x03; /* no L2 cache */ break; case 0x0850: /* I/O map type register */ retval = sysctrl->contiguous_map; break; default: printf("ERROR: unaffected IO port: %04" PRIx32 " read\n", addr); break; } PPC_IO_DPRINTF("0x%08" PRIx32 " <= 0x%02" PRIx32 "\n", addr - PPC_IO_BASE, retval); return retval; } static always_inline target_phys_addr_t prep_IO_address (sysctrl_t *sysctrl, target_phys_addr_t addr) { if (sysctrl->contiguous_map == 0) { /* 64 KB contiguous space for IOs */ addr &= 0xFFFF; } else { /* 8 MB non-contiguous space for IOs */ addr = (addr & 0x1F) | ((addr & 0x007FFF000) >> 7); } return addr; } static void PPC_prep_io_writeb (void *opaque, target_phys_addr_t addr, uint32_t value) { sysctrl_t *sysctrl = opaque; addr = prep_IO_address(sysctrl, addr); cpu_outb(NULL, addr, value); } static uint32_t PPC_prep_io_readb (void *opaque, target_phys_addr_t addr) { sysctrl_t *sysctrl = opaque; uint32_t ret; addr = prep_IO_address(sysctrl, addr); ret = cpu_inb(NULL, addr); return ret; } static void PPC_prep_io_writew (void *opaque, target_phys_addr_t addr, uint32_t value) { sysctrl_t *sysctrl = opaque; addr = prep_IO_address(sysctrl, addr); #ifdef TARGET_WORDS_BIGENDIAN value = bswap16(value); #endif PPC_IO_DPRINTF("0x" PADDRX " => 0x%08" PRIx32 "\n", addr, value); cpu_outw(NULL, addr, value); } static uint32_t PPC_prep_io_readw (void *opaque, target_phys_addr_t addr) { sysctrl_t *sysctrl = opaque; uint32_t ret; addr = prep_IO_address(sysctrl, addr); ret = cpu_inw(NULL, addr); #ifdef TARGET_WORDS_BIGENDIAN ret = bswap16(ret); #endif PPC_IO_DPRINTF("0x" PADDRX " <= 0x%08" PRIx32 "\n", addr, ret); return ret; } static void PPC_prep_io_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { sysctrl_t *sysctrl = opaque; addr = prep_IO_address(sysctrl, addr); #ifdef TARGET_WORDS_BIGENDIAN value = bswap32(value); #endif PPC_IO_DPRINTF("0x" PADDRX " => 0x%08" PRIx32 "\n", addr, value); cpu_outl(NULL, addr, value); } static uint32_t PPC_prep_io_readl (void *opaque, target_phys_addr_t addr) { sysctrl_t *sysctrl = opaque; uint32_t ret; addr = prep_IO_address(sysctrl, addr); ret = cpu_inl(NULL, addr); #ifdef TARGET_WORDS_BIGENDIAN ret = bswap32(ret); #endif PPC_IO_DPRINTF("0x" PADDRX " <= 0x%08" PRIx32 "\n", addr, ret); return ret; } static CPUWriteMemoryFunc *PPC_prep_io_write[] = { &PPC_prep_io_writeb, &PPC_prep_io_writew, &PPC_prep_io_writel, }; static CPUReadMemoryFunc *PPC_prep_io_read[] = { &PPC_prep_io_readb, &PPC_prep_io_readw, &PPC_prep_io_readl, }; #define NVRAM_SIZE 0x2000 /* PowerPC PREP hardware initialisation */ static void ppc_prep_init (ram_addr_t ram_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { CPUState *env = NULL, *envs[MAX_CPUS]; char buf[1024]; nvram_t nvram; m48t59_t *m48t59; int PPC_io_memory; int linux_boot, i, nb_nics1, bios_size; unsigned long bios_offset; uint32_t kernel_base, kernel_size, initrd_base, initrd_size; PCIBus *pci_bus; qemu_irq *i8259; int ppc_boot_device; int index; BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; BlockDriverState *fd[MAX_FD]; sysctrl = qemu_mallocz(sizeof(sysctrl_t)); if (sysctrl == NULL) return; linux_boot = (kernel_filename != NULL); /* init CPUs */ if (cpu_model == NULL) cpu_model = "default"; for (i = 0; i < smp_cpus; i++) { env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "Unable to find PowerPC CPU definition\n"); exit(1); } if (env->flags & POWERPC_FLAG_RTC_CLK) { /* POWER / PowerPC 601 RTC clock frequency is 7.8125 MHz */ cpu_ppc_tb_init(env, 7812500UL); } else { /* Set time-base frequency to 100 Mhz */ cpu_ppc_tb_init(env, 100UL * 1000UL * 1000UL); } qemu_register_reset(&cpu_ppc_reset, env); envs[i] = env; } /* allocate RAM */ cpu_register_physical_memory(0, ram_size, IO_MEM_RAM); /* allocate and load BIOS */ bios_offset = ram_size + vga_ram_size; if (bios_name == NULL) bios_name = BIOS_FILENAME; snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name); bios_size = load_image(buf, phys_ram_base + bios_offset); if (bios_size < 0 || bios_size > BIOS_SIZE) { cpu_abort(env, "qemu: could not load PPC PREP bios '%s'\n", buf); exit(1); } if (env->nip < 0xFFF80000 && bios_size < 0x00100000) { cpu_abort(env, "PowerPC 601 / 620 / 970 need a 1MB BIOS\n"); } bios_size = (bios_size + 0xfff) & ~0xfff; cpu_register_physical_memory((uint32_t)(-bios_size), bios_size, bios_offset | IO_MEM_ROM); if (linux_boot) { kernel_base = KERNEL_LOAD_ADDR; /* now we can load the kernel */ kernel_size = load_image(kernel_filename, phys_ram_base + kernel_base); if (kernel_size < 0) { cpu_abort(env, "qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } /* load initrd */ if (initrd_filename) { initrd_base = INITRD_LOAD_ADDR; initrd_size = load_image(initrd_filename, phys_ram_base + initrd_base); if (initrd_size < 0) { cpu_abort(env, "qemu: could not load initial ram disk '%s'\n", initrd_filename); exit(1); } } else { initrd_base = 0; initrd_size = 0; } ppc_boot_device = 'm'; } else { kernel_base = 0; kernel_size = 0; initrd_base = 0; initrd_size = 0; ppc_boot_device = '\0'; /* For now, OHW cannot boot from the network. */ for (i = 0; boot_device[i] != '\0'; i++) { if (boot_device[i] >= 'a' && boot_device[i] <= 'f') { ppc_boot_device = boot_device[i]; break; } } if (ppc_boot_device == '\0') { fprintf(stderr, "No valid boot device for Mac99 machine\n"); exit(1); } } isa_mem_base = 0xc0000000; if (PPC_INPUT(env) != PPC_FLAGS_INPUT_6xx) { cpu_abort(env, "Only 6xx bus is supported on PREP machine\n"); exit(1); } i8259 = i8259_init(first_cpu->irq_inputs[PPC6xx_INPUT_INT]); pci_bus = pci_prep_init(i8259); // pci_bus = i440fx_init(); /* Register 8 MB of ISA IO space (needed for non-contiguous map) */ PPC_io_memory = cpu_register_io_memory(0, PPC_prep_io_read, PPC_prep_io_write, sysctrl); cpu_register_physical_memory(0x80000000, 0x00800000, PPC_io_memory); /* init basic PC hardware */ pci_vga_init(pci_bus, ds, phys_ram_base + ram_size, ram_size, vga_ram_size, 0, 0); // openpic = openpic_init(0x00000000, 0xF0000000, 1); // pit = pit_init(0x40, i8259[0]); rtc_init(0x70, i8259[8]); serial_init(0x3f8, i8259[4], 115200, serial_hds[0]); nb_nics1 = nb_nics; if (nb_nics1 > NE2000_NB_MAX) nb_nics1 = NE2000_NB_MAX; for(i = 0; i < nb_nics1; i++) { if (nd_table[i].model == NULL) { nd_table[i].model = "ne2k_isa"; } if (strcmp(nd_table[i].model, "ne2k_isa") == 0) { isa_ne2000_init(ne2000_io[i], i8259[ne2000_irq[i]], &nd_table[i]); } else { pci_nic_init(pci_bus, &nd_table[i], -1, "ne2k_pci"); } } if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) { fprintf(stderr, "qemu: too many IDE bus\n"); exit(1); } for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) { index = drive_get_index(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS); if (index != -1) hd[i] = drives_table[index].bdrv; else hd[i] = NULL; } for(i = 0; i < MAX_IDE_BUS; i++) { isa_ide_init(ide_iobase[i], ide_iobase2[i], i8259[ide_irq[i]], hd[2 * i], hd[2 * i + 1]); } i8042_init(i8259[1], i8259[12], 0x60); DMA_init(1); // AUD_init(); // SB16_init(); for(i = 0; i < MAX_FD; i++) { index = drive_get_index(IF_FLOPPY, 0, i); if (index != -1) fd[i] = drives_table[index].bdrv; else fd[i] = NULL; } fdctrl_init(i8259[6], 2, 0, 0x3f0, fd); /* Register speaker port */ register_ioport_read(0x61, 1, 1, speaker_ioport_read, NULL); register_ioport_write(0x61, 1, 1, speaker_ioport_write, NULL); /* Register fake IO ports for PREP */ sysctrl->reset_irq = first_cpu->irq_inputs[PPC6xx_INPUT_HRESET]; register_ioport_read(0x398, 2, 1, &PREP_io_read, sysctrl); register_ioport_write(0x398, 2, 1, &PREP_io_write, sysctrl); /* System control ports */ register_ioport_read(0x0092, 0x01, 1, &PREP_io_800_readb, sysctrl); register_ioport_write(0x0092, 0x01, 1, &PREP_io_800_writeb, sysctrl); register_ioport_read(0x0800, 0x52, 1, &PREP_io_800_readb, sysctrl); register_ioport_write(0x0800, 0x52, 1, &PREP_io_800_writeb, sysctrl); /* PCI intack location */ PPC_io_memory = cpu_register_io_memory(0, PPC_intack_read, PPC_intack_write, NULL); cpu_register_physical_memory(0xBFFFFFF0, 0x4, PPC_io_memory); /* PowerPC control and status register group */ #if 0 PPC_io_memory = cpu_register_io_memory(0, PPC_XCSR_read, PPC_XCSR_write, NULL); cpu_register_physical_memory(0xFEFF0000, 0x1000, PPC_io_memory); #endif if (usb_enabled) { usb_ohci_init_pci(pci_bus, 3, -1); } m48t59 = m48t59_init(i8259[8], 0, 0x0074, NVRAM_SIZE, 59); if (m48t59 == NULL) return; sysctrl->nvram = m48t59; /* Initialise NVRAM */ nvram.opaque = m48t59; nvram.read_fn = &m48t59_read; nvram.write_fn = &m48t59_write; PPC_NVRAM_set_params(&nvram, NVRAM_SIZE, "PREP", ram_size, ppc_boot_device, kernel_base, kernel_size, kernel_cmdline, initrd_base, initrd_size, /* XXX: need an option to load a NVRAM image */ 0, graphic_width, graphic_height, graphic_depth); /* Special port to get debug messages from Open-Firmware */ register_ioport_write(0x0F00, 4, 1, &PPC_debug_write, NULL); } QEMUMachine prep_machine = { .name = "prep", .desc = "PowerPC PREP platform", .init = ppc_prep_init, .ram_require = BIOS_SIZE + VGA_RAM_SIZE, .max_cpus = MAX_CPUS, };