/* * ARM kernel loader. * * Copyright (c) 2006-2007 CodeSourcery. * Written by Paul Brook * * This code is licensed under the GPL. */ #include "qemu/osdep.h" #include "qemu/datadir.h" #include "qemu/error-report.h" #include "qapi/error.h" #include <libfdt.h> #include "hw/arm/boot.h" #include "hw/arm/linux-boot-if.h" #include "sysemu/kvm.h" #include "sysemu/tcg.h" #include "sysemu/sysemu.h" #include "sysemu/numa.h" #include "hw/boards.h" #include "sysemu/reset.h" #include "hw/loader.h" #include "elf.h" #include "sysemu/device_tree.h" #include "qemu/config-file.h" #include "qemu/option.h" #include "qemu/units.h" /* Kernel boot protocol is specified in the kernel docs * Documentation/arm/Booting and Documentation/arm64/booting.txt * They have different preferred image load offsets from system RAM base. */ #define KERNEL_ARGS_ADDR 0x100 #define KERNEL_NOLOAD_ADDR 0x02000000 #define KERNEL_LOAD_ADDR 0x00010000 #define KERNEL64_LOAD_ADDR 0x00080000 #define ARM64_TEXT_OFFSET_OFFSET 8 #define ARM64_MAGIC_OFFSET 56 #define BOOTLOADER_MAX_SIZE (4 * KiB) AddressSpace *arm_boot_address_space(ARMCPU *cpu, const struct arm_boot_info *info) { /* Return the address space to use for bootloader reads and writes. * We prefer the secure address space if the CPU has it and we're * going to boot the guest into it. */ int asidx; CPUState *cs = CPU(cpu); if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) { asidx = ARMASIdx_S; } else { asidx = ARMASIdx_NS; } return cpu_get_address_space(cs, asidx); } static const ARMInsnFixup bootloader_aarch64[] = { { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */ { 0xaa1f03e1 }, /* mov x1, xzr */ { 0xaa1f03e2 }, /* mov x2, xzr */ { 0xaa1f03e3 }, /* mov x3, xzr */ { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */ { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */ { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */ { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */ { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */ { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */ { 0, FIXUP_TERMINATOR } }; /* A very small bootloader: call the board-setup code (if needed), * set r0-r2, then jump to the kernel. * If we're not calling boot setup code then we don't copy across * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array. */ static const ARMInsnFixup bootloader[] = { { 0xe28fe004 }, /* add lr, pc, #4 */ { 0xe51ff004 }, /* ldr pc, [pc, #-4] */ { 0, FIXUP_BOARD_SETUP }, #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3 { 0xe3a00000 }, /* mov r0, #0 */ { 0xe59f1004 }, /* ldr r1, [pc, #4] */ { 0xe59f2004 }, /* ldr r2, [pc, #4] */ { 0xe59ff004 }, /* ldr pc, [pc, #4] */ { 0, FIXUP_BOARDID }, { 0, FIXUP_ARGPTR_LO }, { 0, FIXUP_ENTRYPOINT_LO }, { 0, FIXUP_TERMINATOR } }; /* Handling for secondary CPU boot in a multicore system. * Unlike the uniprocessor/primary CPU boot, this is platform * dependent. The default code here is based on the secondary * CPU boot protocol used on realview/vexpress boards, with * some parameterisation to increase its flexibility. * QEMU platform models for which this code is not appropriate * should override write_secondary_boot and secondary_cpu_reset_hook * instead. * * This code enables the interrupt controllers for the secondary * CPUs and then puts all the secondary CPUs into a loop waiting * for an interprocessor interrupt and polling a configurable * location for the kernel secondary CPU entry point. */ #define DSB_INSN 0xf57ff04f #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ static const ARMInsnFixup smpboot[] = { { 0xe59f2028 }, /* ldr r2, gic_cpu_if */ { 0xe59f0028 }, /* ldr r0, bootreg_addr */ { 0xe3a01001 }, /* mov r1, #1 */ { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */ { 0xe3a010ff }, /* mov r1, #0xff */ { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ { 0, FIXUP_DSB }, /* dsb */ { 0xe320f003 }, /* wfi */ { 0xe5901000 }, /* ldr r1, [r0] */ { 0xe1110001 }, /* tst r1, r1 */ { 0x0afffffb }, /* beq <wfi> */ { 0xe12fff11 }, /* bx r1 */ { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */ { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */ { 0, FIXUP_TERMINATOR } }; void arm_write_bootloader(const char *name, AddressSpace *as, hwaddr addr, const ARMInsnFixup *insns, const uint32_t *fixupcontext) { /* Fix up the specified bootloader fragment and write it into * guest memory using rom_add_blob_fixed(). fixupcontext is * an array giving the values to write in for the fixup types * which write a value into the code array. */ int i, len; uint32_t *code; len = 0; while (insns[len].fixup != FIXUP_TERMINATOR) { len++; } code = g_new0(uint32_t, len); for (i = 0; i < len; i++) { uint32_t insn = insns[i].insn; FixupType fixup = insns[i].fixup; switch (fixup) { case FIXUP_NONE: break; case FIXUP_BOARDID: case FIXUP_BOARD_SETUP: case FIXUP_ARGPTR_LO: case FIXUP_ARGPTR_HI: case FIXUP_ENTRYPOINT_LO: case FIXUP_ENTRYPOINT_HI: case FIXUP_GIC_CPU_IF: case FIXUP_BOOTREG: case FIXUP_DSB: insn = fixupcontext[fixup]; break; default: abort(); } code[i] = tswap32(insn); } assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE); rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as); g_free(code); } static void default_write_secondary(ARMCPU *cpu, const struct arm_boot_info *info) { uint32_t fixupcontext[FIXUP_MAX]; AddressSpace *as = arm_boot_address_space(cpu, info); fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr; fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr; if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { fixupcontext[FIXUP_DSB] = DSB_INSN; } else { fixupcontext[FIXUP_DSB] = CP15_DSB_INSN; } arm_write_bootloader("smpboot", as, info->smp_loader_start, smpboot, fixupcontext); } void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu, const struct arm_boot_info *info, hwaddr mvbar_addr) { AddressSpace *as = arm_boot_address_space(cpu, info); int n; uint32_t mvbar_blob[] = { /* mvbar_addr: secure monitor vectors * Default unimplemented and unused vectors to spin. Makes it * easier to debug (as opposed to the CPU running away). */ 0xeafffffe, /* (spin) */ 0xeafffffe, /* (spin) */ 0xe1b0f00e, /* movs pc, lr ;SMC exception return */ 0xeafffffe, /* (spin) */ 0xeafffffe, /* (spin) */ 0xeafffffe, /* (spin) */ 0xeafffffe, /* (spin) */ 0xeafffffe, /* (spin) */ }; uint32_t board_setup_blob[] = { /* board setup addr */ 0xee110f51, /* mrc p15, 0, r0, c1, c1, 2 ;read NSACR */ 0xe3800b03, /* orr r0, #0xc00 ;set CP11, CP10 */ 0xee010f51, /* mcr p15, 0, r0, c1, c1, 2 ;write NSACR */ 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */ 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */ 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */ 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */ 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */ 0xe1a0100e, /* mov r1, lr ;save LR across SMC */ 0xe1600070, /* smc #0 ;call monitor to flush SCR */ 0xe1a0f001, /* mov pc, r1 ;return */ }; /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */ assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100); /* check that these blobs don't overlap */ assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr) || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr)); for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) { mvbar_blob[n] = tswap32(mvbar_blob[n]); } rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob), mvbar_addr, as); for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) { board_setup_blob[n] = tswap32(board_setup_blob[n]); } rom_add_blob_fixed_as("board-setup", board_setup_blob, sizeof(board_setup_blob), info->board_setup_addr, as); } static void default_reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info) { AddressSpace *as = arm_boot_address_space(cpu, info); CPUState *cs = CPU(cpu); address_space_stl_notdirty(as, info->smp_bootreg_addr, 0, MEMTXATTRS_UNSPECIFIED, NULL); cpu_set_pc(cs, info->smp_loader_start); } static inline bool have_dtb(const struct arm_boot_info *info) { return info->dtb_filename || info->get_dtb; } #define WRITE_WORD(p, value) do { \ address_space_stl_notdirty(as, p, value, \ MEMTXATTRS_UNSPECIFIED, NULL); \ p += 4; \ } while (0) static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as) { int initrd_size = info->initrd_size; hwaddr base = info->loader_start; hwaddr p; p = base + KERNEL_ARGS_ADDR; /* ATAG_CORE */ WRITE_WORD(p, 5); WRITE_WORD(p, 0x54410001); WRITE_WORD(p, 1); WRITE_WORD(p, 0x1000); WRITE_WORD(p, 0); /* ATAG_MEM */ /* TODO: handle multiple chips on one ATAG list */ WRITE_WORD(p, 4); WRITE_WORD(p, 0x54410002); WRITE_WORD(p, info->ram_size); WRITE_WORD(p, info->loader_start); if (initrd_size) { /* ATAG_INITRD2 */ WRITE_WORD(p, 4); WRITE_WORD(p, 0x54420005); WRITE_WORD(p, info->initrd_start); WRITE_WORD(p, initrd_size); } if (info->kernel_cmdline && *info->kernel_cmdline) { /* ATAG_CMDLINE */ int cmdline_size; cmdline_size = strlen(info->kernel_cmdline); address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED, info->kernel_cmdline, cmdline_size + 1); cmdline_size = (cmdline_size >> 2) + 1; WRITE_WORD(p, cmdline_size + 2); WRITE_WORD(p, 0x54410009); p += cmdline_size * 4; } if (info->atag_board) { /* ATAG_BOARD */ int atag_board_len; uint8_t atag_board_buf[0x1000]; atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; WRITE_WORD(p, (atag_board_len + 8) >> 2); WRITE_WORD(p, 0x414f4d50); address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, atag_board_buf, atag_board_len); p += atag_board_len; } /* ATAG_END */ WRITE_WORD(p, 0); WRITE_WORD(p, 0); } static void set_kernel_args_old(const struct arm_boot_info *info, AddressSpace *as) { hwaddr p; const char *s; int initrd_size = info->initrd_size; hwaddr base = info->loader_start; /* see linux/include/asm-arm/setup.h */ p = base + KERNEL_ARGS_ADDR; /* page_size */ WRITE_WORD(p, 4096); /* nr_pages */ WRITE_WORD(p, info->ram_size / 4096); /* ramdisk_size */ WRITE_WORD(p, 0); #define FLAG_READONLY 1 #define FLAG_RDLOAD 4 #define FLAG_RDPROMPT 8 /* flags */ WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); /* rootdev */ WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ /* video_num_cols */ WRITE_WORD(p, 0); /* video_num_rows */ WRITE_WORD(p, 0); /* video_x */ WRITE_WORD(p, 0); /* video_y */ WRITE_WORD(p, 0); /* memc_control_reg */ WRITE_WORD(p, 0); /* unsigned char sounddefault */ /* unsigned char adfsdrives */ /* unsigned char bytes_per_char_h */ /* unsigned char bytes_per_char_v */ WRITE_WORD(p, 0); /* pages_in_bank[4] */ WRITE_WORD(p, 0); WRITE_WORD(p, 0); WRITE_WORD(p, 0); WRITE_WORD(p, 0); /* pages_in_vram */ WRITE_WORD(p, 0); /* initrd_start */ if (initrd_size) { WRITE_WORD(p, info->initrd_start); } else { WRITE_WORD(p, 0); } /* initrd_size */ WRITE_WORD(p, initrd_size); /* rd_start */ WRITE_WORD(p, 0); /* system_rev */ WRITE_WORD(p, 0); /* system_serial_low */ WRITE_WORD(p, 0); /* system_serial_high */ WRITE_WORD(p, 0); /* mem_fclk_21285 */ WRITE_WORD(p, 0); /* zero unused fields */ while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { WRITE_WORD(p, 0); } s = info->kernel_cmdline; if (s) { address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1); } else { WRITE_WORD(p, 0); } } static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base, uint32_t scells, hwaddr mem_len, int numa_node_id) { char *nodename; int ret; nodename = g_strdup_printf("/memory@%" PRIx64, mem_base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory"); ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base, scells, mem_len); if (ret < 0) { goto out; } /* only set the NUMA ID if it is specified */ if (numa_node_id >= 0) { ret = qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", numa_node_id); } out: g_free(nodename); return ret; } static void fdt_add_psci_node(void *fdt) { uint32_t cpu_suspend_fn; uint32_t cpu_off_fn; uint32_t cpu_on_fn; uint32_t migrate_fn; ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); const char *psci_method; int64_t psci_conduit; int rc; psci_conduit = object_property_get_int(OBJECT(armcpu), "psci-conduit", &error_abort); switch (psci_conduit) { case QEMU_PSCI_CONDUIT_DISABLED: return; case QEMU_PSCI_CONDUIT_HVC: psci_method = "hvc"; break; case QEMU_PSCI_CONDUIT_SMC: psci_method = "smc"; break; default: g_assert_not_reached(); } /* * A pre-existing /psci node might specify function ID values * that don't match QEMU's PSCI implementation. Delete the whole * node and put our own in instead. */ rc = fdt_path_offset(fdt, "/psci"); if (rc >= 0) { qemu_fdt_nop_node(fdt, "/psci"); } qemu_fdt_add_subnode(fdt, "/psci"); if (armcpu->psci_version >= QEMU_PSCI_VERSION_0_2) { if (armcpu->psci_version < QEMU_PSCI_VERSION_1_0) { const char comp[] = "arm,psci-0.2\0arm,psci"; qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); } else { const char comp[] = "arm,psci-1.0\0arm,psci-0.2\0arm,psci"; qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); } cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; } else { cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; } } else { qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; } /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer * to the instruction that should be used to invoke PSCI functions. * However, the device tree binding uses 'method' instead, so that is * what we should use here. */ qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method); qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); } int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo, hwaddr addr_limit, AddressSpace *as, MachineState *ms) { void *fdt = NULL; int size, rc, n = 0; uint32_t acells, scells; unsigned int i; hwaddr mem_base, mem_len; char **node_path; Error *err = NULL; if (binfo->dtb_filename) { char *filename; filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); if (!filename) { fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); goto fail; } fdt = load_device_tree(filename, &size); if (!fdt) { fprintf(stderr, "Couldn't open dtb file %s\n", filename); g_free(filename); goto fail; } g_free(filename); } else { fdt = binfo->get_dtb(binfo, &size); if (!fdt) { fprintf(stderr, "Board was unable to create a dtb blob\n"); goto fail; } } if (addr_limit > addr && size > (addr_limit - addr)) { /* Installing the device tree blob at addr would exceed addr_limit. * Whether this constitutes failure is up to the caller to decide, * so just return 0 as size, i.e., no error. */ g_free(fdt); return 0; } acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells", NULL, &error_fatal); scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells", NULL, &error_fatal); if (acells == 0 || scells == 0) { fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); goto fail; } if (scells < 2 && binfo->ram_size >= 4 * GiB) { /* This is user error so deserves a friendlier error message * than the failure of setprop_sized_cells would provide */ fprintf(stderr, "qemu: dtb file not compatible with " "RAM size > 4GB\n"); goto fail; } /* nop all root nodes matching /memory or /memory@unit-address */ node_path = qemu_fdt_node_unit_path(fdt, "memory", &err); if (err) { error_report_err(err); goto fail; } while (node_path[n]) { if (g_str_has_prefix(node_path[n], "/memory")) { qemu_fdt_nop_node(fdt, node_path[n]); } n++; } g_strfreev(node_path); /* * We drop all the memory nodes which correspond to empty NUMA nodes * from the device tree, because the Linux NUMA binding document * states they should not be generated. Linux will get the NUMA node * IDs of the empty NUMA nodes from the distance map if they are needed. * This means QEMU users may be obliged to provide command lines which * configure distance maps when the empty NUMA node IDs are needed and * Linux's default distance map isn't sufficient. */ if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) { mem_base = binfo->loader_start; for (i = 0; i < ms->numa_state->num_nodes; i++) { mem_len = ms->numa_state->nodes[i].node_mem; if (!mem_len) { continue; } rc = fdt_add_memory_node(fdt, acells, mem_base, scells, mem_len, i); if (rc < 0) { fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n", mem_base); goto fail; } mem_base += mem_len; } } else { rc = fdt_add_memory_node(fdt, acells, binfo->loader_start, scells, binfo->ram_size, -1); if (rc < 0) { fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n", binfo->loader_start); goto fail; } } rc = fdt_path_offset(fdt, "/chosen"); if (rc < 0) { qemu_fdt_add_subnode(fdt, "/chosen"); } if (ms->kernel_cmdline && *ms->kernel_cmdline) { rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", ms->kernel_cmdline); if (rc < 0) { fprintf(stderr, "couldn't set /chosen/bootargs\n"); goto fail; } } if (binfo->initrd_size) { rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-start", acells, binfo->initrd_start); if (rc < 0) { fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); goto fail; } rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-end", acells, binfo->initrd_start + binfo->initrd_size); if (rc < 0) { fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); goto fail; } } fdt_add_psci_node(fdt); if (binfo->modify_dtb) { binfo->modify_dtb(binfo, fdt); } qemu_fdt_dumpdtb(fdt, size); /* Put the DTB into the memory map as a ROM image: this will ensure * the DTB is copied again upon reset, even if addr points into RAM. */ rom_add_blob_fixed_as("dtb", fdt, size, addr, as); qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds, rom_ptr_for_as(as, addr, size)); if (fdt != ms->fdt) { g_free(ms->fdt); ms->fdt = fdt; } return size; fail: g_free(fdt); return -1; } static void do_cpu_reset(void *opaque) { ARMCPU *cpu = opaque; CPUState *cs = CPU(cpu); CPUARMState *env = &cpu->env; const struct arm_boot_info *info = env->boot_info; cpu_reset(cs); if (info) { if (!info->is_linux) { int i; /* Jump to the entry point. */ uint64_t entry = info->entry; switch (info->endianness) { case ARM_ENDIANNESS_LE: env->cp15.sctlr_el[1] &= ~SCTLR_E0E; for (i = 1; i < 4; ++i) { env->cp15.sctlr_el[i] &= ~SCTLR_EE; } env->uncached_cpsr &= ~CPSR_E; break; case ARM_ENDIANNESS_BE8: env->cp15.sctlr_el[1] |= SCTLR_E0E; for (i = 1; i < 4; ++i) { env->cp15.sctlr_el[i] |= SCTLR_EE; } env->uncached_cpsr |= CPSR_E; break; case ARM_ENDIANNESS_BE32: env->cp15.sctlr_el[1] |= SCTLR_B; break; case ARM_ENDIANNESS_UNKNOWN: break; /* Board's decision */ default: g_assert_not_reached(); } cpu_set_pc(cs, entry); } else { /* * If we are booting Linux then we might need to do so at: * - AArch64 NS EL2 or NS EL1 * - AArch32 Secure SVC (EL3) * - AArch32 NS Hyp (EL2) * - AArch32 NS SVC (EL1) * Configure the CPU in the way boot firmware would do to * drop us down to the appropriate level. */ int target_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1; if (env->aarch64) { /* * AArch64 kernels never boot in secure mode, and we don't * support the secure_board_setup hook for AArch64. */ assert(!info->secure_boot); assert(!info->secure_board_setup); } else { if (arm_feature(env, ARM_FEATURE_EL3) && (info->secure_boot || (info->secure_board_setup && cs == first_cpu))) { /* Start this CPU in Secure SVC */ target_el = 3; } } arm_emulate_firmware_reset(cs, target_el); if (cs == first_cpu) { AddressSpace *as = arm_boot_address_space(cpu, info); cpu_set_pc(cs, info->loader_start); if (!have_dtb(info)) { if (old_param) { set_kernel_args_old(info, as); } else { set_kernel_args(info, as); } } } else if (info->secondary_cpu_reset_hook) { info->secondary_cpu_reset_hook(cpu, info); } } if (tcg_enabled()) { arm_rebuild_hflags(env); } } } static int do_arm_linux_init(Object *obj, void *opaque) { if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) { ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj); ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj); struct arm_boot_info *info = opaque; if (albifc->arm_linux_init) { albifc->arm_linux_init(albif, info->secure_boot); } } return 0; } static ssize_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry, uint64_t *lowaddr, uint64_t *highaddr, int elf_machine, AddressSpace *as) { bool elf_is64; union { Elf32_Ehdr h32; Elf64_Ehdr h64; } elf_header; int data_swab = 0; bool big_endian; ssize_t ret = -1; Error *err = NULL; load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err); if (err) { error_free(err); return ret; } if (elf_is64) { big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB; info->endianness = big_endian ? ARM_ENDIANNESS_BE8 : ARM_ENDIANNESS_LE; } else { big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB; if (big_endian) { if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) { info->endianness = ARM_ENDIANNESS_BE8; } else { info->endianness = ARM_ENDIANNESS_BE32; /* In BE32, the CPU has a different view of the per-byte * address map than the rest of the system. BE32 ELF files * are organised such that they can be programmed through * the CPU's per-word byte-reversed view of the world. QEMU * however loads ELF files independently of the CPU. So * tell the ELF loader to byte reverse the data for us. */ data_swab = 2; } } else { info->endianness = ARM_ENDIANNESS_LE; } } ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL, pentry, lowaddr, highaddr, NULL, big_endian, elf_machine, 1, data_swab, as); if (ret <= 0) { /* The header loaded but the image didn't */ exit(1); } return ret; } static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base, hwaddr *entry, AddressSpace *as) { hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR; uint64_t kernel_size = 0; uint8_t *buffer; int size; /* On aarch64, it's the bootloader's job to uncompress the kernel. */ size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES, &buffer); if (size < 0) { gsize len; /* Load as raw file otherwise */ if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) { return -1; } size = len; /* Unpack the image if it is a EFI zboot image */ if (unpack_efi_zboot_image(&buffer, &size) < 0) { g_free(buffer); return -1; } } /* check the arm64 magic header value -- very old kernels may not have it */ if (size > ARM64_MAGIC_OFFSET + 4 && memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) { uint64_t hdrvals[2]; /* The arm64 Image header has text_offset and image_size fields at 8 and * 16 bytes into the Image header, respectively. The text_offset field * is only valid if the image_size is non-zero. */ memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals)); kernel_size = le64_to_cpu(hdrvals[1]); if (kernel_size != 0) { kernel_load_offset = le64_to_cpu(hdrvals[0]); /* * We write our startup "bootloader" at the very bottom of RAM, * so that bit can't be used for the image. Luckily the Image * format specification is that the image requests only an offset * from a 2MB boundary, not an absolute load address. So if the * image requests an offset that might mean it overlaps with the * bootloader, we can just load it starting at 2MB+offset rather * than 0MB + offset. */ if (kernel_load_offset < BOOTLOADER_MAX_SIZE) { kernel_load_offset += 2 * MiB; } } } /* * Kernels before v3.17 don't populate the image_size field, and * raw images have no header. For those our best guess at the size * is the size of the Image file itself. */ if (kernel_size == 0) { kernel_size = size; } *entry = mem_base + kernel_load_offset; rom_add_blob_fixed_as(filename, buffer, size, *entry, as); g_free(buffer); return kernel_size; } static void arm_setup_direct_kernel_boot(ARMCPU *cpu, struct arm_boot_info *info) { /* Set up for a direct boot of a kernel image file. */ CPUState *cs; AddressSpace *as = arm_boot_address_space(cpu, info); ssize_t kernel_size; int initrd_size; int is_linux = 0; uint64_t elf_entry; /* Addresses of first byte used and first byte not used by the image */ uint64_t image_low_addr = 0, image_high_addr = 0; int elf_machine; hwaddr entry; static const ARMInsnFixup *primary_loader; uint64_t ram_end = info->loader_start + info->ram_size; if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { primary_loader = bootloader_aarch64; elf_machine = EM_AARCH64; } else { primary_loader = bootloader; if (!info->write_board_setup) { primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET; } elf_machine = EM_ARM; } /* Assume that raw images are linux kernels, and ELF images are not. */ kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr, &image_high_addr, elf_machine, as); if (kernel_size > 0 && have_dtb(info)) { /* * If there is still some room left at the base of RAM, try and put * the DTB there like we do for images loaded with -bios or -pflash. */ if (image_low_addr > info->loader_start || image_high_addr < info->loader_start) { /* * Set image_low_addr as address limit for arm_load_dtb if it may be * pointing into RAM, otherwise pass '0' (no limit) */ if (image_low_addr < info->loader_start) { image_low_addr = 0; } info->dtb_start = info->loader_start; info->dtb_limit = image_low_addr; } } entry = elf_entry; if (kernel_size < 0) { uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR; kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr, &is_linux, NULL, NULL, as); if (kernel_size >= 0) { image_low_addr = loadaddr; image_high_addr = image_low_addr + kernel_size; } } if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) { kernel_size = load_aarch64_image(info->kernel_filename, info->loader_start, &entry, as); is_linux = 1; if (kernel_size >= 0) { image_low_addr = entry; image_high_addr = image_low_addr + kernel_size; } } else if (kernel_size < 0) { /* 32-bit ARM */ entry = info->loader_start + KERNEL_LOAD_ADDR; kernel_size = load_image_targphys_as(info->kernel_filename, entry, ram_end - KERNEL_LOAD_ADDR, as); is_linux = 1; if (kernel_size >= 0) { image_low_addr = entry; image_high_addr = image_low_addr + kernel_size; } } if (kernel_size < 0) { error_report("could not load kernel '%s'", info->kernel_filename); exit(1); } if (kernel_size > info->ram_size) { error_report("kernel '%s' is too large to fit in RAM " "(kernel size %zd, RAM size %" PRId64 ")", info->kernel_filename, kernel_size, info->ram_size); exit(1); } info->entry = entry; /* * We want to put the initrd far enough into RAM that when the * kernel is uncompressed it will not clobber the initrd. However * on boards without much RAM we must ensure that we still leave * enough room for a decent sized initrd, and on boards with large * amounts of RAM we must avoid the initrd being so far up in RAM * that it is outside lowmem and inaccessible to the kernel. * So for boards with less than 256MB of RAM we put the initrd * halfway into RAM, and for boards with 256MB of RAM or more we put * the initrd at 128MB. * We also refuse to put the initrd somewhere that will definitely * overlay the kernel we just loaded, though for kernel formats which * don't tell us their exact size (eg self-decompressing 32-bit kernels) * we might still make a bad choice here. */ info->initrd_start = info->loader_start + MIN(info->ram_size / 2, 128 * MiB); if (image_high_addr) { info->initrd_start = MAX(info->initrd_start, image_high_addr); } info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start); if (is_linux) { uint32_t fixupcontext[FIXUP_MAX]; if (info->initrd_filename) { if (info->initrd_start >= ram_end) { error_report("not enough space after kernel to load initrd"); exit(1); } initrd_size = load_ramdisk_as(info->initrd_filename, info->initrd_start, ram_end - info->initrd_start, as); if (initrd_size < 0) { initrd_size = load_image_targphys_as(info->initrd_filename, info->initrd_start, ram_end - info->initrd_start, as); } if (initrd_size < 0) { error_report("could not load initrd '%s'", info->initrd_filename); exit(1); } if (info->initrd_start + initrd_size > ram_end) { error_report("could not load initrd '%s': " "too big to fit into RAM after the kernel", info->initrd_filename); exit(1); } } else { initrd_size = 0; } info->initrd_size = initrd_size; fixupcontext[FIXUP_BOARDID] = info->board_id; fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr; /* * for device tree boot, we pass the DTB directly in r2. Otherwise * we point to the kernel args. */ if (have_dtb(info)) { hwaddr align; if (elf_machine == EM_AARCH64) { /* * Some AArch64 kernels on early bootup map the fdt region as * * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ] * * Let's play safe and prealign it to 2MB to give us some space. */ align = 2 * MiB; } else { /* * Some 32bit kernels will trash anything in the 4K page the * initrd ends in, so make sure the DTB isn't caught up in that. */ align = 4 * KiB; } /* Place the DTB after the initrd in memory with alignment. */ info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align); if (info->dtb_start >= ram_end) { error_report("Not enough space for DTB after kernel/initrd"); exit(1); } fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start; fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32; } else { fixupcontext[FIXUP_ARGPTR_LO] = info->loader_start + KERNEL_ARGS_ADDR; fixupcontext[FIXUP_ARGPTR_HI] = (info->loader_start + KERNEL_ARGS_ADDR) >> 32; if (info->ram_size >= 4 * GiB) { error_report("RAM size must be less than 4GB to boot" " Linux kernel using ATAGS (try passing a device tree" " using -dtb)"); exit(1); } } fixupcontext[FIXUP_ENTRYPOINT_LO] = entry; fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32; arm_write_bootloader("bootloader", as, info->loader_start, primary_loader, fixupcontext); if (info->write_board_setup) { info->write_board_setup(cpu, info); } /* * Notify devices which need to fake up firmware initialization * that we're doing a direct kernel boot. */ object_child_foreach_recursive(object_get_root(), do_arm_linux_init, info); } info->is_linux = is_linux; for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) { ARM_CPU(cs)->env.boot_info = info; } } static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info) { /* Set up for booting firmware (which might load a kernel via fw_cfg) */ if (have_dtb(info)) { /* * If we have a device tree blob, but no kernel to supply it to (or * the kernel is supposed to be loaded by the bootloader), copy the * DTB to the base of RAM for the bootloader to pick up. */ info->dtb_start = info->loader_start; } if (info->kernel_filename) { FWCfgState *fw_cfg; bool try_decompressing_kernel; fw_cfg = fw_cfg_find(); if (!fw_cfg) { error_report("This machine type does not support loading both " "a guest firmware/BIOS image and a guest kernel at " "the same time. You should change your QEMU command " "line to specify one or the other, but not both."); exit(1); } try_decompressing_kernel = arm_feature(&cpu->env, ARM_FEATURE_AARCH64); /* * Expose the kernel, the command line, and the initrd in fw_cfg. * We don't process them here at all, it's all left to the * firmware. */ load_image_to_fw_cfg(fw_cfg, FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA, info->kernel_filename, try_decompressing_kernel); load_image_to_fw_cfg(fw_cfg, FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA, info->initrd_filename, false); if (info->kernel_cmdline) { fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(info->kernel_cmdline) + 1); fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, info->kernel_cmdline); } } /* * We will start from address 0 (typically a boot ROM image) in the * same way as hardware. Leave env->boot_info NULL, so that * do_cpu_reset() knows it does not need to alter the PC on reset. */ } void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info) { CPUState *cs; AddressSpace *as = arm_boot_address_space(cpu, info); int boot_el; CPUARMState *env = &cpu->env; int nb_cpus = 0; /* * CPU objects (unlike devices) are not automatically reset on system * reset, so we must always register a handler to do so. If we're * actually loading a kernel, the handler is also responsible for * arranging that we start it correctly. */ for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) { qemu_register_reset(do_cpu_reset, ARM_CPU(cs)); nb_cpus++; } /* * The board code is not supposed to set secure_board_setup unless * running its code in secure mode is actually possible, and KVM * doesn't support secure. */ assert(!(info->secure_board_setup && kvm_enabled())); info->kernel_filename = ms->kernel_filename; info->kernel_cmdline = ms->kernel_cmdline; info->initrd_filename = ms->initrd_filename; info->dtb_filename = ms->dtb; info->dtb_limit = 0; /* Load the kernel. */ if (!info->kernel_filename || info->firmware_loaded) { arm_setup_firmware_boot(cpu, info); } else { arm_setup_direct_kernel_boot(cpu, info); } /* * Disable the PSCI conduit if it is set up to target the same * or a lower EL than the one we're going to start the guest code in. * This logic needs to agree with the code in do_cpu_reset() which * decides whether we're going to boot the guest in the highest * supported exception level or in a lower one. */ /* * If PSCI is enabled, then SMC calls all go to the PSCI handler and * are never emulated to trap into guest code. It therefore does not * make sense for the board to have a setup code fragment that runs * in Secure, because this will probably need to itself issue an SMC of some * kind as part of its operation. */ assert(info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED || !info->secure_board_setup); /* Boot into highest supported EL ... */ if (arm_feature(env, ARM_FEATURE_EL3)) { boot_el = 3; } else if (arm_feature(env, ARM_FEATURE_EL2)) { boot_el = 2; } else { boot_el = 1; } /* ...except that if we're booting Linux we adjust the EL we boot into */ if (info->is_linux && !info->secure_boot) { boot_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1; } if ((info->psci_conduit == QEMU_PSCI_CONDUIT_HVC && boot_el >= 2) || (info->psci_conduit == QEMU_PSCI_CONDUIT_SMC && boot_el == 3)) { info->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; } if (info->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) { Object *cpuobj = OBJECT(cs); object_property_set_int(cpuobj, "psci-conduit", info->psci_conduit, &error_abort); /* * Secondary CPUs start in PSCI powered-down state. Like the * code in do_cpu_reset(), we assume first_cpu is the primary * CPU. */ if (cs != first_cpu) { object_property_set_bool(cpuobj, "start-powered-off", true, &error_abort); } } } if (info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED && info->is_linux && nb_cpus > 1) { /* * We're booting Linux but not using PSCI, so for SMP we need * to write a custom secondary CPU boot loader stub, and arrange * for the secondary CPU reset to make the accompanying initialization. */ if (!info->secondary_cpu_reset_hook) { info->secondary_cpu_reset_hook = default_reset_secondary; } if (!info->write_secondary_boot) { info->write_secondary_boot = default_write_secondary; } info->write_secondary_boot(cpu, info); } else { /* * No secondary boot stub; don't use the reset hook that would * have set the CPU up to call it */ info->write_secondary_boot = NULL; info->secondary_cpu_reset_hook = NULL; } /* * arm_load_dtb() may add a PSCI node so it must be called after we have * decided whether to enable PSCI and set the psci-conduit CPU properties. */ if (!info->skip_dtb_autoload && have_dtb(info)) { if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { exit(1); } } } static const TypeInfo arm_linux_boot_if_info = { .name = TYPE_ARM_LINUX_BOOT_IF, .parent = TYPE_INTERFACE, .class_size = sizeof(ARMLinuxBootIfClass), }; static void arm_linux_boot_register_types(void) { type_register_static(&arm_linux_boot_if_info); } type_init(arm_linux_boot_register_types)