/* * ColdFire UART emulation. * * Copyright (c) 2007 CodeSourcery. * * This code is licensed under the GPL */ #include "qemu/osdep.h" #include "hw/irq.h" #include "hw/sysbus.h" #include "qemu/module.h" #include "qapi/error.h" #include "hw/m68k/mcf.h" #include "hw/qdev-properties.h" #include "hw/qdev-properties-system.h" #include "chardev/char-fe.h" #include "qom/object.h" struct mcf_uart_state { SysBusDevice parent_obj; MemoryRegion iomem; uint8_t mr[2]; uint8_t sr; uint8_t isr; uint8_t imr; uint8_t bg1; uint8_t bg2; uint8_t fifo[4]; uint8_t tb; int current_mr; int fifo_len; int tx_enabled; int rx_enabled; qemu_irq irq; CharBackend chr; }; #define TYPE_MCF_UART "mcf-uart" OBJECT_DECLARE_SIMPLE_TYPE(mcf_uart_state, MCF_UART) /* UART Status Register bits. */ #define MCF_UART_RxRDY 0x01 #define MCF_UART_FFULL 0x02 #define MCF_UART_TxRDY 0x04 #define MCF_UART_TxEMP 0x08 #define MCF_UART_OE 0x10 #define MCF_UART_PE 0x20 #define MCF_UART_FE 0x40 #define MCF_UART_RB 0x80 /* Interrupt flags. */ #define MCF_UART_TxINT 0x01 #define MCF_UART_RxINT 0x02 #define MCF_UART_DBINT 0x04 #define MCF_UART_COSINT 0x80 /* UMR1 flags. */ #define MCF_UART_BC0 0x01 #define MCF_UART_BC1 0x02 #define MCF_UART_PT 0x04 #define MCF_UART_PM0 0x08 #define MCF_UART_PM1 0x10 #define MCF_UART_ERR 0x20 #define MCF_UART_RxIRQ 0x40 #define MCF_UART_RxRTS 0x80 static void mcf_uart_update(mcf_uart_state *s) { s->isr &= ~(MCF_UART_TxINT | MCF_UART_RxINT); if (s->sr & MCF_UART_TxRDY) s->isr |= MCF_UART_TxINT; if ((s->sr & ((s->mr[0] & MCF_UART_RxIRQ) ? MCF_UART_FFULL : MCF_UART_RxRDY)) != 0) s->isr |= MCF_UART_RxINT; qemu_set_irq(s->irq, (s->isr & s->imr) != 0); } uint64_t mcf_uart_read(void *opaque, hwaddr addr, unsigned size) { mcf_uart_state *s = (mcf_uart_state *)opaque; switch (addr & 0x3f) { case 0x00: return s->mr[s->current_mr]; case 0x04: return s->sr; case 0x0c: { uint8_t val; int i; if (s->fifo_len == 0) return 0; val = s->fifo[0]; s->fifo_len--; for (i = 0; i < s->fifo_len; i++) s->fifo[i] = s->fifo[i + 1]; s->sr &= ~MCF_UART_FFULL; if (s->fifo_len == 0) s->sr &= ~MCF_UART_RxRDY; mcf_uart_update(s); qemu_chr_fe_accept_input(&s->chr); return val; } case 0x10: /* TODO: Implement IPCR. */ return 0; case 0x14: return s->isr; case 0x18: return s->bg1; case 0x1c: return s->bg2; default: return 0; } } /* Update TxRDY flag and set data if present and enabled. */ static void mcf_uart_do_tx(mcf_uart_state *s) { if (s->tx_enabled && (s->sr & MCF_UART_TxEMP) == 0) { /* XXX this blocks entire thread. Rewrite to use * qemu_chr_fe_write and background I/O callbacks */ qemu_chr_fe_write_all(&s->chr, (unsigned char *)&s->tb, 1); s->sr |= MCF_UART_TxEMP; } if (s->tx_enabled) { s->sr |= MCF_UART_TxRDY; } else { s->sr &= ~MCF_UART_TxRDY; } } static void mcf_do_command(mcf_uart_state *s, uint8_t cmd) { /* Misc command. */ switch ((cmd >> 4) & 7) { case 0: /* No-op. */ break; case 1: /* Reset mode register pointer. */ s->current_mr = 0; break; case 2: /* Reset receiver. */ s->rx_enabled = 0; s->fifo_len = 0; s->sr &= ~(MCF_UART_RxRDY | MCF_UART_FFULL); break; case 3: /* Reset transmitter. */ s->tx_enabled = 0; s->sr |= MCF_UART_TxEMP; s->sr &= ~MCF_UART_TxRDY; break; case 4: /* Reset error status. */ break; case 5: /* Reset break-change interrupt. */ s->isr &= ~MCF_UART_DBINT; break; case 6: /* Start break. */ case 7: /* Stop break. */ break; } /* Transmitter command. */ switch ((cmd >> 2) & 3) { case 0: /* No-op. */ break; case 1: /* Enable. */ s->tx_enabled = 1; mcf_uart_do_tx(s); break; case 2: /* Disable. */ s->tx_enabled = 0; mcf_uart_do_tx(s); break; case 3: /* Reserved. */ fprintf(stderr, "mcf_uart: Bad TX command\n"); break; } /* Receiver command. */ switch (cmd & 3) { case 0: /* No-op. */ break; case 1: /* Enable. */ s->rx_enabled = 1; break; case 2: s->rx_enabled = 0; break; case 3: /* Reserved. */ fprintf(stderr, "mcf_uart: Bad RX command\n"); break; } } void mcf_uart_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { mcf_uart_state *s = (mcf_uart_state *)opaque; switch (addr & 0x3f) { case 0x00: s->mr[s->current_mr] = val; s->current_mr = 1; break; case 0x04: /* CSR is ignored. */ break; case 0x08: /* Command Register. */ mcf_do_command(s, val); break; case 0x0c: /* Transmit Buffer. */ s->sr &= ~MCF_UART_TxEMP; s->tb = val; mcf_uart_do_tx(s); break; case 0x10: /* ACR is ignored. */ break; case 0x14: s->imr = val; break; default: break; } mcf_uart_update(s); } static void mcf_uart_reset(DeviceState *dev) { mcf_uart_state *s = MCF_UART(dev); s->fifo_len = 0; s->mr[0] = 0; s->mr[1] = 0; s->sr = MCF_UART_TxEMP; s->tx_enabled = 0; s->rx_enabled = 0; s->isr = 0; s->imr = 0; } static void mcf_uart_push_byte(mcf_uart_state *s, uint8_t data) { /* Break events overwrite the last byte if the fifo is full. */ if (s->fifo_len == 4) s->fifo_len--; s->fifo[s->fifo_len] = data; s->fifo_len++; s->sr |= MCF_UART_RxRDY; if (s->fifo_len == 4) s->sr |= MCF_UART_FFULL; mcf_uart_update(s); } static void mcf_uart_event(void *opaque, QEMUChrEvent event) { mcf_uart_state *s = (mcf_uart_state *)opaque; switch (event) { case CHR_EVENT_BREAK: s->isr |= MCF_UART_DBINT; mcf_uart_push_byte(s, 0); break; default: break; } } static int mcf_uart_can_receive(void *opaque) { mcf_uart_state *s = (mcf_uart_state *)opaque; return s->rx_enabled && (s->sr & MCF_UART_FFULL) == 0; } static void mcf_uart_receive(void *opaque, const uint8_t *buf, int size) { mcf_uart_state *s = (mcf_uart_state *)opaque; mcf_uart_push_byte(s, buf[0]); } static const MemoryRegionOps mcf_uart_ops = { .read = mcf_uart_read, .write = mcf_uart_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void mcf_uart_instance_init(Object *obj) { SysBusDevice *dev = SYS_BUS_DEVICE(obj); mcf_uart_state *s = MCF_UART(dev); memory_region_init_io(&s->iomem, obj, &mcf_uart_ops, s, "uart", 0x40); sysbus_init_mmio(dev, &s->iomem); sysbus_init_irq(dev, &s->irq); } static void mcf_uart_realize(DeviceState *dev, Error **errp) { mcf_uart_state *s = MCF_UART(dev); qemu_chr_fe_set_handlers(&s->chr, mcf_uart_can_receive, mcf_uart_receive, mcf_uart_event, NULL, s, NULL, true); } static Property mcf_uart_properties[] = { DEFINE_PROP_CHR("chardev", mcf_uart_state, chr), DEFINE_PROP_END_OF_LIST(), }; static void mcf_uart_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); dc->realize = mcf_uart_realize; device_class_set_legacy_reset(dc, mcf_uart_reset); device_class_set_props(dc, mcf_uart_properties); set_bit(DEVICE_CATEGORY_INPUT, dc->categories); } static const TypeInfo mcf_uart_info = { .name = TYPE_MCF_UART, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(mcf_uart_state), .instance_init = mcf_uart_instance_init, .class_init = mcf_uart_class_init, }; static void mcf_uart_register(void) { type_register_static(&mcf_uart_info); } type_init(mcf_uart_register) DeviceState *mcf_uart_create(qemu_irq irq, Chardev *chrdrv) { DeviceState *dev; dev = qdev_new(TYPE_MCF_UART); if (chrdrv) { qdev_prop_set_chr(dev, "chardev", chrdrv); } sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, irq); return dev; } DeviceState *mcf_uart_create_mmap(hwaddr base, qemu_irq irq, Chardev *chrdrv) { DeviceState *dev; dev = mcf_uart_create(irq, chrdrv); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); return dev; }