/* * HP-PARISC Dino PCI chipset emulation, as in B160L and similar machines * * (C) 2017-2019 by Helge Deller * * This work is licensed under the GNU GPL license version 2 or later. * * Documentation available at: * https://parisc.wiki.kernel.org/images-parisc/9/91/Dino_ers.pdf * https://parisc.wiki.kernel.org/images-parisc/7/70/Dino_3_1_Errata.pdf */ #include "qemu/osdep.h" #include "qemu/module.h" #include "qemu/units.h" #include "qapi/error.h" #include "hw/irq.h" #include "hw/pci/pci_device.h" #include "hw/pci/pci_bus.h" #include "hw/qdev-properties.h" #include "hw/pci-host/dino.h" #include "migration/vmstate.h" #include "trace.h" #include "qom/object.h" /* * Dino can forward memory accesses from the CPU in the range between * 0xf0800000 and 0xff000000 to the PCI bus. */ static void gsc_to_pci_forwarding(DinoState *s) { uint32_t io_addr_en, tmp; int enabled, i; tmp = extract32(s->io_control, 7, 2); enabled = (tmp == 0x01); io_addr_en = s->io_addr_en; /* Mask out first (=firmware) and last (=Dino) areas. */ io_addr_en &= ~(BIT(31) | BIT(0)); memory_region_transaction_begin(); for (i = 1; i < 31; i++) { MemoryRegion *mem = &s->pci_mem_alias[i]; if (enabled && (io_addr_en & (1U << i))) { if (!memory_region_is_mapped(mem)) { uint32_t addr = 0xf0000000 + i * DINO_MEM_CHUNK_SIZE; memory_region_add_subregion(get_system_memory(), addr, mem); } } else if (memory_region_is_mapped(mem)) { memory_region_del_subregion(get_system_memory(), mem); } } memory_region_transaction_commit(); } static bool dino_chip_mem_valid(void *opaque, hwaddr addr, unsigned size, bool is_write, MemTxAttrs attrs) { bool ret = false; switch (addr) { case DINO_IAR0: case DINO_IAR1: case DINO_IRR0: case DINO_IRR1: case DINO_IMR: case DINO_IPR: case DINO_ICR: case DINO_ILR: case DINO_IO_CONTROL: case DINO_IO_FBB_EN: case DINO_IO_ADDR_EN: case DINO_PCI_IO_DATA: case DINO_TOC_ADDR: case DINO_GMASK ... DINO_PCISTS: case DINO_MLTIM ... DINO_PCIWOR: case DINO_TLTIM: ret = true; break; case DINO_PCI_IO_DATA + 2: ret = (size <= 2); break; case DINO_PCI_IO_DATA + 1: case DINO_PCI_IO_DATA + 3: ret = (size == 1); } trace_dino_chip_mem_valid(addr, ret); return ret; } static MemTxResult dino_chip_read_with_attrs(void *opaque, hwaddr addr, uint64_t *data, unsigned size, MemTxAttrs attrs) { DinoState *s = opaque; PCIHostState *phb = PCI_HOST_BRIDGE(s); MemTxResult ret = MEMTX_OK; AddressSpace *io; uint16_t ioaddr; uint32_t val; switch (addr) { case DINO_PCI_IO_DATA ... DINO_PCI_IO_DATA + 3: /* Read from PCI IO space. */ io = &address_space_io; ioaddr = phb->config_reg + (addr & 3); switch (size) { case 1: val = address_space_ldub(io, ioaddr, attrs, &ret); break; case 2: val = address_space_lduw_be(io, ioaddr, attrs, &ret); break; case 4: val = address_space_ldl_be(io, ioaddr, attrs, &ret); break; default: g_assert_not_reached(); } break; case DINO_IO_FBB_EN: val = s->io_fbb_en; break; case DINO_IO_ADDR_EN: val = s->io_addr_en; break; case DINO_IO_CONTROL: val = s->io_control; break; case DINO_IAR0: val = s->iar0; break; case DINO_IAR1: val = s->iar1; break; case DINO_IMR: val = s->imr; break; case DINO_ICR: val = s->icr; break; case DINO_IPR: val = s->ipr; /* Any read to IPR clears the register. */ s->ipr = 0; break; case DINO_ILR: val = s->ilr; break; case DINO_IRR0: val = s->ilr & s->imr & ~s->icr; break; case DINO_IRR1: val = s->ilr & s->imr & s->icr; break; case DINO_TOC_ADDR: val = s->toc_addr; break; case DINO_GMASK ... DINO_TLTIM: val = s->reg800[(addr - DINO_GMASK) / 4]; if (addr == DINO_PAMR) { val &= ~0x01; /* LSB is hardwired to 0 */ } if (addr == DINO_MLTIM) { val &= ~0x07; /* 3 LSB are hardwired to 0 */ } if (addr == DINO_BRDG_FEAT) { val &= ~(0x10710E0ul | 8); /* bits 5-7, 24 & 15 reserved */ } break; default: /* Controlled by dino_chip_mem_valid above. */ g_assert_not_reached(); } trace_dino_chip_read(addr, val); *data = val; return ret; } static MemTxResult dino_chip_write_with_attrs(void *opaque, hwaddr addr, uint64_t val, unsigned size, MemTxAttrs attrs) { DinoState *s = opaque; PCIHostState *phb = PCI_HOST_BRIDGE(s); AddressSpace *io; MemTxResult ret; uint16_t ioaddr; int i; trace_dino_chip_write(addr, val); switch (addr) { case DINO_IO_DATA ... DINO_PCI_IO_DATA + 3: /* Write into PCI IO space. */ io = &address_space_io; ioaddr = phb->config_reg + (addr & 3); switch (size) { case 1: address_space_stb(io, ioaddr, val, attrs, &ret); break; case 2: address_space_stw_be(io, ioaddr, val, attrs, &ret); break; case 4: address_space_stl_be(io, ioaddr, val, attrs, &ret); break; default: g_assert_not_reached(); } return ret; case DINO_IO_FBB_EN: s->io_fbb_en = val & 0x03; break; case DINO_IO_ADDR_EN: s->io_addr_en = val; gsc_to_pci_forwarding(s); break; case DINO_IO_CONTROL: s->io_control = val; gsc_to_pci_forwarding(s); break; case DINO_IAR0: s->iar0 = val; break; case DINO_IAR1: s->iar1 = val; break; case DINO_IMR: s->imr = val; break; case DINO_ICR: s->icr = val; break; case DINO_IPR: /* Any write to IPR clears the register. */ s->ipr = 0; break; case DINO_TOC_ADDR: /* IO_COMMAND of CPU with client_id bits */ s->toc_addr = 0xFFFA0030 | (val & 0x1e000); break; case DINO_ILR: case DINO_IRR0: case DINO_IRR1: /* These registers are read-only. */ break; case DINO_GMASK ... DINO_TLTIM: i = (addr - DINO_GMASK) / 4; val &= reg800_keep_bits[i]; s->reg800[i] = val; break; default: /* Controlled by dino_chip_mem_valid above. */ g_assert_not_reached(); } return MEMTX_OK; } static const MemoryRegionOps dino_chip_ops = { .read_with_attrs = dino_chip_read_with_attrs, .write_with_attrs = dino_chip_write_with_attrs, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 4, .accepts = dino_chip_mem_valid, }, .impl = { .min_access_size = 1, .max_access_size = 4, }, }; static const VMStateDescription vmstate_dino = { .name = "Dino", .version_id = 2, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT32(iar0, DinoState), VMSTATE_UINT32(iar1, DinoState), VMSTATE_UINT32(imr, DinoState), VMSTATE_UINT32(ipr, DinoState), VMSTATE_UINT32(icr, DinoState), VMSTATE_UINT32(ilr, DinoState), VMSTATE_UINT32(io_fbb_en, DinoState), VMSTATE_UINT32(io_addr_en, DinoState), VMSTATE_UINT32(io_control, DinoState), VMSTATE_UINT32(toc_addr, DinoState), VMSTATE_END_OF_LIST() } }; /* Unlike pci_config_data_le_ops, no check of high bit set in config_reg. */ static uint64_t dino_config_data_read(void *opaque, hwaddr addr, unsigned len) { PCIHostState *s = opaque; return pci_data_read(s->bus, s->config_reg | (addr & 3), len); } static void dino_config_data_write(void *opaque, hwaddr addr, uint64_t val, unsigned len) { PCIHostState *s = opaque; pci_data_write(s->bus, s->config_reg | (addr & 3), val, len); } static const MemoryRegionOps dino_config_data_ops = { .read = dino_config_data_read, .write = dino_config_data_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static uint64_t dino_config_addr_read(void *opaque, hwaddr addr, unsigned len) { DinoState *s = opaque; return s->config_reg_dino; } static void dino_config_addr_write(void *opaque, hwaddr addr, uint64_t val, unsigned len) { PCIHostState *s = opaque; DinoState *ds = opaque; ds->config_reg_dino = val; /* keep a copy of original value */ s->config_reg = val & ~3U; } static const MemoryRegionOps dino_config_addr_ops = { .read = dino_config_addr_read, .write = dino_config_addr_write, .valid.min_access_size = 4, .valid.max_access_size = 4, .endianness = DEVICE_BIG_ENDIAN, }; static AddressSpace *dino_pcihost_set_iommu(PCIBus *bus, void *opaque, int devfn) { DinoState *s = opaque; return &s->bm_as; } static const PCIIOMMUOps dino_iommu_ops = { .get_address_space = dino_pcihost_set_iommu, }; /* * Dino interrupts are connected as shown on Page 78, Table 23 * (Little-endian bit numbers) * 0 PCI INTA * 1 PCI INTB * 2 PCI INTC * 3 PCI INTD * 4 PCI INTE * 5 PCI INTF * 6 GSC External Interrupt * 7 Bus Error for "less than fatal" mode * 8 PS2 * 9 Unused * 10 RS232 */ static void dino_set_irq(void *opaque, int irq, int level) { DinoState *s = opaque; uint32_t bit = 1u << irq; uint32_t old_ilr = s->ilr; if (level) { uint32_t ena = bit & ~old_ilr; s->ipr |= ena; s->ilr = old_ilr | bit; if (ena & s->imr) { uint32_t iar = (ena & s->icr ? s->iar1 : s->iar0); stl_be_phys(&address_space_memory, iar & -32, iar & 31); } } else { s->ilr = old_ilr & ~bit; } } static int dino_pci_map_irq(PCIDevice *d, int irq_num) { int slot = PCI_SLOT(d->devfn); assert(irq_num >= 0 && irq_num <= 3); return slot & 0x03; } static void dino_pcihost_reset(DeviceState *dev) { DinoState *s = DINO_PCI_HOST_BRIDGE(dev); s->iar0 = s->iar1 = 0xFFFB0000 + 3; /* CPU_HPA + 3 */ s->toc_addr = 0xFFFA0030; /* IO_COMMAND of CPU */ } static void dino_pcihost_realize(DeviceState *dev, Error **errp) { DinoState *s = DINO_PCI_HOST_BRIDGE(dev); /* Set up PCI view of memory: Bus master address space. */ memory_region_init(&s->bm, OBJECT(s), "bm-dino", 4 * GiB); memory_region_init_alias(&s->bm_ram_alias, OBJECT(s), "bm-system", s->memory_as, 0, 0xf0000000 + DINO_MEM_CHUNK_SIZE); memory_region_init_alias(&s->bm_pci_alias, OBJECT(s), "bm-pci", &s->pci_mem, 0xf0000000 + DINO_MEM_CHUNK_SIZE, 30 * DINO_MEM_CHUNK_SIZE); memory_region_init_alias(&s->bm_cpu_alias, OBJECT(s), "bm-cpu", s->memory_as, 0xfff00000, 0xfffff); memory_region_add_subregion(&s->bm, 0, &s->bm_ram_alias); memory_region_add_subregion(&s->bm, 0xf0000000 + DINO_MEM_CHUNK_SIZE, &s->bm_pci_alias); memory_region_add_subregion(&s->bm, 0xfff00000, &s->bm_cpu_alias); address_space_init(&s->bm_as, &s->bm, "pci-bm"); } static void dino_pcihost_unrealize(DeviceState *dev) { DinoState *s = DINO_PCI_HOST_BRIDGE(dev); address_space_destroy(&s->bm_as); } static void dino_pcihost_init(Object *obj) { DinoState *s = DINO_PCI_HOST_BRIDGE(obj); PCIHostState *phb = PCI_HOST_BRIDGE(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(obj); int i; /* Dino PCI access from main memory. */ memory_region_init_io(&s->this_mem, OBJECT(s), &dino_chip_ops, s, "dino", 4096); /* Dino PCI config. */ memory_region_init_io(&phb->conf_mem, OBJECT(phb), &dino_config_addr_ops, DEVICE(s), "pci-conf-idx", 4); memory_region_init_io(&phb->data_mem, OBJECT(phb), &dino_config_data_ops, DEVICE(s), "pci-conf-data", 4); memory_region_add_subregion(&s->this_mem, DINO_PCI_CONFIG_ADDR, &phb->conf_mem); memory_region_add_subregion(&s->this_mem, DINO_CONFIG_DATA, &phb->data_mem); /* Dino PCI bus memory. */ memory_region_init(&s->pci_mem, OBJECT(s), "pci-memory", 4 * GiB); phb->bus = pci_register_root_bus(DEVICE(s), "pci", dino_set_irq, dino_pci_map_irq, s, &s->pci_mem, get_system_io(), PCI_DEVFN(0, 0), 32, TYPE_PCI_BUS); /* Set up windows into PCI bus memory. */ for (i = 1; i < 31; i++) { uint32_t addr = 0xf0000000 + i * DINO_MEM_CHUNK_SIZE; char *name = g_strdup_printf("PCI Outbound Window %d", i); memory_region_init_alias(&s->pci_mem_alias[i], OBJECT(s), name, &s->pci_mem, addr, DINO_MEM_CHUNK_SIZE); g_free(name); } pci_setup_iommu(phb->bus, &dino_iommu_ops, s); sysbus_init_mmio(sbd, &s->this_mem); qdev_init_gpio_in(DEVICE(obj), dino_set_irq, DINO_IRQS); } static Property dino_pcihost_properties[] = { DEFINE_PROP_LINK("memory-as", DinoState, memory_as, TYPE_MEMORY_REGION, MemoryRegion *), DEFINE_PROP_END_OF_LIST(), }; static void dino_pcihost_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); device_class_set_legacy_reset(dc, dino_pcihost_reset); dc->realize = dino_pcihost_realize; dc->unrealize = dino_pcihost_unrealize; device_class_set_props(dc, dino_pcihost_properties); dc->vmsd = &vmstate_dino; } static const TypeInfo dino_pcihost_info = { .name = TYPE_DINO_PCI_HOST_BRIDGE, .parent = TYPE_PCI_HOST_BRIDGE, .instance_init = dino_pcihost_init, .instance_size = sizeof(DinoState), .class_init = dino_pcihost_class_init, }; static void dino_register_types(void) { type_register_static(&dino_pcihost_info); } type_init(dino_register_types)