/* * QEMU PowerPC PowerNV machine model * * Copyright (c) 2016, IBM Corporation. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qapi/error.h" #include "sysemu/sysemu.h" #include "sysemu/numa.h" #include "hw/hw.h" #include "target-ppc/cpu.h" #include "qemu/log.h" #include "hw/ppc/fdt.h" #include "hw/ppc/ppc.h" #include "hw/ppc/pnv.h" #include "hw/ppc/pnv_core.h" #include "hw/loader.h" #include "exec/address-spaces.h" #include "qemu/cutils.h" #include "qapi/visitor.h" #include "hw/ppc/pnv_xscom.h" #include "hw/isa/isa.h" #include "hw/char/serial.h" #include "hw/timer/mc146818rtc.h" #include #define FDT_MAX_SIZE 0x00100000 #define FW_FILE_NAME "skiboot.lid" #define FW_LOAD_ADDR 0x0 #define FW_MAX_SIZE 0x00400000 #define KERNEL_LOAD_ADDR 0x20000000 #define INITRD_LOAD_ADDR 0x40000000 /* * On Power Systems E880 (POWER8), the max cpus (threads) should be : * 4 * 4 sockets * 12 cores * 8 threads = 1536 * Let's make it 2^11 */ #define MAX_CPUS 2048 /* * Memory nodes are created by hostboot, one for each range of memory * that has a different "affinity". In practice, it means one range * per chip. */ static void powernv_populate_memory_node(void *fdt, int chip_id, hwaddr start, hwaddr size) { char *mem_name; uint64_t mem_reg_property[2]; int off; mem_reg_property[0] = cpu_to_be64(start); mem_reg_property[1] = cpu_to_be64(size); mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start); off = fdt_add_subnode(fdt, 0, mem_name); g_free(mem_name); _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, sizeof(mem_reg_property)))); _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id))); } static int get_cpus_node(void *fdt) { int cpus_offset = fdt_path_offset(fdt, "/cpus"); if (cpus_offset < 0) { cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus"); if (cpus_offset) { _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); } } _FDT(cpus_offset); return cpus_offset; } /* * The PowerNV cores (and threads) need to use real HW ids and not an * incremental index like it has been done on other platforms. This HW * id is stored in the CPU PIR, it is used to create cpu nodes in the * device tree, used in XSCOM to address cores and in interrupt * servers. */ static void powernv_create_core_node(PnvChip *chip, PnvCore *pc, void *fdt) { CPUState *cs = CPU(DEVICE(pc->threads)); DeviceClass *dc = DEVICE_GET_CLASS(cs); PowerPCCPU *cpu = POWERPC_CPU(cs); int smt_threads = CPU_CORE(pc)->nr_threads; CPUPPCState *env = &cpu->env; PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); uint32_t servers_prop[smt_threads]; int i; uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 0xffffffff, 0xffffffff}; uint32_t tbfreq = PNV_TIMEBASE_FREQ; uint32_t cpufreq = 1000000000; uint32_t page_sizes_prop[64]; size_t page_sizes_prop_size; const uint8_t pa_features[] = { 24, 0, 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; int offset; char *nodename; int cpus_offset = get_cpus_node(fdt); nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir); offset = fdt_add_subnode(fdt, cpus_offset, nodename); _FDT(offset); g_free(nodename); _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id))); _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir))); _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir))); _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", env->dcache_line_size))); _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", env->dcache_line_size))); _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", env->icache_line_size))); _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", env->icache_line_size))); if (pcc->l1_dcache_size) { _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", pcc->l1_dcache_size))); } else { error_report("Warning: Unknown L1 dcache size for cpu"); } if (pcc->l1_icache_size) { _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", pcc->l1_icache_size))); } else { error_report("Warning: Unknown L1 icache size for cpu"); } _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr))); _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); if (env->spr_cb[SPR_PURR].oea_read) { _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); } if (env->mmu_model & POWERPC_MMU_1TSEG) { _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", segs, sizeof(segs)))); } /* Advertise VMX/VSX (vector extensions) if available * 0 / no property == no vector extensions * 1 == VMX / Altivec available * 2 == VSX available */ if (env->insns_flags & PPC_ALTIVEC) { uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); } /* Advertise DFP (Decimal Floating Point) if available * 0 / no property == no DFP * 1 == DFP available */ if (env->insns_flags2 & PPC2_DFP) { _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); } page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop, sizeof(page_sizes_prop)); if (page_sizes_prop_size) { _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", page_sizes_prop, page_sizes_prop_size))); } _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, sizeof(pa_features)))); /* Build interrupt servers properties */ for (i = 0; i < smt_threads; i++) { servers_prop[i] = cpu_to_be32(pc->pir + i); } _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", servers_prop, sizeof(servers_prop)))); } static void powernv_populate_chip(PnvChip *chip, void *fdt) { PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); char *typename = pnv_core_typename(pcc->cpu_model); size_t typesize = object_type_get_instance_size(typename); int i; pnv_xscom_populate(chip, fdt, 0); for (i = 0; i < chip->nr_cores; i++) { PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize); powernv_create_core_node(chip, pnv_core, fdt); } if (chip->ram_size) { powernv_populate_memory_node(fdt, chip->chip_id, chip->ram_start, chip->ram_size); } g_free(typename); } static void *powernv_create_fdt(MachineState *machine) { const char plat_compat[] = "qemu,powernv\0ibm,powernv"; PnvMachineState *pnv = POWERNV_MACHINE(machine); void *fdt; char *buf; int off; int i; fdt = g_malloc0(FDT_MAX_SIZE); _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); /* Root node */ _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2))); _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2))); _FDT((fdt_setprop_string(fdt, 0, "model", "IBM PowerNV (emulated by qemu)"))); _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat, sizeof(plat_compat)))); buf = qemu_uuid_unparse_strdup(&qemu_uuid); _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf))); if (qemu_uuid_set) { _FDT((fdt_property_string(fdt, "system-id", buf))); } g_free(buf); off = fdt_add_subnode(fdt, 0, "chosen"); if (machine->kernel_cmdline) { _FDT((fdt_setprop_string(fdt, off, "bootargs", machine->kernel_cmdline))); } if (pnv->initrd_size) { uint32_t start_prop = cpu_to_be32(pnv->initrd_base); uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size); _FDT((fdt_setprop(fdt, off, "linux,initrd-start", &start_prop, sizeof(start_prop)))); _FDT((fdt_setprop(fdt, off, "linux,initrd-end", &end_prop, sizeof(end_prop)))); } /* Populate device tree for each chip */ for (i = 0; i < pnv->num_chips; i++) { powernv_populate_chip(pnv->chips[i], fdt); } return fdt; } static void ppc_powernv_reset(void) { MachineState *machine = MACHINE(qdev_get_machine()); void *fdt; qemu_devices_reset(); fdt = powernv_create_fdt(machine); /* Pack resulting tree */ _FDT((fdt_pack(fdt))); cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt)); } /* If we don't use the built-in LPC interrupt deserializer, we need * to provide a set of qirqs for the ISA bus or things will go bad. * * Most machines using pre-Naples chips (without said deserializer) * have a CPLD that will collect the SerIRQ and shoot them as a * single level interrupt to the P8 chip. So let's setup a hook * for doing just that. * * Note: The actual interrupt input isn't emulated yet, this will * come with the PSI bridge model. */ static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level) { /* We don't yet emulate the PSI bridge which provides the external * interrupt, so just drop interrupts on the floor */ } static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level) { /* XXX TODO */ } static ISABus *pnv_isa_create(PnvChip *chip) { PnvLpcController *lpc = &chip->lpc; ISABus *isa_bus; qemu_irq *irqs; PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); /* let isa_bus_new() create its own bridge on SysBus otherwise * devices speficied on the command line won't find the bus and * will fail to create. */ isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, &error_fatal); /* Not all variants have a working serial irq decoder. If not, * handling of LPC interrupts becomes a platform issue (some * platforms have a CPLD to do it). */ if (pcc->chip_type == PNV_CHIP_POWER8NVL) { irqs = qemu_allocate_irqs(pnv_lpc_isa_irq_handler, chip, ISA_NUM_IRQS); } else { irqs = qemu_allocate_irqs(pnv_lpc_isa_irq_handler_cpld, chip, ISA_NUM_IRQS); } isa_bus_irqs(isa_bus, irqs); return isa_bus; } static void ppc_powernv_init(MachineState *machine) { PnvMachineState *pnv = POWERNV_MACHINE(machine); MemoryRegion *ram; char *fw_filename; long fw_size; int i; char *chip_typename; /* allocate RAM */ if (machine->ram_size < (1 * G_BYTE)) { error_report("Warning: skiboot may not work with < 1GB of RAM"); } ram = g_new(MemoryRegion, 1); memory_region_allocate_system_memory(ram, NULL, "ppc_powernv.ram", machine->ram_size); memory_region_add_subregion(get_system_memory(), 0, ram); /* load skiboot firmware */ if (bios_name == NULL) { bios_name = FW_FILE_NAME; } fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE); if (fw_size < 0) { hw_error("qemu: could not load OPAL '%s'\n", fw_filename); exit(1); } g_free(fw_filename); /* load kernel */ if (machine->kernel_filename) { long kernel_size; kernel_size = load_image_targphys(machine->kernel_filename, KERNEL_LOAD_ADDR, 0x2000000); if (kernel_size < 0) { hw_error("qemu: could not load kernel'%s'\n", machine->kernel_filename); exit(1); } } /* load initrd */ if (machine->initrd_filename) { pnv->initrd_base = INITRD_LOAD_ADDR; pnv->initrd_size = load_image_targphys(machine->initrd_filename, pnv->initrd_base, 0x10000000); /* 128MB max */ if (pnv->initrd_size < 0) { error_report("qemu: could not load initial ram disk '%s'", machine->initrd_filename); exit(1); } } /* We need some cpu model to instantiate the PnvChip class */ if (machine->cpu_model == NULL) { machine->cpu_model = "POWER8"; } /* Create the processor chips */ chip_typename = g_strdup_printf(TYPE_PNV_CHIP "-%s", machine->cpu_model); if (!object_class_by_name(chip_typename)) { error_report("qemu: invalid CPU model '%s' for %s machine", machine->cpu_model, MACHINE_GET_CLASS(machine)->name); exit(1); } pnv->chips = g_new0(PnvChip *, pnv->num_chips); for (i = 0; i < pnv->num_chips; i++) { char chip_name[32]; Object *chip = object_new(chip_typename); pnv->chips[i] = PNV_CHIP(chip); /* TODO: put all the memory in one node on chip 0 until we find a * way to specify different ranges for each chip */ if (i == 0) { object_property_set_int(chip, machine->ram_size, "ram-size", &error_fatal); } snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i)); object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal); object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id", &error_fatal); object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal); object_property_set_bool(chip, true, "realized", &error_fatal); } g_free(chip_typename); /* Instantiate ISA bus on chip 0 */ pnv->isa_bus = pnv_isa_create(pnv->chips[0]); /* Create serial port */ serial_hds_isa_init(pnv->isa_bus, 0, MAX_SERIAL_PORTS); /* Create an RTC ISA device too */ rtc_init(pnv->isa_bus, 2000, NULL); } /* * 0:21 Reserved - Read as zeros * 22:24 Chip ID * 25:28 Core number * 29:31 Thread ID */ static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id) { return (chip->chip_id << 7) | (core_id << 3); } /* * 0:48 Reserved - Read as zeroes * 49:52 Node ID * 53:55 Chip ID * 56 Reserved - Read as zero * 57:61 Core number * 62:63 Thread ID * * We only care about the lower bits. uint32_t is fine for the moment. */ static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id) { return (chip->chip_id << 8) | (core_id << 2); } /* Allowed core identifiers on a POWER8 Processor Chip : * * * EX1 - Venice only * EX2 - Venice only * EX3 - Venice only * EX4 * EX5 * EX6 * * EX9 - Venice only * EX10 - Venice only * EX11 - Venice only * EX12 * EX13 * EX14 * */ #define POWER8E_CORE_MASK (0x7070ull) #define POWER8_CORE_MASK (0x7e7eull) /* * POWER9 has 24 cores, ids starting at 0x20 */ #define POWER9_CORE_MASK (0xffffff00000000ull) static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvChipClass *k = PNV_CHIP_CLASS(klass); k->cpu_model = "POWER8E"; k->chip_type = PNV_CHIP_POWER8E; k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */ k->cores_mask = POWER8E_CORE_MASK; k->core_pir = pnv_chip_core_pir_p8; k->xscom_base = 0x003fc0000000000ull; k->xscom_core_base = 0x10000000ull; dc->desc = "PowerNV Chip POWER8E"; } static const TypeInfo pnv_chip_power8e_info = { .name = TYPE_PNV_CHIP_POWER8E, .parent = TYPE_PNV_CHIP, .instance_size = sizeof(PnvChip), .class_init = pnv_chip_power8e_class_init, }; static void pnv_chip_power8_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvChipClass *k = PNV_CHIP_CLASS(klass); k->cpu_model = "POWER8"; k->chip_type = PNV_CHIP_POWER8; k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */ k->cores_mask = POWER8_CORE_MASK; k->core_pir = pnv_chip_core_pir_p8; k->xscom_base = 0x003fc0000000000ull; k->xscom_core_base = 0x10000000ull; dc->desc = "PowerNV Chip POWER8"; } static const TypeInfo pnv_chip_power8_info = { .name = TYPE_PNV_CHIP_POWER8, .parent = TYPE_PNV_CHIP, .instance_size = sizeof(PnvChip), .class_init = pnv_chip_power8_class_init, }; static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvChipClass *k = PNV_CHIP_CLASS(klass); k->cpu_model = "POWER8NVL"; k->chip_type = PNV_CHIP_POWER8NVL; k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */ k->cores_mask = POWER8_CORE_MASK; k->core_pir = pnv_chip_core_pir_p8; k->xscom_base = 0x003fc0000000000ull; k->xscom_core_base = 0x10000000ull; dc->desc = "PowerNV Chip POWER8NVL"; } static const TypeInfo pnv_chip_power8nvl_info = { .name = TYPE_PNV_CHIP_POWER8NVL, .parent = TYPE_PNV_CHIP, .instance_size = sizeof(PnvChip), .class_init = pnv_chip_power8nvl_class_init, }; static void pnv_chip_power9_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvChipClass *k = PNV_CHIP_CLASS(klass); k->cpu_model = "POWER9"; k->chip_type = PNV_CHIP_POWER9; k->chip_cfam_id = 0x100d104980000000ull; /* P9 Nimbus DD1.0 */ k->cores_mask = POWER9_CORE_MASK; k->core_pir = pnv_chip_core_pir_p9; k->xscom_base = 0x00603fc00000000ull; k->xscom_core_base = 0x0ull; dc->desc = "PowerNV Chip POWER9"; } static const TypeInfo pnv_chip_power9_info = { .name = TYPE_PNV_CHIP_POWER9, .parent = TYPE_PNV_CHIP, .instance_size = sizeof(PnvChip), .class_init = pnv_chip_power9_class_init, }; static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp) { PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); int cores_max; /* * No custom mask for this chip, let's use the default one from * * the chip class */ if (!chip->cores_mask) { chip->cores_mask = pcc->cores_mask; } /* filter alien core ids ! some are reserved */ if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) { error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !", chip->cores_mask); return; } chip->cores_mask &= pcc->cores_mask; /* now that we have a sane layout, let check the number of cores */ cores_max = ctpop64(chip->cores_mask); if (chip->nr_cores > cores_max) { error_setg(errp, "warning: too many cores for chip ! Limit is %d", cores_max); return; } } static void pnv_chip_init(Object *obj) { PnvChip *chip = PNV_CHIP(obj); PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); chip->xscom_base = pcc->xscom_base; object_initialize(&chip->lpc, sizeof(chip->lpc), TYPE_PNV_LPC); object_property_add_child(obj, "lpc", OBJECT(&chip->lpc), NULL); } static void pnv_chip_realize(DeviceState *dev, Error **errp) { PnvChip *chip = PNV_CHIP(dev); Error *error = NULL; PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); char *typename = pnv_core_typename(pcc->cpu_model); size_t typesize = object_type_get_instance_size(typename); int i, core_hwid; if (!object_class_by_name(typename)) { error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename); return; } /* XSCOM bridge */ pnv_xscom_realize(chip, &error); if (error) { error_propagate(errp, error); return; } sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip)); /* Cores */ pnv_chip_core_sanitize(chip, &error); if (error) { error_propagate(errp, error); return; } chip->cores = g_malloc0(typesize * chip->nr_cores); for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8) && (i < chip->nr_cores); core_hwid++) { char core_name[32]; void *pnv_core = chip->cores + i * typesize; if (!(chip->cores_mask & (1ull << core_hwid))) { continue; } object_initialize(pnv_core, typesize, typename); snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid); object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core), &error_fatal); object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads", &error_fatal); object_property_set_int(OBJECT(pnv_core), core_hwid, CPU_CORE_PROP_CORE_ID, &error_fatal); object_property_set_int(OBJECT(pnv_core), pcc->core_pir(chip, core_hwid), "pir", &error_fatal); object_property_set_bool(OBJECT(pnv_core), true, "realized", &error_fatal); object_unref(OBJECT(pnv_core)); /* Each core has an XSCOM MMIO region */ pnv_xscom_add_subregion(chip, PNV_XSCOM_EX_CORE_BASE(pcc->xscom_core_base, core_hwid), &PNV_CORE(pnv_core)->xscom_regs); i++; } g_free(typename); /* Create LPC controller */ object_property_set_bool(OBJECT(&chip->lpc), true, "realized", &error_fatal); pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip->lpc.xscom_regs); } static Property pnv_chip_properties[] = { DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0), DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0), DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0), DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1), DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0), DEFINE_PROP_END_OF_LIST(), }; static void pnv_chip_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = pnv_chip_realize; dc->props = pnv_chip_properties; dc->desc = "PowerNV Chip"; } static const TypeInfo pnv_chip_info = { .name = TYPE_PNV_CHIP, .parent = TYPE_SYS_BUS_DEVICE, .class_init = pnv_chip_class_init, .instance_init = pnv_chip_init, .class_size = sizeof(PnvChipClass), .abstract = true, }; static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { visit_type_uint32(v, name, &POWERNV_MACHINE(obj)->num_chips, errp); } static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PnvMachineState *pnv = POWERNV_MACHINE(obj); uint32_t num_chips; Error *local_err = NULL; visit_type_uint32(v, name, &num_chips, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* * TODO: should we decide on how many chips we can create based * on #cores and Venice vs. Murano vs. Naples chip type etc..., */ if (!is_power_of_2(num_chips) || num_chips > 4) { error_setg(errp, "invalid number of chips: '%d'", num_chips); return; } pnv->num_chips = num_chips; } static void powernv_machine_initfn(Object *obj) { PnvMachineState *pnv = POWERNV_MACHINE(obj); pnv->num_chips = 1; } static void powernv_machine_class_props_init(ObjectClass *oc) { object_class_property_add(oc, "num-chips", "uint32_t", pnv_get_num_chips, pnv_set_num_chips, NULL, NULL, NULL); object_class_property_set_description(oc, "num-chips", "Specifies the number of processor chips", NULL); } static void powernv_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "IBM PowerNV (Non-Virtualized)"; mc->init = ppc_powernv_init; mc->reset = ppc_powernv_reset; mc->max_cpus = MAX_CPUS; mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for * storage */ mc->no_parallel = 1; mc->default_boot_order = NULL; mc->default_ram_size = 1 * G_BYTE; powernv_machine_class_props_init(oc); } static const TypeInfo powernv_machine_info = { .name = TYPE_POWERNV_MACHINE, .parent = TYPE_MACHINE, .instance_size = sizeof(PnvMachineState), .instance_init = powernv_machine_initfn, .class_init = powernv_machine_class_init, }; static void powernv_machine_register_types(void) { type_register_static(&powernv_machine_info); type_register_static(&pnv_chip_info); type_register_static(&pnv_chip_power8e_info); type_register_static(&pnv_chip_power8_info); type_register_static(&pnv_chip_power8nvl_info); type_register_static(&pnv_chip_power9_info); } type_init(powernv_machine_register_types)