/* * ARM gdb server stub: AArch64 specific functions. * * Copyright (c) 2013 SUSE LINUX Products GmbH * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/log.h" #include "cpu.h" #include "internals.h" #include "gdbstub/helpers.h" #include "gdbstub/commands.h" #include "tcg/mte_helper.h" #if defined(CONFIG_USER_ONLY) && defined(CONFIG_LINUX) #include #include "mte_user_helper.h" #endif int aarch64_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; if (n < 31) { /* Core integer register. */ return gdb_get_reg64(mem_buf, env->xregs[n]); } switch (n) { case 31: return gdb_get_reg64(mem_buf, env->xregs[31]); case 32: return gdb_get_reg64(mem_buf, env->pc); case 33: return gdb_get_reg32(mem_buf, pstate_read(env)); } /* Unknown register. */ return 0; } int aarch64_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; uint64_t tmp; tmp = ldq_p(mem_buf); if (n < 31) { /* Core integer register. */ env->xregs[n] = tmp; return 8; } switch (n) { case 31: env->xregs[31] = tmp; return 8; case 32: env->pc = tmp; return 8; case 33: /* CPSR */ pstate_write(env, tmp); return 4; } /* Unknown register. */ return 0; } int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; switch (reg) { case 0 ... 31: { /* 128 bit FP register - quads are in LE order */ uint64_t *q = aa64_vfp_qreg(env, reg); return gdb_get_reg128(buf, q[1], q[0]); } case 32: /* FPSR */ return gdb_get_reg32(buf, vfp_get_fpsr(env)); case 33: /* FPCR */ return gdb_get_reg32(buf, vfp_get_fpcr(env)); default: return 0; } } int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; switch (reg) { case 0 ... 31: /* 128 bit FP register */ { uint64_t *q = aa64_vfp_qreg(env, reg); q[0] = ldq_le_p(buf); q[1] = ldq_le_p(buf + 8); return 16; } case 32: /* FPSR */ vfp_set_fpsr(env, ldl_p(buf)); return 4; case 33: /* FPCR */ vfp_set_fpcr(env, ldl_p(buf)); return 4; default: return 0; } } int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; switch (reg) { /* The first 32 registers are the zregs */ case 0 ... 31: { int vq, len = 0; for (vq = 0; vq < cpu->sve_max_vq; vq++) { len += gdb_get_reg128(buf, env->vfp.zregs[reg].d[vq * 2 + 1], env->vfp.zregs[reg].d[vq * 2]); } return len; } case 32: return gdb_get_reg32(buf, vfp_get_fpsr(env)); case 33: return gdb_get_reg32(buf, vfp_get_fpcr(env)); /* then 16 predicates and the ffr */ case 34 ... 50: { int preg = reg - 34; int vq, len = 0; for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); } return len; } case 51: { /* * We report in Vector Granules (VG) which is 64bit in a Z reg * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. */ int vq = sve_vqm1_for_el(env, arm_current_el(env)) + 1; return gdb_get_reg64(buf, vq * 2); } default: /* gdbstub asked for something out our range */ qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); break; } return 0; } int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; /* The first 32 registers are the zregs */ switch (reg) { /* The first 32 registers are the zregs */ case 0 ... 31: { int vq, len = 0; uint64_t *p = (uint64_t *) buf; for (vq = 0; vq < cpu->sve_max_vq; vq++) { env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; env->vfp.zregs[reg].d[vq * 2] = *p++; len += 16; } return len; } case 32: vfp_set_fpsr(env, *(uint32_t *)buf); return 4; case 33: vfp_set_fpcr(env, *(uint32_t *)buf); return 4; case 34 ... 50: { int preg = reg - 34; int vq, len = 0; uint64_t *p = (uint64_t *) buf; for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { env->vfp.pregs[preg].p[vq / 4] = *p++; len += 8; } return len; } case 51: /* cannot set vg via gdbstub */ return 0; default: /* gdbstub asked for something out our range */ break; } return 0; } int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; switch (reg) { case 0: /* pauth_dmask */ case 1: /* pauth_cmask */ case 2: /* pauth_dmask_high */ case 3: /* pauth_cmask_high */ /* * Note that older versions of this feature only contained * pauth_{d,c}mask, for use with Linux user processes, and * thus exclusively in the low half of the address space. * * To support system mode, and to debug kernels, two new regs * were added to cover the high half of the address space. * For the purpose of pauth_ptr_mask, we can use any well-formed * address within the address space half -- here, 0 and -1. */ { bool is_data = !(reg & 1); bool is_high = reg & 2; ARMMMUIdx mmu_idx = arm_stage1_mmu_idx(env); ARMVAParameters param; param = aa64_va_parameters(env, -is_high, mmu_idx, is_data, false); return gdb_get_reg64(buf, pauth_ptr_mask(param)); } default: return 0; } } int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg) { /* All pseudo registers are read-only. */ return 0; } static void output_vector_union_type(GDBFeatureBuilder *builder, int reg_width, const char *name) { struct TypeSize { const char *gdb_type; short size; char sz, suffix; }; static const struct TypeSize vec_lanes[] = { /* quads */ { "uint128", 128, 'q', 'u' }, { "int128", 128, 'q', 's' }, /* 64 bit */ { "ieee_double", 64, 'd', 'f' }, { "uint64", 64, 'd', 'u' }, { "int64", 64, 'd', 's' }, /* 32 bit */ { "ieee_single", 32, 's', 'f' }, { "uint32", 32, 's', 'u' }, { "int32", 32, 's', 's' }, /* 16 bit */ { "ieee_half", 16, 'h', 'f' }, { "uint16", 16, 'h', 'u' }, { "int16", 16, 'h', 's' }, /* bytes */ { "uint8", 8, 'b', 'u' }, { "int8", 8, 'b', 's' }, }; static const char suf[] = { 'b', 'h', 's', 'd', 'q' }; int i, j; /* First define types and totals in a whole VL */ for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) { gdb_feature_builder_append_tag( builder, "", name, vec_lanes[i].sz, vec_lanes[i].suffix, vec_lanes[i].gdb_type, reg_width / vec_lanes[i].size); } /* * Now define a union for each size group containing unsigned and * signed and potentially float versions of each size from 128 to * 8 bits. */ for (i = 0; i < ARRAY_SIZE(suf); i++) { int bits = 8 << i; gdb_feature_builder_append_tag(builder, "", name, suf[i]); for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) { if (vec_lanes[j].size == bits) { gdb_feature_builder_append_tag( builder, "", vec_lanes[j].suffix, name, vec_lanes[j].sz, vec_lanes[j].suffix); } } gdb_feature_builder_append_tag(builder, ""); } /* And now the final union of unions */ gdb_feature_builder_append_tag(builder, "", name); for (i = ARRAY_SIZE(suf) - 1; i >= 0; i--) { gdb_feature_builder_append_tag(builder, "", suf[i], name, suf[i]); } gdb_feature_builder_append_tag(builder, ""); } GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cs, int base_reg) { ARMCPU *cpu = ARM_CPU(cs); int reg_width = cpu->sve_max_vq * 128; int pred_width = cpu->sve_max_vq * 16; GDBFeatureBuilder builder; char *name; int reg = 0; int i; gdb_feature_builder_init(&builder, &cpu->dyn_svereg_feature.desc, "org.gnu.gdb.aarch64.sve", "sve-registers.xml", base_reg); /* Create the vector union type. */ output_vector_union_type(&builder, reg_width, "svev"); /* Create the predicate vector type. */ gdb_feature_builder_append_tag( &builder, "", pred_width / 8); /* Define the vector registers. */ for (i = 0; i < 32; i++) { name = g_strdup_printf("z%d", i); gdb_feature_builder_append_reg(&builder, name, reg_width, reg++, "svev", NULL); } /* fpscr & status registers */ gdb_feature_builder_append_reg(&builder, "fpsr", 32, reg++, "int", "float"); gdb_feature_builder_append_reg(&builder, "fpcr", 32, reg++, "int", "float"); /* Define the predicate registers. */ for (i = 0; i < 16; i++) { name = g_strdup_printf("p%d", i); gdb_feature_builder_append_reg(&builder, name, pred_width, reg++, "svep", NULL); } gdb_feature_builder_append_reg(&builder, "ffr", pred_width, reg++, "svep", "vector"); /* Define the vector length pseudo-register. */ gdb_feature_builder_append_reg(&builder, "vg", 64, reg++, "int", NULL); gdb_feature_builder_end(&builder); return &cpu->dyn_svereg_feature.desc; } #ifdef CONFIG_USER_ONLY int aarch64_gdb_get_tag_ctl_reg(CPUState *cs, GByteArray *buf, int reg) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; uint64_t tcf0; assert(reg == 0); tcf0 = extract64(env->cp15.sctlr_el[1], 38, 2); return gdb_get_reg64(buf, tcf0); } int aarch64_gdb_set_tag_ctl_reg(CPUState *cs, uint8_t *buf, int reg) { #if defined(CONFIG_LINUX) ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; uint8_t tcf; assert(reg == 0); tcf = *buf << PR_MTE_TCF_SHIFT; if (!tcf) { return 0; } /* * 'tag_ctl' register is actually a "pseudo-register" provided by GDB to * expose options regarding the type of MTE fault that can be controlled at * runtime. */ arm_set_mte_tcf0(env, tcf); return 1; #else return 0; #endif } #endif /* CONFIG_USER_ONLY */ #ifdef CONFIG_TCG static void handle_q_memtag(GArray *params, void *user_ctx) { ARMCPU *cpu = ARM_CPU(user_ctx); CPUARMState *env = &cpu->env; uint32_t mmu_index; uint64_t addr = gdb_get_cmd_param(params, 0)->val_ull; uint64_t len = gdb_get_cmd_param(params, 1)->val_ul; int type = gdb_get_cmd_param(params, 2)->val_ul; uint8_t *tags; uint8_t addr_tag; g_autoptr(GString) str_buf = g_string_new(NULL); /* * GDB does not query multiple tags for a memory range on remote targets, so * that's not supported either by gdbstub. */ if (len != 1) { gdb_put_packet("E02"); } /* GDB never queries a tag different from an allocation tag (type 1). */ if (type != 1) { gdb_put_packet("E03"); } /* Find out the current translation regime for probe. */ mmu_index = cpu_mmu_index(env_cpu(env), false); /* Note that tags are packed here (2 tags packed in one byte). */ tags = allocation_tag_mem_probe(env, mmu_index, addr, MMU_DATA_LOAD, 1, MMU_DATA_LOAD, true, 0); if (!tags) { /* Address is not in a tagged region. */ gdb_put_packet("E04"); return; } /* Unpack tag from byte. */ addr_tag = load_tag1(addr, tags); g_string_printf(str_buf, "m%.2x", addr_tag); gdb_put_packet(str_buf->str); } static void handle_q_isaddresstagged(GArray *params, void *user_ctx) { ARMCPU *cpu = ARM_CPU(user_ctx); CPUARMState *env = &cpu->env; uint32_t mmu_index; uint64_t addr = gdb_get_cmd_param(params, 0)->val_ull; uint8_t *tags; const char *reply; /* Find out the current translation regime for probe. */ mmu_index = cpu_mmu_index(env_cpu(env), false); tags = allocation_tag_mem_probe(env, mmu_index, addr, MMU_DATA_LOAD, 1, MMU_DATA_LOAD, true, 0); reply = tags ? "01" : "00"; gdb_put_packet(reply); } static void handle_Q_memtag(GArray *params, void *user_ctx) { ARMCPU *cpu = ARM_CPU(user_ctx); CPUARMState *env = &cpu->env; uint32_t mmu_index; uint64_t start_addr = gdb_get_cmd_param(params, 0)->val_ull; uint64_t len = gdb_get_cmd_param(params, 1)->val_ul; int type = gdb_get_cmd_param(params, 2)->val_ul; char const *new_tags_str = gdb_get_cmd_param(params, 3)->data; uint64_t end_addr; int num_new_tags; uint8_t *tags; g_autoptr(GByteArray) new_tags = g_byte_array_new(); /* * Only the allocation tag (i.e. type 1) can be set at the stub side. */ if (type != 1) { gdb_put_packet("E02"); return; } end_addr = start_addr + (len - 1); /* 'len' is always >= 1 */ /* Check if request's memory range does not cross page boundaries. */ if ((start_addr ^ end_addr) & TARGET_PAGE_MASK) { gdb_put_packet("E03"); return; } /* * Get all tags in the page starting from the tag of the start address. * Note that there are two tags packed into a single byte here. */ /* Find out the current translation regime for probe. */ mmu_index = cpu_mmu_index(env_cpu(env), false); tags = allocation_tag_mem_probe(env, mmu_index, start_addr, MMU_DATA_STORE, 1, MMU_DATA_STORE, true, 0); if (!tags) { /* Address is not in a tagged region. */ gdb_put_packet("E04"); return; } /* Convert tags provided by GDB, 2 hex digits per tag. */ num_new_tags = strlen(new_tags_str) / 2; gdb_hextomem(new_tags, new_tags_str, num_new_tags); uint64_t address = start_addr; int new_tag_index = 0; while (address <= end_addr) { uint8_t new_tag; int packed_index; /* * Find packed tag index from unpacked tag index. There are two tags * in one packed index (one tag per nibble). */ packed_index = new_tag_index / 2; new_tag = new_tags->data[new_tag_index % num_new_tags]; store_tag1(address, tags + packed_index, new_tag); address += TAG_GRANULE; new_tag_index++; } gdb_put_packet("OK"); } enum Command { qMemTags, qIsAddressTagged, QMemTags, NUM_CMDS }; static const GdbCmdParseEntry cmd_handler_table[NUM_CMDS] = { [qMemTags] = { .handler = handle_q_memtag, .cmd_startswith = true, .cmd = "MemTags:", .schema = "L,l:l0", .need_cpu_context = true }, [qIsAddressTagged] = { .handler = handle_q_isaddresstagged, .cmd_startswith = true, .cmd = "IsAddressTagged:", .schema = "L0", .need_cpu_context = true }, [QMemTags] = { .handler = handle_Q_memtag, .cmd_startswith = true, .cmd = "MemTags:", .schema = "L,l:l:s0", .need_cpu_context = true }, }; #endif /* CONFIG_TCG */ void aarch64_cpu_register_gdb_commands(ARMCPU *cpu, GString *qsupported, GPtrArray *qtable, GPtrArray *stable) { /* MTE */ #ifdef CONFIG_TCG if (cpu_isar_feature(aa64_mte, cpu)) { g_string_append(qsupported, ";memory-tagging+"); g_ptr_array_add(qtable, (gpointer) &cmd_handler_table[qMemTags]); g_ptr_array_add(qtable, (gpointer) &cmd_handler_table[qIsAddressTagged]); g_ptr_array_add(stable, (gpointer) &cmd_handler_table[QMemTags]); } #endif }