/* * High Precision Event Timer emulation * * Copyright (c) 2007 Alexander Graf * Copyright (c) 2008 IBM Corporation * * Authors: Beth Kon * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . * * ***************************************************************** * * This driver attempts to emulate an HPET device in software. */ #include "hw/hw.h" #include "hw/i386/pc.h" #include "ui/console.h" #include "qemu/timer.h" #include "hw/timer/hpet.h" #include "hw/sysbus.h" #include "hw/timer/mc146818rtc.h" #include "hw/timer/i8254.h" //#define HPET_DEBUG #ifdef HPET_DEBUG #define DPRINTF printf #else #define DPRINTF(...) #endif #define HPET_MSI_SUPPORT 0 #define HPET(obj) OBJECT_CHECK(HPETState, (obj), TYPE_HPET) struct HPETState; typedef struct HPETTimer { /* timers */ uint8_t tn; /*timer number*/ QEMUTimer *qemu_timer; struct HPETState *state; /* Memory-mapped, software visible timer registers */ uint64_t config; /* configuration/cap */ uint64_t cmp; /* comparator */ uint64_t fsb; /* FSB route */ /* Hidden register state */ uint64_t period; /* Last value written to comparator */ uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit * mode. Next pop will be actual timer expiration. */ } HPETTimer; typedef struct HPETState { /*< private >*/ SysBusDevice parent_obj; /*< public >*/ MemoryRegion iomem; uint64_t hpet_offset; qemu_irq irqs[HPET_NUM_IRQ_ROUTES]; uint32_t flags; uint8_t rtc_irq_level; qemu_irq pit_enabled; uint8_t num_timers; uint32_t intcap; HPETTimer timer[HPET_MAX_TIMERS]; /* Memory-mapped, software visible registers */ uint64_t capability; /* capabilities */ uint64_t config; /* configuration */ uint64_t isr; /* interrupt status reg */ uint64_t hpet_counter; /* main counter */ uint8_t hpet_id; /* instance id */ } HPETState; static uint32_t hpet_in_legacy_mode(HPETState *s) { return s->config & HPET_CFG_LEGACY; } static uint32_t timer_int_route(struct HPETTimer *timer) { return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT; } static uint32_t timer_fsb_route(HPETTimer *t) { return t->config & HPET_TN_FSB_ENABLE; } static uint32_t hpet_enabled(HPETState *s) { return s->config & HPET_CFG_ENABLE; } static uint32_t timer_is_periodic(HPETTimer *t) { return t->config & HPET_TN_PERIODIC; } static uint32_t timer_enabled(HPETTimer *t) { return t->config & HPET_TN_ENABLE; } static uint32_t hpet_time_after(uint64_t a, uint64_t b) { return ((int32_t)(b) - (int32_t)(a) < 0); } static uint32_t hpet_time_after64(uint64_t a, uint64_t b) { return ((int64_t)(b) - (int64_t)(a) < 0); } static uint64_t ticks_to_ns(uint64_t value) { return (muldiv64(value, HPET_CLK_PERIOD, FS_PER_NS)); } static uint64_t ns_to_ticks(uint64_t value) { return (muldiv64(value, FS_PER_NS, HPET_CLK_PERIOD)); } static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask) { new &= mask; new |= old & ~mask; return new; } static int activating_bit(uint64_t old, uint64_t new, uint64_t mask) { return (!(old & mask) && (new & mask)); } static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask) { return ((old & mask) && !(new & mask)); } static uint64_t hpet_get_ticks(HPETState *s) { return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset); } /* * calculate diff between comparator value and current ticks */ static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current) { if (t->config & HPET_TN_32BIT) { uint32_t diff, cmp; cmp = (uint32_t)t->cmp; diff = cmp - (uint32_t)current; diff = (int32_t)diff > 0 ? diff : (uint32_t)1; return (uint64_t)diff; } else { uint64_t diff, cmp; cmp = t->cmp; diff = cmp - current; diff = (int64_t)diff > 0 ? diff : (uint64_t)1; return diff; } } static void update_irq(struct HPETTimer *timer, int set) { uint64_t mask; HPETState *s; int route; if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) { /* if LegacyReplacementRoute bit is set, HPET specification requires * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC, * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC. */ route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ; } else { route = timer_int_route(timer); } s = timer->state; mask = 1 << timer->tn; if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) { s->isr &= ~mask; if (!timer_fsb_route(timer)) { /* fold the ICH PIRQ# pin's internal inversion logic into hpet */ if (route >= ISA_NUM_IRQS) { qemu_irq_raise(s->irqs[route]); } else { qemu_irq_lower(s->irqs[route]); } } } else if (timer_fsb_route(timer)) { stl_le_phys(&address_space_memory, timer->fsb >> 32, timer->fsb & 0xffffffff); } else if (timer->config & HPET_TN_TYPE_LEVEL) { s->isr |= mask; /* fold the ICH PIRQ# pin's internal inversion logic into hpet */ if (route >= ISA_NUM_IRQS) { qemu_irq_lower(s->irqs[route]); } else { qemu_irq_raise(s->irqs[route]); } } else { s->isr &= ~mask; qemu_irq_pulse(s->irqs[route]); } } static void hpet_pre_save(void *opaque) { HPETState *s = opaque; /* save current counter value */ s->hpet_counter = hpet_get_ticks(s); } static int hpet_pre_load(void *opaque) { HPETState *s = opaque; /* version 1 only supports 3, later versions will load the actual value */ s->num_timers = HPET_MIN_TIMERS; return 0; } static bool hpet_validate_num_timers(void *opaque, int version_id) { HPETState *s = opaque; if (s->num_timers < HPET_MIN_TIMERS) { return false; } else if (s->num_timers > HPET_MAX_TIMERS) { return false; } return true; } static int hpet_post_load(void *opaque, int version_id) { HPETState *s = opaque; /* Recalculate the offset between the main counter and guest time */ s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); /* Push number of timers into capability returned via HPET_ID */ s->capability &= ~HPET_ID_NUM_TIM_MASK; s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT; hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability; /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */ s->flags &= ~(1 << HPET_MSI_SUPPORT); if (s->timer[0].config & HPET_TN_FSB_CAP) { s->flags |= 1 << HPET_MSI_SUPPORT; } return 0; } static bool hpet_rtc_irq_level_needed(void *opaque) { HPETState *s = opaque; return s->rtc_irq_level != 0; } static const VMStateDescription vmstate_hpet_rtc_irq_level = { .name = "hpet/rtc_irq_level", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(rtc_irq_level, HPETState), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_hpet_timer = { .name = "hpet_timer", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(tn, HPETTimer), VMSTATE_UINT64(config, HPETTimer), VMSTATE_UINT64(cmp, HPETTimer), VMSTATE_UINT64(fsb, HPETTimer), VMSTATE_UINT64(period, HPETTimer), VMSTATE_UINT8(wrap_flag, HPETTimer), VMSTATE_TIMER(qemu_timer, HPETTimer), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_hpet = { .name = "hpet", .version_id = 2, .minimum_version_id = 1, .pre_save = hpet_pre_save, .pre_load = hpet_pre_load, .post_load = hpet_post_load, .fields = (VMStateField[]) { VMSTATE_UINT64(config, HPETState), VMSTATE_UINT64(isr, HPETState), VMSTATE_UINT64(hpet_counter, HPETState), VMSTATE_UINT8_V(num_timers, HPETState, 2), VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers), VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0, vmstate_hpet_timer, HPETTimer), VMSTATE_END_OF_LIST() }, .subsections = (VMStateSubsection[]) { { .vmsd = &vmstate_hpet_rtc_irq_level, .needed = hpet_rtc_irq_level_needed, }, { /* empty */ } } }; /* * timer expiration callback */ static void hpet_timer(void *opaque) { HPETTimer *t = opaque; uint64_t diff; uint64_t period = t->period; uint64_t cur_tick = hpet_get_ticks(t->state); if (timer_is_periodic(t) && period != 0) { if (t->config & HPET_TN_32BIT) { while (hpet_time_after(cur_tick, t->cmp)) { t->cmp = (uint32_t)(t->cmp + t->period); } } else { while (hpet_time_after64(cur_tick, t->cmp)) { t->cmp += period; } } diff = hpet_calculate_diff(t, cur_tick); timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff)); } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) { if (t->wrap_flag) { diff = hpet_calculate_diff(t, cur_tick); timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff)); t->wrap_flag = 0; } } update_irq(t, 1); } static void hpet_set_timer(HPETTimer *t) { uint64_t diff; uint32_t wrap_diff; /* how many ticks until we wrap? */ uint64_t cur_tick = hpet_get_ticks(t->state); /* whenever new timer is being set up, make sure wrap_flag is 0 */ t->wrap_flag = 0; diff = hpet_calculate_diff(t, cur_tick); /* hpet spec says in one-shot 32-bit mode, generate an interrupt when * counter wraps in addition to an interrupt with comparator match. */ if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) { wrap_diff = 0xffffffff - (uint32_t)cur_tick; if (wrap_diff < (uint32_t)diff) { diff = wrap_diff; t->wrap_flag = 1; } } timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff)); } static void hpet_del_timer(HPETTimer *t) { timer_del(t->qemu_timer); update_irq(t, 0); } #ifdef HPET_DEBUG static uint32_t hpet_ram_readb(void *opaque, hwaddr addr) { printf("qemu: hpet_read b at %" PRIx64 "\n", addr); return 0; } static uint32_t hpet_ram_readw(void *opaque, hwaddr addr) { printf("qemu: hpet_read w at %" PRIx64 "\n", addr); return 0; } #endif static uint64_t hpet_ram_read(void *opaque, hwaddr addr, unsigned size) { HPETState *s = opaque; uint64_t cur_tick, index; DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr); index = addr; /*address range of all TN regs*/ if (index >= 0x100 && index <= 0x3ff) { uint8_t timer_id = (addr - 0x100) / 0x20; HPETTimer *timer = &s->timer[timer_id]; if (timer_id > s->num_timers) { DPRINTF("qemu: timer id out of range\n"); return 0; } switch ((addr - 0x100) % 0x20) { case HPET_TN_CFG: return timer->config; case HPET_TN_CFG + 4: // Interrupt capabilities return timer->config >> 32; case HPET_TN_CMP: // comparator register return timer->cmp; case HPET_TN_CMP + 4: return timer->cmp >> 32; case HPET_TN_ROUTE: return timer->fsb; case HPET_TN_ROUTE + 4: return timer->fsb >> 32; default: DPRINTF("qemu: invalid hpet_ram_readl\n"); break; } } else { switch (index) { case HPET_ID: return s->capability; case HPET_PERIOD: return s->capability >> 32; case HPET_CFG: return s->config; case HPET_CFG + 4: DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n"); return 0; case HPET_COUNTER: if (hpet_enabled(s)) { cur_tick = hpet_get_ticks(s); } else { cur_tick = s->hpet_counter; } DPRINTF("qemu: reading counter = %" PRIx64 "\n", cur_tick); return cur_tick; case HPET_COUNTER + 4: if (hpet_enabled(s)) { cur_tick = hpet_get_ticks(s); } else { cur_tick = s->hpet_counter; } DPRINTF("qemu: reading counter + 4 = %" PRIx64 "\n", cur_tick); return cur_tick >> 32; case HPET_STATUS: return s->isr; default: DPRINTF("qemu: invalid hpet_ram_readl\n"); break; } } return 0; } static void hpet_ram_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { int i; HPETState *s = opaque; uint64_t old_val, new_val, val, index; DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value); index = addr; old_val = hpet_ram_read(opaque, addr, 4); new_val = value; /*address range of all TN regs*/ if (index >= 0x100 && index <= 0x3ff) { uint8_t timer_id = (addr - 0x100) / 0x20; HPETTimer *timer = &s->timer[timer_id]; DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id); if (timer_id > s->num_timers) { DPRINTF("qemu: timer id out of range\n"); return; } switch ((addr - 0x100) % 0x20) { case HPET_TN_CFG: DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n"); if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) { update_irq(timer, 0); } val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK); timer->config = (timer->config & 0xffffffff00000000ULL) | val; if (new_val & HPET_TN_32BIT) { timer->cmp = (uint32_t)timer->cmp; timer->period = (uint32_t)timer->period; } if (activating_bit(old_val, new_val, HPET_TN_ENABLE) && hpet_enabled(s)) { hpet_set_timer(timer); } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) { hpet_del_timer(timer); } break; case HPET_TN_CFG + 4: // Interrupt capabilities DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n"); break; case HPET_TN_CMP: // comparator register DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n"); if (timer->config & HPET_TN_32BIT) { new_val = (uint32_t)new_val; } if (!timer_is_periodic(timer) || (timer->config & HPET_TN_SETVAL)) { timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val; } if (timer_is_periodic(timer)) { /* * FIXME: Clamp period to reasonable min value? * Clamp period to reasonable max value */ new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1; timer->period = (timer->period & 0xffffffff00000000ULL) | new_val; } timer->config &= ~HPET_TN_SETVAL; if (hpet_enabled(s)) { hpet_set_timer(timer); } break; case HPET_TN_CMP + 4: // comparator register high order DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n"); if (!timer_is_periodic(timer) || (timer->config & HPET_TN_SETVAL)) { timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32; } else { /* * FIXME: Clamp period to reasonable min value? * Clamp period to reasonable max value */ new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1; timer->period = (timer->period & 0xffffffffULL) | new_val << 32; } timer->config &= ~HPET_TN_SETVAL; if (hpet_enabled(s)) { hpet_set_timer(timer); } break; case HPET_TN_ROUTE: timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val; break; case HPET_TN_ROUTE + 4: timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff); break; default: DPRINTF("qemu: invalid hpet_ram_writel\n"); break; } return; } else { switch (index) { case HPET_ID: return; case HPET_CFG: val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK); s->config = (s->config & 0xffffffff00000000ULL) | val; if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) { /* Enable main counter and interrupt generation. */ s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); for (i = 0; i < s->num_timers; i++) { if ((&s->timer[i])->cmp != ~0ULL) { hpet_set_timer(&s->timer[i]); } } } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) { /* Halt main counter and disable interrupt generation. */ s->hpet_counter = hpet_get_ticks(s); for (i = 0; i < s->num_timers; i++) { hpet_del_timer(&s->timer[i]); } } /* i8254 and RTC output pins are disabled * when HPET is in legacy mode */ if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) { qemu_set_irq(s->pit_enabled, 0); qemu_irq_lower(s->irqs[0]); qemu_irq_lower(s->irqs[RTC_ISA_IRQ]); } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) { qemu_irq_lower(s->irqs[0]); qemu_set_irq(s->pit_enabled, 1); qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level); } break; case HPET_CFG + 4: DPRINTF("qemu: invalid HPET_CFG+4 write\n"); break; case HPET_STATUS: val = new_val & s->isr; for (i = 0; i < s->num_timers; i++) { if (val & (1 << i)) { update_irq(&s->timer[i], 0); } } break; case HPET_COUNTER: if (hpet_enabled(s)) { DPRINTF("qemu: Writing counter while HPET enabled!\n"); } s->hpet_counter = (s->hpet_counter & 0xffffffff00000000ULL) | value; DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n", value, s->hpet_counter); break; case HPET_COUNTER + 4: if (hpet_enabled(s)) { DPRINTF("qemu: Writing counter while HPET enabled!\n"); } s->hpet_counter = (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32); DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n", value, s->hpet_counter); break; default: DPRINTF("qemu: invalid hpet_ram_writel\n"); break; } } } static const MemoryRegionOps hpet_ram_ops = { .read = hpet_ram_read, .write = hpet_ram_write, .valid = { .min_access_size = 4, .max_access_size = 4, }, .endianness = DEVICE_NATIVE_ENDIAN, }; static void hpet_reset(DeviceState *d) { HPETState *s = HPET(d); SysBusDevice *sbd = SYS_BUS_DEVICE(d); int i; for (i = 0; i < s->num_timers; i++) { HPETTimer *timer = &s->timer[i]; hpet_del_timer(timer); timer->cmp = ~0ULL; timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP; if (s->flags & (1 << HPET_MSI_SUPPORT)) { timer->config |= HPET_TN_FSB_CAP; } /* advertise availability of ioapic int */ timer->config |= (uint64_t)s->intcap << 32; timer->period = 0ULL; timer->wrap_flag = 0; } qemu_set_irq(s->pit_enabled, 1); s->hpet_counter = 0ULL; s->hpet_offset = 0ULL; s->config = 0ULL; hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability; hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr; /* to document that the RTC lowers its output on reset as well */ s->rtc_irq_level = 0; } static void hpet_handle_legacy_irq(void *opaque, int n, int level) { HPETState *s = HPET(opaque); if (n == HPET_LEGACY_PIT_INT) { if (!hpet_in_legacy_mode(s)) { qemu_set_irq(s->irqs[0], level); } } else { s->rtc_irq_level = level; if (!hpet_in_legacy_mode(s)) { qemu_set_irq(s->irqs[RTC_ISA_IRQ], level); } } } static void hpet_init(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); HPETState *s = HPET(obj); /* HPET Area */ memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", 0x400); sysbus_init_mmio(sbd, &s->iomem); } static void hpet_realize(DeviceState *dev, Error **errp) { SysBusDevice *sbd = SYS_BUS_DEVICE(dev); HPETState *s = HPET(dev); int i; HPETTimer *timer; if (!s->intcap) { error_printf("Hpet's intcap not initialized.\n"); } if (hpet_cfg.count == UINT8_MAX) { /* first instance */ hpet_cfg.count = 0; } if (hpet_cfg.count == 8) { error_setg(errp, "Only 8 instances of HPET is allowed"); return; } s->hpet_id = hpet_cfg.count++; for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) { sysbus_init_irq(sbd, &s->irqs[i]); } if (s->num_timers < HPET_MIN_TIMERS) { s->num_timers = HPET_MIN_TIMERS; } else if (s->num_timers > HPET_MAX_TIMERS) { s->num_timers = HPET_MAX_TIMERS; } for (i = 0; i < HPET_MAX_TIMERS; i++) { timer = &s->timer[i]; timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer); timer->tn = i; timer->state = s; } /* 64-bit main counter; LegacyReplacementRoute. */ s->capability = 0x8086a001ULL; s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT; s->capability |= ((HPET_CLK_PERIOD) << 32); qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2); qdev_init_gpio_out(dev, &s->pit_enabled, 1); } static Property hpet_device_properties[] = { DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS), DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false), DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0), DEFINE_PROP_END_OF_LIST(), }; static void hpet_device_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = hpet_realize; dc->reset = hpet_reset; dc->vmsd = &vmstate_hpet; dc->props = hpet_device_properties; } static const TypeInfo hpet_device_info = { .name = TYPE_HPET, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(HPETState), .instance_init = hpet_init, .class_init = hpet_device_class_init, }; static void hpet_register_types(void) { type_register_static(&hpet_device_info); } type_init(hpet_register_types)