/* * generic functions used by VFIO devices * * Copyright Red Hat, Inc. 2012 * * Authors: * Alex Williamson * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Based on qemu-kvm device-assignment: * Adapted for KVM by Qumranet. * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) */ #include "qemu/osdep.h" #include #ifdef CONFIG_KVM #include #endif #include #include "hw/vfio/vfio-common.h" #include "hw/vfio/vfio.h" #include "exec/address-spaces.h" #include "exec/memory.h" #include "exec/ram_addr.h" #include "hw/hw.h" #include "qemu/error-report.h" #include "qemu/main-loop.h" #include "qemu/range.h" #include "sysemu/kvm.h" #include "sysemu/reset.h" #include "sysemu/runstate.h" #include "trace.h" #include "qapi/error.h" #include "migration/migration.h" #include "sysemu/tpm.h" VFIOGroupList vfio_group_list = QLIST_HEAD_INITIALIZER(vfio_group_list); static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces = QLIST_HEAD_INITIALIZER(vfio_address_spaces); #ifdef CONFIG_KVM /* * We have a single VFIO pseudo device per KVM VM. Once created it lives * for the life of the VM. Closing the file descriptor only drops our * reference to it and the device's reference to kvm. Therefore once * initialized, this file descriptor is only released on QEMU exit and * we'll re-use it should another vfio device be attached before then. */ static int vfio_kvm_device_fd = -1; #endif /* * Common VFIO interrupt disable */ void vfio_disable_irqindex(VFIODevice *vbasedev, int index) { struct vfio_irq_set irq_set = { .argsz = sizeof(irq_set), .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER, .index = index, .start = 0, .count = 0, }; ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); } void vfio_unmask_single_irqindex(VFIODevice *vbasedev, int index) { struct vfio_irq_set irq_set = { .argsz = sizeof(irq_set), .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK, .index = index, .start = 0, .count = 1, }; ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); } void vfio_mask_single_irqindex(VFIODevice *vbasedev, int index) { struct vfio_irq_set irq_set = { .argsz = sizeof(irq_set), .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK, .index = index, .start = 0, .count = 1, }; ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); } static inline const char *action_to_str(int action) { switch (action) { case VFIO_IRQ_SET_ACTION_MASK: return "MASK"; case VFIO_IRQ_SET_ACTION_UNMASK: return "UNMASK"; case VFIO_IRQ_SET_ACTION_TRIGGER: return "TRIGGER"; default: return "UNKNOWN ACTION"; } } static const char *index_to_str(VFIODevice *vbasedev, int index) { if (vbasedev->type != VFIO_DEVICE_TYPE_PCI) { return NULL; } switch (index) { case VFIO_PCI_INTX_IRQ_INDEX: return "INTX"; case VFIO_PCI_MSI_IRQ_INDEX: return "MSI"; case VFIO_PCI_MSIX_IRQ_INDEX: return "MSIX"; case VFIO_PCI_ERR_IRQ_INDEX: return "ERR"; case VFIO_PCI_REQ_IRQ_INDEX: return "REQ"; default: return NULL; } } static int vfio_ram_block_discard_disable(VFIOContainer *container, bool state) { switch (container->iommu_type) { case VFIO_TYPE1v2_IOMMU: case VFIO_TYPE1_IOMMU: /* * We support coordinated discarding of RAM via the RamDiscardManager. */ return ram_block_uncoordinated_discard_disable(state); default: /* * VFIO_SPAPR_TCE_IOMMU most probably works just fine with * RamDiscardManager, however, it is completely untested. * * VFIO_SPAPR_TCE_v2_IOMMU with "DMA memory preregistering" does * completely the opposite of managing mapping/pinning dynamically as * required by RamDiscardManager. We would have to special-case sections * with a RamDiscardManager. */ return ram_block_discard_disable(state); } } int vfio_set_irq_signaling(VFIODevice *vbasedev, int index, int subindex, int action, int fd, Error **errp) { struct vfio_irq_set *irq_set; int argsz, ret = 0; const char *name; int32_t *pfd; argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | action; irq_set->index = index; irq_set->start = subindex; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = fd; if (ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, irq_set)) { ret = -errno; } g_free(irq_set); if (!ret) { return 0; } error_setg_errno(errp, -ret, "VFIO_DEVICE_SET_IRQS failure"); name = index_to_str(vbasedev, index); if (name) { error_prepend(errp, "%s-%d: ", name, subindex); } else { error_prepend(errp, "index %d-%d: ", index, subindex); } error_prepend(errp, "Failed to %s %s eventfd signaling for interrupt ", fd < 0 ? "tear down" : "set up", action_to_str(action)); return ret; } /* * IO Port/MMIO - Beware of the endians, VFIO is always little endian */ void vfio_region_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIORegion *region = opaque; VFIODevice *vbasedev = region->vbasedev; union { uint8_t byte; uint16_t word; uint32_t dword; uint64_t qword; } buf; switch (size) { case 1: buf.byte = data; break; case 2: buf.word = cpu_to_le16(data); break; case 4: buf.dword = cpu_to_le32(data); break; case 8: buf.qword = cpu_to_le64(data); break; default: hw_error("vfio: unsupported write size, %u bytes", size); break; } if (pwrite(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) { error_report("%s(%s:region%d+0x%"HWADDR_PRIx", 0x%"PRIx64 ",%d) failed: %m", __func__, vbasedev->name, region->nr, addr, data, size); } trace_vfio_region_write(vbasedev->name, region->nr, addr, data, size); /* * A read or write to a BAR always signals an INTx EOI. This will * do nothing if not pending (including not in INTx mode). We assume * that a BAR access is in response to an interrupt and that BAR * accesses will service the interrupt. Unfortunately, we don't know * which access will service the interrupt, so we're potentially * getting quite a few host interrupts per guest interrupt. */ vbasedev->ops->vfio_eoi(vbasedev); } uint64_t vfio_region_read(void *opaque, hwaddr addr, unsigned size) { VFIORegion *region = opaque; VFIODevice *vbasedev = region->vbasedev; union { uint8_t byte; uint16_t word; uint32_t dword; uint64_t qword; } buf; uint64_t data = 0; if (pread(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) { error_report("%s(%s:region%d+0x%"HWADDR_PRIx", %d) failed: %m", __func__, vbasedev->name, region->nr, addr, size); return (uint64_t)-1; } switch (size) { case 1: data = buf.byte; break; case 2: data = le16_to_cpu(buf.word); break; case 4: data = le32_to_cpu(buf.dword); break; case 8: data = le64_to_cpu(buf.qword); break; default: hw_error("vfio: unsupported read size, %u bytes", size); break; } trace_vfio_region_read(vbasedev->name, region->nr, addr, size, data); /* Same as write above */ vbasedev->ops->vfio_eoi(vbasedev); return data; } const MemoryRegionOps vfio_region_ops = { .read = vfio_region_read, .write = vfio_region_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 8, }, .impl = { .min_access_size = 1, .max_access_size = 8, }, }; /* * Device state interfaces */ bool vfio_mig_active(void) { VFIOGroup *group; VFIODevice *vbasedev; if (QLIST_EMPTY(&vfio_group_list)) { return false; } QLIST_FOREACH(group, &vfio_group_list, next) { QLIST_FOREACH(vbasedev, &group->device_list, next) { if (vbasedev->migration_blocker) { return false; } } } return true; } static bool vfio_devices_all_dirty_tracking(VFIOContainer *container) { VFIOGroup *group; VFIODevice *vbasedev; MigrationState *ms = migrate_get_current(); if (!migration_is_setup_or_active(ms->state)) { return false; } QLIST_FOREACH(group, &container->group_list, container_next) { QLIST_FOREACH(vbasedev, &group->device_list, next) { VFIOMigration *migration = vbasedev->migration; if (!migration) { return false; } if ((vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF) && (migration->device_state & VFIO_DEVICE_STATE_RUNNING)) { return false; } } } return true; } static bool vfio_devices_all_running_and_saving(VFIOContainer *container) { VFIOGroup *group; VFIODevice *vbasedev; MigrationState *ms = migrate_get_current(); if (!migration_is_setup_or_active(ms->state)) { return false; } QLIST_FOREACH(group, &container->group_list, container_next) { QLIST_FOREACH(vbasedev, &group->device_list, next) { VFIOMigration *migration = vbasedev->migration; if (!migration) { return false; } if ((migration->device_state & VFIO_DEVICE_STATE_SAVING) && (migration->device_state & VFIO_DEVICE_STATE_RUNNING)) { continue; } else { return false; } } } return true; } static int vfio_dma_unmap_bitmap(VFIOContainer *container, hwaddr iova, ram_addr_t size, IOMMUTLBEntry *iotlb) { struct vfio_iommu_type1_dma_unmap *unmap; struct vfio_bitmap *bitmap; uint64_t pages = REAL_HOST_PAGE_ALIGN(size) / qemu_real_host_page_size(); int ret; unmap = g_malloc0(sizeof(*unmap) + sizeof(*bitmap)); unmap->argsz = sizeof(*unmap) + sizeof(*bitmap); unmap->iova = iova; unmap->size = size; unmap->flags |= VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP; bitmap = (struct vfio_bitmap *)&unmap->data; /* * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of * qemu_real_host_page_size to mark those dirty. Hence set bitmap_pgsize * to qemu_real_host_page_size. */ bitmap->pgsize = qemu_real_host_page_size(); bitmap->size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) / BITS_PER_BYTE; if (bitmap->size > container->max_dirty_bitmap_size) { error_report("UNMAP: Size of bitmap too big 0x%"PRIx64, (uint64_t)bitmap->size); ret = -E2BIG; goto unmap_exit; } bitmap->data = g_try_malloc0(bitmap->size); if (!bitmap->data) { ret = -ENOMEM; goto unmap_exit; } ret = ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, unmap); if (!ret) { cpu_physical_memory_set_dirty_lebitmap((unsigned long *)bitmap->data, iotlb->translated_addr, pages); } else { error_report("VFIO_UNMAP_DMA with DIRTY_BITMAP : %m"); } g_free(bitmap->data); unmap_exit: g_free(unmap); return ret; } /* * DMA - Mapping and unmapping for the "type1" IOMMU interface used on x86 */ static int vfio_dma_unmap(VFIOContainer *container, hwaddr iova, ram_addr_t size, IOMMUTLBEntry *iotlb) { struct vfio_iommu_type1_dma_unmap unmap = { .argsz = sizeof(unmap), .flags = 0, .iova = iova, .size = size, }; if (iotlb && container->dirty_pages_supported && vfio_devices_all_running_and_saving(container)) { return vfio_dma_unmap_bitmap(container, iova, size, iotlb); } while (ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, &unmap)) { /* * The type1 backend has an off-by-one bug in the kernel (71a7d3d78e3c * v4.15) where an overflow in its wrap-around check prevents us from * unmapping the last page of the address space. Test for the error * condition and re-try the unmap excluding the last page. The * expectation is that we've never mapped the last page anyway and this * unmap request comes via vIOMMU support which also makes it unlikely * that this page is used. This bug was introduced well after type1 v2 * support was introduced, so we shouldn't need to test for v1. A fix * is queued for kernel v5.0 so this workaround can be removed once * affected kernels are sufficiently deprecated. */ if (errno == EINVAL && unmap.size && !(unmap.iova + unmap.size) && container->iommu_type == VFIO_TYPE1v2_IOMMU) { trace_vfio_dma_unmap_overflow_workaround(); unmap.size -= 1ULL << ctz64(container->pgsizes); continue; } error_report("VFIO_UNMAP_DMA failed: %s", strerror(errno)); return -errno; } return 0; } static int vfio_dma_map(VFIOContainer *container, hwaddr iova, ram_addr_t size, void *vaddr, bool readonly) { struct vfio_iommu_type1_dma_map map = { .argsz = sizeof(map), .flags = VFIO_DMA_MAP_FLAG_READ, .vaddr = (__u64)(uintptr_t)vaddr, .iova = iova, .size = size, }; if (!readonly) { map.flags |= VFIO_DMA_MAP_FLAG_WRITE; } /* * Try the mapping, if it fails with EBUSY, unmap the region and try * again. This shouldn't be necessary, but we sometimes see it in * the VGA ROM space. */ if (ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0 || (errno == EBUSY && vfio_dma_unmap(container, iova, size, NULL) == 0 && ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0)) { return 0; } error_report("VFIO_MAP_DMA failed: %s", strerror(errno)); return -errno; } static void vfio_host_win_add(VFIOContainer *container, hwaddr min_iova, hwaddr max_iova, uint64_t iova_pgsizes) { VFIOHostDMAWindow *hostwin; QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { if (ranges_overlap(hostwin->min_iova, hostwin->max_iova - hostwin->min_iova + 1, min_iova, max_iova - min_iova + 1)) { hw_error("%s: Overlapped IOMMU are not enabled", __func__); } } hostwin = g_malloc0(sizeof(*hostwin)); hostwin->min_iova = min_iova; hostwin->max_iova = max_iova; hostwin->iova_pgsizes = iova_pgsizes; QLIST_INSERT_HEAD(&container->hostwin_list, hostwin, hostwin_next); } static int vfio_host_win_del(VFIOContainer *container, hwaddr min_iova, hwaddr max_iova) { VFIOHostDMAWindow *hostwin; QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { if (hostwin->min_iova == min_iova && hostwin->max_iova == max_iova) { QLIST_REMOVE(hostwin, hostwin_next); g_free(hostwin); return 0; } } return -1; } static bool vfio_listener_skipped_section(MemoryRegionSection *section) { return (!memory_region_is_ram(section->mr) && !memory_region_is_iommu(section->mr)) || memory_region_is_protected(section->mr) || /* * Sizing an enabled 64-bit BAR can cause spurious mappings to * addresses in the upper part of the 64-bit address space. These * are never accessed by the CPU and beyond the address width of * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width. */ section->offset_within_address_space & (1ULL << 63); } /* Called with rcu_read_lock held. */ static bool vfio_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, ram_addr_t *ram_addr, bool *read_only) { MemoryRegion *mr; hwaddr xlat; hwaddr len = iotlb->addr_mask + 1; bool writable = iotlb->perm & IOMMU_WO; /* * The IOMMU TLB entry we have just covers translation through * this IOMMU to its immediate target. We need to translate * it the rest of the way through to memory. */ mr = address_space_translate(&address_space_memory, iotlb->translated_addr, &xlat, &len, writable, MEMTXATTRS_UNSPECIFIED); if (!memory_region_is_ram(mr)) { error_report("iommu map to non memory area %"HWADDR_PRIx"", xlat); return false; } else if (memory_region_has_ram_discard_manager(mr)) { RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr); MemoryRegionSection tmp = { .mr = mr, .offset_within_region = xlat, .size = int128_make64(len), }; /* * Malicious VMs can map memory into the IOMMU, which is expected * to remain discarded. vfio will pin all pages, populating memory. * Disallow that. vmstate priorities make sure any RamDiscardManager * were already restored before IOMMUs are restored. */ if (!ram_discard_manager_is_populated(rdm, &tmp)) { error_report("iommu map to discarded memory (e.g., unplugged via" " virtio-mem): %"HWADDR_PRIx"", iotlb->translated_addr); return false; } /* * Malicious VMs might trigger discarding of IOMMU-mapped memory. The * pages will remain pinned inside vfio until unmapped, resulting in a * higher memory consumption than expected. If memory would get * populated again later, there would be an inconsistency between pages * pinned by vfio and pages seen by QEMU. This is the case until * unmapped from the IOMMU (e.g., during device reset). * * With malicious guests, we really only care about pinning more memory * than expected. RLIMIT_MEMLOCK set for the user/process can never be * exceeded and can be used to mitigate this problem. */ warn_report_once("Using vfio with vIOMMUs and coordinated discarding of" " RAM (e.g., virtio-mem) works, however, malicious" " guests can trigger pinning of more memory than" " intended via an IOMMU. It's possible to mitigate " " by setting/adjusting RLIMIT_MEMLOCK."); } /* * Translation truncates length to the IOMMU page size, * check that it did not truncate too much. */ if (len & iotlb->addr_mask) { error_report("iommu has granularity incompatible with target AS"); return false; } if (vaddr) { *vaddr = memory_region_get_ram_ptr(mr) + xlat; } if (ram_addr) { *ram_addr = memory_region_get_ram_addr(mr) + xlat; } if (read_only) { *read_only = !writable || mr->readonly; } return true; } static void vfio_iommu_map_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) { VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n); VFIOContainer *container = giommu->container; hwaddr iova = iotlb->iova + giommu->iommu_offset; void *vaddr; int ret; trace_vfio_iommu_map_notify(iotlb->perm == IOMMU_NONE ? "UNMAP" : "MAP", iova, iova + iotlb->addr_mask); if (iotlb->target_as != &address_space_memory) { error_report("Wrong target AS \"%s\", only system memory is allowed", iotlb->target_as->name ? iotlb->target_as->name : "none"); return; } rcu_read_lock(); if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) { bool read_only; if (!vfio_get_xlat_addr(iotlb, &vaddr, NULL, &read_only)) { goto out; } /* * vaddr is only valid until rcu_read_unlock(). But after * vfio_dma_map has set up the mapping the pages will be * pinned by the kernel. This makes sure that the RAM backend * of vaddr will always be there, even if the memory object is * destroyed and its backing memory munmap-ed. */ ret = vfio_dma_map(container, iova, iotlb->addr_mask + 1, vaddr, read_only); if (ret) { error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", " "0x%"HWADDR_PRIx", %p) = %d (%m)", container, iova, iotlb->addr_mask + 1, vaddr, ret); } } else { ret = vfio_dma_unmap(container, iova, iotlb->addr_mask + 1, iotlb); if (ret) { error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " "0x%"HWADDR_PRIx") = %d (%m)", container, iova, iotlb->addr_mask + 1, ret); } } out: rcu_read_unlock(); } static void vfio_ram_discard_notify_discard(RamDiscardListener *rdl, MemoryRegionSection *section) { VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, listener); const hwaddr size = int128_get64(section->size); const hwaddr iova = section->offset_within_address_space; int ret; /* Unmap with a single call. */ ret = vfio_dma_unmap(vrdl->container, iova, size , NULL); if (ret) { error_report("%s: vfio_dma_unmap() failed: %s", __func__, strerror(-ret)); } } static int vfio_ram_discard_notify_populate(RamDiscardListener *rdl, MemoryRegionSection *section) { VFIORamDiscardListener *vrdl = container_of(rdl, VFIORamDiscardListener, listener); const hwaddr end = section->offset_within_region + int128_get64(section->size); hwaddr start, next, iova; void *vaddr; int ret; /* * Map in (aligned within memory region) minimum granularity, so we can * unmap in minimum granularity later. */ for (start = section->offset_within_region; start < end; start = next) { next = ROUND_UP(start + 1, vrdl->granularity); next = MIN(next, end); iova = start - section->offset_within_region + section->offset_within_address_space; vaddr = memory_region_get_ram_ptr(section->mr) + start; ret = vfio_dma_map(vrdl->container, iova, next - start, vaddr, section->readonly); if (ret) { /* Rollback */ vfio_ram_discard_notify_discard(rdl, section); return ret; } } return 0; } static void vfio_register_ram_discard_listener(VFIOContainer *container, MemoryRegionSection *section) { RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); VFIORamDiscardListener *vrdl; /* Ignore some corner cases not relevant in practice. */ g_assert(QEMU_IS_ALIGNED(section->offset_within_region, TARGET_PAGE_SIZE)); g_assert(QEMU_IS_ALIGNED(section->offset_within_address_space, TARGET_PAGE_SIZE)); g_assert(QEMU_IS_ALIGNED(int128_get64(section->size), TARGET_PAGE_SIZE)); vrdl = g_new0(VFIORamDiscardListener, 1); vrdl->container = container; vrdl->mr = section->mr; vrdl->offset_within_address_space = section->offset_within_address_space; vrdl->size = int128_get64(section->size); vrdl->granularity = ram_discard_manager_get_min_granularity(rdm, section->mr); g_assert(vrdl->granularity && is_power_of_2(vrdl->granularity)); g_assert(container->pgsizes && vrdl->granularity >= 1ULL << ctz64(container->pgsizes)); ram_discard_listener_init(&vrdl->listener, vfio_ram_discard_notify_populate, vfio_ram_discard_notify_discard, true); ram_discard_manager_register_listener(rdm, &vrdl->listener, section); QLIST_INSERT_HEAD(&container->vrdl_list, vrdl, next); /* * Sanity-check if we have a theoretically problematic setup where we could * exceed the maximum number of possible DMA mappings over time. We assume * that each mapped section in the same address space as a RamDiscardManager * section consumes exactly one DMA mapping, with the exception of * RamDiscardManager sections; i.e., we don't expect to have gIOMMU sections * in the same address space as RamDiscardManager sections. * * We assume that each section in the address space consumes one memslot. * We take the number of KVM memory slots as a best guess for the maximum * number of sections in the address space we could have over time, * also consuming DMA mappings. */ if (container->dma_max_mappings) { unsigned int vrdl_count = 0, vrdl_mappings = 0, max_memslots = 512; #ifdef CONFIG_KVM if (kvm_enabled()) { max_memslots = kvm_get_max_memslots(); } #endif QLIST_FOREACH(vrdl, &container->vrdl_list, next) { hwaddr start, end; start = QEMU_ALIGN_DOWN(vrdl->offset_within_address_space, vrdl->granularity); end = ROUND_UP(vrdl->offset_within_address_space + vrdl->size, vrdl->granularity); vrdl_mappings += (end - start) / vrdl->granularity; vrdl_count++; } if (vrdl_mappings + max_memslots - vrdl_count > container->dma_max_mappings) { warn_report("%s: possibly running out of DMA mappings. E.g., try" " increasing the 'block-size' of virtio-mem devies." " Maximum possible DMA mappings: %d, Maximum possible" " memslots: %d", __func__, container->dma_max_mappings, max_memslots); } } } static void vfio_unregister_ram_discard_listener(VFIOContainer *container, MemoryRegionSection *section) { RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); VFIORamDiscardListener *vrdl = NULL; QLIST_FOREACH(vrdl, &container->vrdl_list, next) { if (vrdl->mr == section->mr && vrdl->offset_within_address_space == section->offset_within_address_space) { break; } } if (!vrdl) { hw_error("vfio: Trying to unregister missing RAM discard listener"); } ram_discard_manager_unregister_listener(rdm, &vrdl->listener); QLIST_REMOVE(vrdl, next); g_free(vrdl); } static bool vfio_known_safe_misalignment(MemoryRegionSection *section) { MemoryRegion *mr = section->mr; if (!TPM_IS_CRB(mr->owner)) { return false; } /* this is a known safe misaligned region, just trace for debug purpose */ trace_vfio_known_safe_misalignment(memory_region_name(mr), section->offset_within_address_space, section->offset_within_region, qemu_real_host_page_size()); return true; } static void vfio_listener_region_add(MemoryListener *listener, MemoryRegionSection *section) { VFIOContainer *container = container_of(listener, VFIOContainer, listener); hwaddr iova, end; Int128 llend, llsize; void *vaddr; int ret; VFIOHostDMAWindow *hostwin; bool hostwin_found; Error *err = NULL; if (vfio_listener_skipped_section(section)) { trace_vfio_listener_region_add_skip( section->offset_within_address_space, section->offset_within_address_space + int128_get64(int128_sub(section->size, int128_one()))); return; } if (unlikely((section->offset_within_address_space & ~qemu_real_host_page_mask()) != (section->offset_within_region & ~qemu_real_host_page_mask()))) { if (!vfio_known_safe_misalignment(section)) { error_report("%s received unaligned region %s iova=0x%"PRIx64 " offset_within_region=0x%"PRIx64 " qemu_real_host_page_size=0x%"PRIxPTR, __func__, memory_region_name(section->mr), section->offset_within_address_space, section->offset_within_region, qemu_real_host_page_size()); } return; } iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space); llend = int128_make64(section->offset_within_address_space); llend = int128_add(llend, section->size); llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask())); if (int128_ge(int128_make64(iova), llend)) { if (memory_region_is_ram_device(section->mr)) { trace_vfio_listener_region_add_no_dma_map( memory_region_name(section->mr), section->offset_within_address_space, int128_getlo(section->size), qemu_real_host_page_size()); } return; } end = int128_get64(int128_sub(llend, int128_one())); if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { hwaddr pgsize = 0; /* For now intersections are not allowed, we may relax this later */ QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { if (ranges_overlap(hostwin->min_iova, hostwin->max_iova - hostwin->min_iova + 1, section->offset_within_address_space, int128_get64(section->size))) { error_setg(&err, "region [0x%"PRIx64",0x%"PRIx64"] overlaps with existing" "host DMA window [0x%"PRIx64",0x%"PRIx64"]", section->offset_within_address_space, section->offset_within_address_space + int128_get64(section->size) - 1, hostwin->min_iova, hostwin->max_iova); goto fail; } } ret = vfio_spapr_create_window(container, section, &pgsize); if (ret) { error_setg_errno(&err, -ret, "Failed to create SPAPR window"); goto fail; } vfio_host_win_add(container, section->offset_within_address_space, section->offset_within_address_space + int128_get64(section->size) - 1, pgsize); #ifdef CONFIG_KVM if (kvm_enabled()) { VFIOGroup *group; IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr); struct kvm_vfio_spapr_tce param; struct kvm_device_attr attr = { .group = KVM_DEV_VFIO_GROUP, .attr = KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE, .addr = (uint64_t)(unsigned long)¶m, }; if (!memory_region_iommu_get_attr(iommu_mr, IOMMU_ATTR_SPAPR_TCE_FD, ¶m.tablefd)) { QLIST_FOREACH(group, &container->group_list, container_next) { param.groupfd = group->fd; if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { error_report("vfio: failed to setup fd %d " "for a group with fd %d: %s", param.tablefd, param.groupfd, strerror(errno)); return; } trace_vfio_spapr_group_attach(param.groupfd, param.tablefd); } } } #endif } hostwin_found = false; QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { if (hostwin->min_iova <= iova && end <= hostwin->max_iova) { hostwin_found = true; break; } } if (!hostwin_found) { error_setg(&err, "Container %p can't map guest IOVA region" " 0x%"HWADDR_PRIx"..0x%"HWADDR_PRIx, container, iova, end); goto fail; } memory_region_ref(section->mr); if (memory_region_is_iommu(section->mr)) { VFIOGuestIOMMU *giommu; IOMMUMemoryRegion *iommu_mr = IOMMU_MEMORY_REGION(section->mr); int iommu_idx; trace_vfio_listener_region_add_iommu(iova, end); /* * FIXME: For VFIO iommu types which have KVM acceleration to * avoid bouncing all map/unmaps through qemu this way, this * would be the right place to wire that up (tell the KVM * device emulation the VFIO iommu handles to use). */ giommu = g_malloc0(sizeof(*giommu)); giommu->iommu = iommu_mr; giommu->iommu_offset = section->offset_within_address_space - section->offset_within_region; giommu->container = container; llend = int128_add(int128_make64(section->offset_within_region), section->size); llend = int128_sub(llend, int128_one()); iommu_idx = memory_region_iommu_attrs_to_index(iommu_mr, MEMTXATTRS_UNSPECIFIED); iommu_notifier_init(&giommu->n, vfio_iommu_map_notify, IOMMU_NOTIFIER_IOTLB_EVENTS, section->offset_within_region, int128_get64(llend), iommu_idx); ret = memory_region_iommu_set_page_size_mask(giommu->iommu, container->pgsizes, &err); if (ret) { g_free(giommu); goto fail; } ret = memory_region_register_iommu_notifier(section->mr, &giommu->n, &err); if (ret) { g_free(giommu); goto fail; } QLIST_INSERT_HEAD(&container->giommu_list, giommu, giommu_next); memory_region_iommu_replay(giommu->iommu, &giommu->n); return; } /* Here we assume that memory_region_is_ram(section->mr)==true */ /* * For RAM memory regions with a RamDiscardManager, we only want to map the * actually populated parts - and update the mapping whenever we're notified * about changes. */ if (memory_region_has_ram_discard_manager(section->mr)) { vfio_register_ram_discard_listener(container, section); return; } vaddr = memory_region_get_ram_ptr(section->mr) + section->offset_within_region + (iova - section->offset_within_address_space); trace_vfio_listener_region_add_ram(iova, end, vaddr); llsize = int128_sub(llend, int128_make64(iova)); if (memory_region_is_ram_device(section->mr)) { hwaddr pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1; if ((iova & pgmask) || (int128_get64(llsize) & pgmask)) { trace_vfio_listener_region_add_no_dma_map( memory_region_name(section->mr), section->offset_within_address_space, int128_getlo(section->size), pgmask + 1); return; } } ret = vfio_dma_map(container, iova, int128_get64(llsize), vaddr, section->readonly); if (ret) { error_setg(&err, "vfio_dma_map(%p, 0x%"HWADDR_PRIx", " "0x%"HWADDR_PRIx", %p) = %d (%m)", container, iova, int128_get64(llsize), vaddr, ret); if (memory_region_is_ram_device(section->mr)) { /* Allow unexpected mappings not to be fatal for RAM devices */ error_report_err(err); return; } goto fail; } return; fail: if (memory_region_is_ram_device(section->mr)) { error_report("failed to vfio_dma_map. pci p2p may not work"); return; } /* * On the initfn path, store the first error in the container so we * can gracefully fail. Runtime, there's not much we can do other * than throw a hardware error. */ if (!container->initialized) { if (!container->error) { error_propagate_prepend(&container->error, err, "Region %s: ", memory_region_name(section->mr)); } else { error_free(err); } } else { error_report_err(err); hw_error("vfio: DMA mapping failed, unable to continue"); } } static void vfio_listener_region_del(MemoryListener *listener, MemoryRegionSection *section) { VFIOContainer *container = container_of(listener, VFIOContainer, listener); hwaddr iova, end; Int128 llend, llsize; int ret; bool try_unmap = true; if (vfio_listener_skipped_section(section)) { trace_vfio_listener_region_del_skip( section->offset_within_address_space, section->offset_within_address_space + int128_get64(int128_sub(section->size, int128_one()))); return; } if (unlikely((section->offset_within_address_space & ~qemu_real_host_page_mask()) != (section->offset_within_region & ~qemu_real_host_page_mask()))) { error_report("%s received unaligned region", __func__); return; } if (memory_region_is_iommu(section->mr)) { VFIOGuestIOMMU *giommu; QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) { if (MEMORY_REGION(giommu->iommu) == section->mr && giommu->n.start == section->offset_within_region) { memory_region_unregister_iommu_notifier(section->mr, &giommu->n); QLIST_REMOVE(giommu, giommu_next); g_free(giommu); break; } } /* * FIXME: We assume the one big unmap below is adequate to * remove any individual page mappings in the IOMMU which * might have been copied into VFIO. This works for a page table * based IOMMU where a big unmap flattens a large range of IO-PTEs. * That may not be true for all IOMMU types. */ } iova = REAL_HOST_PAGE_ALIGN(section->offset_within_address_space); llend = int128_make64(section->offset_within_address_space); llend = int128_add(llend, section->size); llend = int128_and(llend, int128_exts64(qemu_real_host_page_mask())); if (int128_ge(int128_make64(iova), llend)) { return; } end = int128_get64(int128_sub(llend, int128_one())); llsize = int128_sub(llend, int128_make64(iova)); trace_vfio_listener_region_del(iova, end); if (memory_region_is_ram_device(section->mr)) { hwaddr pgmask; VFIOHostDMAWindow *hostwin; bool hostwin_found = false; QLIST_FOREACH(hostwin, &container->hostwin_list, hostwin_next) { if (hostwin->min_iova <= iova && end <= hostwin->max_iova) { hostwin_found = true; break; } } assert(hostwin_found); /* or region_add() would have failed */ pgmask = (1ULL << ctz64(hostwin->iova_pgsizes)) - 1; try_unmap = !((iova & pgmask) || (int128_get64(llsize) & pgmask)); } else if (memory_region_has_ram_discard_manager(section->mr)) { vfio_unregister_ram_discard_listener(container, section); /* Unregistering will trigger an unmap. */ try_unmap = false; } if (try_unmap) { if (int128_eq(llsize, int128_2_64())) { /* The unmap ioctl doesn't accept a full 64-bit span. */ llsize = int128_rshift(llsize, 1); ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL); if (ret) { error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " "0x%"HWADDR_PRIx") = %d (%m)", container, iova, int128_get64(llsize), ret); } iova += int128_get64(llsize); } ret = vfio_dma_unmap(container, iova, int128_get64(llsize), NULL); if (ret) { error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " "0x%"HWADDR_PRIx") = %d (%m)", container, iova, int128_get64(llsize), ret); } } memory_region_unref(section->mr); if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { vfio_spapr_remove_window(container, section->offset_within_address_space); if (vfio_host_win_del(container, section->offset_within_address_space, section->offset_within_address_space + int128_get64(section->size) - 1) < 0) { hw_error("%s: Cannot delete missing window at %"HWADDR_PRIx, __func__, section->offset_within_address_space); } } } static void vfio_set_dirty_page_tracking(VFIOContainer *container, bool start) { int ret; struct vfio_iommu_type1_dirty_bitmap dirty = { .argsz = sizeof(dirty), }; if (start) { dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_START; } else { dirty.flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP; } ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, &dirty); if (ret) { error_report("Failed to set dirty tracking flag 0x%x errno: %d", dirty.flags, errno); } } static void vfio_listener_log_global_start(MemoryListener *listener) { VFIOContainer *container = container_of(listener, VFIOContainer, listener); vfio_set_dirty_page_tracking(container, true); } static void vfio_listener_log_global_stop(MemoryListener *listener) { VFIOContainer *container = container_of(listener, VFIOContainer, listener); vfio_set_dirty_page_tracking(container, false); } static int vfio_get_dirty_bitmap(VFIOContainer *container, uint64_t iova, uint64_t size, ram_addr_t ram_addr) { struct vfio_iommu_type1_dirty_bitmap *dbitmap; struct vfio_iommu_type1_dirty_bitmap_get *range; uint64_t pages; int ret; dbitmap = g_malloc0(sizeof(*dbitmap) + sizeof(*range)); dbitmap->argsz = sizeof(*dbitmap) + sizeof(*range); dbitmap->flags = VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP; range = (struct vfio_iommu_type1_dirty_bitmap_get *)&dbitmap->data; range->iova = iova; range->size = size; /* * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of * qemu_real_host_page_size to mark those dirty. Hence set bitmap's pgsize * to qemu_real_host_page_size. */ range->bitmap.pgsize = qemu_real_host_page_size(); pages = REAL_HOST_PAGE_ALIGN(range->size) / qemu_real_host_page_size(); range->bitmap.size = ROUND_UP(pages, sizeof(__u64) * BITS_PER_BYTE) / BITS_PER_BYTE; range->bitmap.data = g_try_malloc0(range->bitmap.size); if (!range->bitmap.data) { ret = -ENOMEM; goto err_out; } ret = ioctl(container->fd, VFIO_IOMMU_DIRTY_PAGES, dbitmap); if (ret) { error_report("Failed to get dirty bitmap for iova: 0x%"PRIx64 " size: 0x%"PRIx64" err: %d", (uint64_t)range->iova, (uint64_t)range->size, errno); goto err_out; } cpu_physical_memory_set_dirty_lebitmap((unsigned long *)range->bitmap.data, ram_addr, pages); trace_vfio_get_dirty_bitmap(container->fd, range->iova, range->size, range->bitmap.size, ram_addr); err_out: g_free(range->bitmap.data); g_free(dbitmap); return ret; } typedef struct { IOMMUNotifier n; VFIOGuestIOMMU *giommu; } vfio_giommu_dirty_notifier; static void vfio_iommu_map_dirty_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) { vfio_giommu_dirty_notifier *gdn = container_of(n, vfio_giommu_dirty_notifier, n); VFIOGuestIOMMU *giommu = gdn->giommu; VFIOContainer *container = giommu->container; hwaddr iova = iotlb->iova + giommu->iommu_offset; ram_addr_t translated_addr; trace_vfio_iommu_map_dirty_notify(iova, iova + iotlb->addr_mask); if (iotlb->target_as != &address_space_memory) { error_report("Wrong target AS \"%s\", only system memory is allowed", iotlb->target_as->name ? iotlb->target_as->name : "none"); return; } rcu_read_lock(); if (vfio_get_xlat_addr(iotlb, NULL, &translated_addr, NULL)) { int ret; ret = vfio_get_dirty_bitmap(container, iova, iotlb->addr_mask + 1, translated_addr); if (ret) { error_report("vfio_iommu_map_dirty_notify(%p, 0x%"HWADDR_PRIx", " "0x%"HWADDR_PRIx") = %d (%m)", container, iova, iotlb->addr_mask + 1, ret); } } rcu_read_unlock(); } static int vfio_ram_discard_get_dirty_bitmap(MemoryRegionSection *section, void *opaque) { const hwaddr size = int128_get64(section->size); const hwaddr iova = section->offset_within_address_space; const ram_addr_t ram_addr = memory_region_get_ram_addr(section->mr) + section->offset_within_region; VFIORamDiscardListener *vrdl = opaque; /* * Sync the whole mapped region (spanning multiple individual mappings) * in one go. */ return vfio_get_dirty_bitmap(vrdl->container, iova, size, ram_addr); } static int vfio_sync_ram_discard_listener_dirty_bitmap(VFIOContainer *container, MemoryRegionSection *section) { RamDiscardManager *rdm = memory_region_get_ram_discard_manager(section->mr); VFIORamDiscardListener *vrdl = NULL; QLIST_FOREACH(vrdl, &container->vrdl_list, next) { if (vrdl->mr == section->mr && vrdl->offset_within_address_space == section->offset_within_address_space) { break; } } if (!vrdl) { hw_error("vfio: Trying to sync missing RAM discard listener"); } /* * We only want/can synchronize the bitmap for actually mapped parts - * which correspond to populated parts. Replay all populated parts. */ return ram_discard_manager_replay_populated(rdm, section, vfio_ram_discard_get_dirty_bitmap, &vrdl); } static int vfio_sync_dirty_bitmap(VFIOContainer *container, MemoryRegionSection *section) { ram_addr_t ram_addr; if (memory_region_is_iommu(section->mr)) { VFIOGuestIOMMU *giommu; QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) { if (MEMORY_REGION(giommu->iommu) == section->mr && giommu->n.start == section->offset_within_region) { Int128 llend; vfio_giommu_dirty_notifier gdn = { .giommu = giommu }; int idx = memory_region_iommu_attrs_to_index(giommu->iommu, MEMTXATTRS_UNSPECIFIED); llend = int128_add(int128_make64(section->offset_within_region), section->size); llend = int128_sub(llend, int128_one()); iommu_notifier_init(&gdn.n, vfio_iommu_map_dirty_notify, IOMMU_NOTIFIER_MAP, section->offset_within_region, int128_get64(llend), idx); memory_region_iommu_replay(giommu->iommu, &gdn.n); break; } } return 0; } else if (memory_region_has_ram_discard_manager(section->mr)) { return vfio_sync_ram_discard_listener_dirty_bitmap(container, section); } ram_addr = memory_region_get_ram_addr(section->mr) + section->offset_within_region; return vfio_get_dirty_bitmap(container, REAL_HOST_PAGE_ALIGN(section->offset_within_address_space), int128_get64(section->size), ram_addr); } static void vfio_listener_log_sync(MemoryListener *listener, MemoryRegionSection *section) { VFIOContainer *container = container_of(listener, VFIOContainer, listener); if (vfio_listener_skipped_section(section) || !container->dirty_pages_supported) { return; } if (vfio_devices_all_dirty_tracking(container)) { vfio_sync_dirty_bitmap(container, section); } } static const MemoryListener vfio_memory_listener = { .name = "vfio", .region_add = vfio_listener_region_add, .region_del = vfio_listener_region_del, .log_global_start = vfio_listener_log_global_start, .log_global_stop = vfio_listener_log_global_stop, .log_sync = vfio_listener_log_sync, }; static void vfio_listener_release(VFIOContainer *container) { memory_listener_unregister(&container->listener); if (container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { memory_listener_unregister(&container->prereg_listener); } } static struct vfio_info_cap_header * vfio_get_cap(void *ptr, uint32_t cap_offset, uint16_t id) { struct vfio_info_cap_header *hdr; for (hdr = ptr + cap_offset; hdr != ptr; hdr = ptr + hdr->next) { if (hdr->id == id) { return hdr; } } return NULL; } struct vfio_info_cap_header * vfio_get_region_info_cap(struct vfio_region_info *info, uint16_t id) { if (!(info->flags & VFIO_REGION_INFO_FLAG_CAPS)) { return NULL; } return vfio_get_cap((void *)info, info->cap_offset, id); } static struct vfio_info_cap_header * vfio_get_iommu_type1_info_cap(struct vfio_iommu_type1_info *info, uint16_t id) { if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) { return NULL; } return vfio_get_cap((void *)info, info->cap_offset, id); } struct vfio_info_cap_header * vfio_get_device_info_cap(struct vfio_device_info *info, uint16_t id) { if (!(info->flags & VFIO_DEVICE_FLAGS_CAPS)) { return NULL; } return vfio_get_cap((void *)info, info->cap_offset, id); } bool vfio_get_info_dma_avail(struct vfio_iommu_type1_info *info, unsigned int *avail) { struct vfio_info_cap_header *hdr; struct vfio_iommu_type1_info_dma_avail *cap; /* If the capability cannot be found, assume no DMA limiting */ hdr = vfio_get_iommu_type1_info_cap(info, VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL); if (hdr == NULL) { return false; } if (avail != NULL) { cap = (void *) hdr; *avail = cap->avail; } return true; } static int vfio_setup_region_sparse_mmaps(VFIORegion *region, struct vfio_region_info *info) { struct vfio_info_cap_header *hdr; struct vfio_region_info_cap_sparse_mmap *sparse; int i, j; hdr = vfio_get_region_info_cap(info, VFIO_REGION_INFO_CAP_SPARSE_MMAP); if (!hdr) { return -ENODEV; } sparse = container_of(hdr, struct vfio_region_info_cap_sparse_mmap, header); trace_vfio_region_sparse_mmap_header(region->vbasedev->name, region->nr, sparse->nr_areas); region->mmaps = g_new0(VFIOMmap, sparse->nr_areas); for (i = 0, j = 0; i < sparse->nr_areas; i++) { if (sparse->areas[i].size) { trace_vfio_region_sparse_mmap_entry(i, sparse->areas[i].offset, sparse->areas[i].offset + sparse->areas[i].size - 1); region->mmaps[j].offset = sparse->areas[i].offset; region->mmaps[j].size = sparse->areas[i].size; j++; } } region->nr_mmaps = j; region->mmaps = g_realloc(region->mmaps, j * sizeof(VFIOMmap)); return 0; } int vfio_region_setup(Object *obj, VFIODevice *vbasedev, VFIORegion *region, int index, const char *name) { struct vfio_region_info *info; int ret; ret = vfio_get_region_info(vbasedev, index, &info); if (ret) { return ret; } region->vbasedev = vbasedev; region->flags = info->flags; region->size = info->size; region->fd_offset = info->offset; region->nr = index; if (region->size) { region->mem = g_new0(MemoryRegion, 1); memory_region_init_io(region->mem, obj, &vfio_region_ops, region, name, region->size); if (!vbasedev->no_mmap && region->flags & VFIO_REGION_INFO_FLAG_MMAP) { ret = vfio_setup_region_sparse_mmaps(region, info); if (ret) { region->nr_mmaps = 1; region->mmaps = g_new0(VFIOMmap, region->nr_mmaps); region->mmaps[0].offset = 0; region->mmaps[0].size = region->size; } } } g_free(info); trace_vfio_region_setup(vbasedev->name, index, name, region->flags, region->fd_offset, region->size); return 0; } static void vfio_subregion_unmap(VFIORegion *region, int index) { trace_vfio_region_unmap(memory_region_name(®ion->mmaps[index].mem), region->mmaps[index].offset, region->mmaps[index].offset + region->mmaps[index].size - 1); memory_region_del_subregion(region->mem, ®ion->mmaps[index].mem); munmap(region->mmaps[index].mmap, region->mmaps[index].size); object_unparent(OBJECT(®ion->mmaps[index].mem)); region->mmaps[index].mmap = NULL; } int vfio_region_mmap(VFIORegion *region) { int i, prot = 0; char *name; if (!region->mem) { return 0; } prot |= region->flags & VFIO_REGION_INFO_FLAG_READ ? PROT_READ : 0; prot |= region->flags & VFIO_REGION_INFO_FLAG_WRITE ? PROT_WRITE : 0; for (i = 0; i < region->nr_mmaps; i++) { region->mmaps[i].mmap = mmap(NULL, region->mmaps[i].size, prot, MAP_SHARED, region->vbasedev->fd, region->fd_offset + region->mmaps[i].offset); if (region->mmaps[i].mmap == MAP_FAILED) { int ret = -errno; trace_vfio_region_mmap_fault(memory_region_name(region->mem), i, region->fd_offset + region->mmaps[i].offset, region->fd_offset + region->mmaps[i].offset + region->mmaps[i].size - 1, ret); region->mmaps[i].mmap = NULL; for (i--; i >= 0; i--) { vfio_subregion_unmap(region, i); } return ret; } name = g_strdup_printf("%s mmaps[%d]", memory_region_name(region->mem), i); memory_region_init_ram_device_ptr(®ion->mmaps[i].mem, memory_region_owner(region->mem), name, region->mmaps[i].size, region->mmaps[i].mmap); g_free(name); memory_region_add_subregion(region->mem, region->mmaps[i].offset, ®ion->mmaps[i].mem); trace_vfio_region_mmap(memory_region_name(®ion->mmaps[i].mem), region->mmaps[i].offset, region->mmaps[i].offset + region->mmaps[i].size - 1); } return 0; } void vfio_region_unmap(VFIORegion *region) { int i; if (!region->mem) { return; } for (i = 0; i < region->nr_mmaps; i++) { if (region->mmaps[i].mmap) { vfio_subregion_unmap(region, i); } } } void vfio_region_exit(VFIORegion *region) { int i; if (!region->mem) { return; } for (i = 0; i < region->nr_mmaps; i++) { if (region->mmaps[i].mmap) { memory_region_del_subregion(region->mem, ®ion->mmaps[i].mem); } } trace_vfio_region_exit(region->vbasedev->name, region->nr); } void vfio_region_finalize(VFIORegion *region) { int i; if (!region->mem) { return; } for (i = 0; i < region->nr_mmaps; i++) { if (region->mmaps[i].mmap) { munmap(region->mmaps[i].mmap, region->mmaps[i].size); object_unparent(OBJECT(®ion->mmaps[i].mem)); } } object_unparent(OBJECT(region->mem)); g_free(region->mem); g_free(region->mmaps); trace_vfio_region_finalize(region->vbasedev->name, region->nr); region->mem = NULL; region->mmaps = NULL; region->nr_mmaps = 0; region->size = 0; region->flags = 0; region->nr = 0; } void vfio_region_mmaps_set_enabled(VFIORegion *region, bool enabled) { int i; if (!region->mem) { return; } for (i = 0; i < region->nr_mmaps; i++) { if (region->mmaps[i].mmap) { memory_region_set_enabled(®ion->mmaps[i].mem, enabled); } } trace_vfio_region_mmaps_set_enabled(memory_region_name(region->mem), enabled); } void vfio_reset_handler(void *opaque) { VFIOGroup *group; VFIODevice *vbasedev; QLIST_FOREACH(group, &vfio_group_list, next) { QLIST_FOREACH(vbasedev, &group->device_list, next) { if (vbasedev->dev->realized) { vbasedev->ops->vfio_compute_needs_reset(vbasedev); } } } QLIST_FOREACH(group, &vfio_group_list, next) { QLIST_FOREACH(vbasedev, &group->device_list, next) { if (vbasedev->dev->realized && vbasedev->needs_reset) { vbasedev->ops->vfio_hot_reset_multi(vbasedev); } } } } static void vfio_kvm_device_add_group(VFIOGroup *group) { #ifdef CONFIG_KVM struct kvm_device_attr attr = { .group = KVM_DEV_VFIO_GROUP, .attr = KVM_DEV_VFIO_GROUP_ADD, .addr = (uint64_t)(unsigned long)&group->fd, }; if (!kvm_enabled()) { return; } if (vfio_kvm_device_fd < 0) { struct kvm_create_device cd = { .type = KVM_DEV_TYPE_VFIO, }; if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) { error_report("Failed to create KVM VFIO device: %m"); return; } vfio_kvm_device_fd = cd.fd; } if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { error_report("Failed to add group %d to KVM VFIO device: %m", group->groupid); } #endif } static void vfio_kvm_device_del_group(VFIOGroup *group) { #ifdef CONFIG_KVM struct kvm_device_attr attr = { .group = KVM_DEV_VFIO_GROUP, .attr = KVM_DEV_VFIO_GROUP_DEL, .addr = (uint64_t)(unsigned long)&group->fd, }; if (vfio_kvm_device_fd < 0) { return; } if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { error_report("Failed to remove group %d from KVM VFIO device: %m", group->groupid); } #endif } static VFIOAddressSpace *vfio_get_address_space(AddressSpace *as) { VFIOAddressSpace *space; QLIST_FOREACH(space, &vfio_address_spaces, list) { if (space->as == as) { return space; } } /* No suitable VFIOAddressSpace, create a new one */ space = g_malloc0(sizeof(*space)); space->as = as; QLIST_INIT(&space->containers); QLIST_INSERT_HEAD(&vfio_address_spaces, space, list); return space; } static void vfio_put_address_space(VFIOAddressSpace *space) { if (QLIST_EMPTY(&space->containers)) { QLIST_REMOVE(space, list); g_free(space); } } /* * vfio_get_iommu_type - selects the richest iommu_type (v2 first) */ static int vfio_get_iommu_type(VFIOContainer *container, Error **errp) { int iommu_types[] = { VFIO_TYPE1v2_IOMMU, VFIO_TYPE1_IOMMU, VFIO_SPAPR_TCE_v2_IOMMU, VFIO_SPAPR_TCE_IOMMU }; int i; for (i = 0; i < ARRAY_SIZE(iommu_types); i++) { if (ioctl(container->fd, VFIO_CHECK_EXTENSION, iommu_types[i])) { return iommu_types[i]; } } error_setg(errp, "No available IOMMU models"); return -EINVAL; } static int vfio_init_container(VFIOContainer *container, int group_fd, Error **errp) { int iommu_type, ret; iommu_type = vfio_get_iommu_type(container, errp); if (iommu_type < 0) { return iommu_type; } ret = ioctl(group_fd, VFIO_GROUP_SET_CONTAINER, &container->fd); if (ret) { error_setg_errno(errp, errno, "Failed to set group container"); return -errno; } while (ioctl(container->fd, VFIO_SET_IOMMU, iommu_type)) { if (iommu_type == VFIO_SPAPR_TCE_v2_IOMMU) { /* * On sPAPR, despite the IOMMU subdriver always advertises v1 and * v2, the running platform may not support v2 and there is no * way to guess it until an IOMMU group gets added to the container. * So in case it fails with v2, try v1 as a fallback. */ iommu_type = VFIO_SPAPR_TCE_IOMMU; continue; } error_setg_errno(errp, errno, "Failed to set iommu for container"); return -errno; } container->iommu_type = iommu_type; return 0; } static int vfio_get_iommu_info(VFIOContainer *container, struct vfio_iommu_type1_info **info) { size_t argsz = sizeof(struct vfio_iommu_type1_info); *info = g_new0(struct vfio_iommu_type1_info, 1); again: (*info)->argsz = argsz; if (ioctl(container->fd, VFIO_IOMMU_GET_INFO, *info)) { g_free(*info); *info = NULL; return -errno; } if (((*info)->argsz > argsz)) { argsz = (*info)->argsz; *info = g_realloc(*info, argsz); goto again; } return 0; } static struct vfio_info_cap_header * vfio_get_iommu_info_cap(struct vfio_iommu_type1_info *info, uint16_t id) { struct vfio_info_cap_header *hdr; void *ptr = info; if (!(info->flags & VFIO_IOMMU_INFO_CAPS)) { return NULL; } for (hdr = ptr + info->cap_offset; hdr != ptr; hdr = ptr + hdr->next) { if (hdr->id == id) { return hdr; } } return NULL; } static void vfio_get_iommu_info_migration(VFIOContainer *container, struct vfio_iommu_type1_info *info) { struct vfio_info_cap_header *hdr; struct vfio_iommu_type1_info_cap_migration *cap_mig; hdr = vfio_get_iommu_info_cap(info, VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION); if (!hdr) { return; } cap_mig = container_of(hdr, struct vfio_iommu_type1_info_cap_migration, header); /* * cpu_physical_memory_set_dirty_lebitmap() supports pages in bitmap of * qemu_real_host_page_size to mark those dirty. */ if (cap_mig->pgsize_bitmap & qemu_real_host_page_size()) { container->dirty_pages_supported = true; container->max_dirty_bitmap_size = cap_mig->max_dirty_bitmap_size; container->dirty_pgsizes = cap_mig->pgsize_bitmap; } } static int vfio_connect_container(VFIOGroup *group, AddressSpace *as, Error **errp) { VFIOContainer *container; int ret, fd; VFIOAddressSpace *space; space = vfio_get_address_space(as); /* * VFIO is currently incompatible with discarding of RAM insofar as the * madvise to purge (zap) the page from QEMU's address space does not * interact with the memory API and therefore leaves stale virtual to * physical mappings in the IOMMU if the page was previously pinned. We * therefore set discarding broken for each group added to a container, * whether the container is used individually or shared. This provides * us with options to allow devices within a group to opt-in and allow * discarding, so long as it is done consistently for a group (for instance * if the device is an mdev device where it is known that the host vendor * driver will never pin pages outside of the working set of the guest * driver, which would thus not be discarding candidates). * * The first opportunity to induce pinning occurs here where we attempt to * attach the group to existing containers within the AddressSpace. If any * pages are already zapped from the virtual address space, such as from * previous discards, new pinning will cause valid mappings to be * re-established. Likewise, when the overall MemoryListener for a new * container is registered, a replay of mappings within the AddressSpace * will occur, re-establishing any previously zapped pages as well. * * Especially virtio-balloon is currently only prevented from discarding * new memory, it will not yet set ram_block_discard_set_required() and * therefore, neither stops us here or deals with the sudden memory * consumption of inflated memory. * * We do support discarding of memory coordinated via the RamDiscardManager * with some IOMMU types. vfio_ram_block_discard_disable() handles the * details once we know which type of IOMMU we are using. */ QLIST_FOREACH(container, &space->containers, next) { if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) { ret = vfio_ram_block_discard_disable(container, true); if (ret) { error_setg_errno(errp, -ret, "Cannot set discarding of RAM broken"); if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, &container->fd)) { error_report("vfio: error disconnecting group %d from" " container", group->groupid); } return ret; } group->container = container; QLIST_INSERT_HEAD(&container->group_list, group, container_next); vfio_kvm_device_add_group(group); return 0; } } fd = qemu_open_old("/dev/vfio/vfio", O_RDWR); if (fd < 0) { error_setg_errno(errp, errno, "failed to open /dev/vfio/vfio"); ret = -errno; goto put_space_exit; } ret = ioctl(fd, VFIO_GET_API_VERSION); if (ret != VFIO_API_VERSION) { error_setg(errp, "supported vfio version: %d, " "reported version: %d", VFIO_API_VERSION, ret); ret = -EINVAL; goto close_fd_exit; } container = g_malloc0(sizeof(*container)); container->space = space; container->fd = fd; container->error = NULL; container->dirty_pages_supported = false; container->dma_max_mappings = 0; QLIST_INIT(&container->giommu_list); QLIST_INIT(&container->hostwin_list); QLIST_INIT(&container->vrdl_list); ret = vfio_init_container(container, group->fd, errp); if (ret) { goto free_container_exit; } ret = vfio_ram_block_discard_disable(container, true); if (ret) { error_setg_errno(errp, -ret, "Cannot set discarding of RAM broken"); goto free_container_exit; } switch (container->iommu_type) { case VFIO_TYPE1v2_IOMMU: case VFIO_TYPE1_IOMMU: { struct vfio_iommu_type1_info *info; /* * FIXME: This assumes that a Type1 IOMMU can map any 64-bit * IOVA whatsoever. That's not actually true, but the current * kernel interface doesn't tell us what it can map, and the * existing Type1 IOMMUs generally support any IOVA we're * going to actually try in practice. */ ret = vfio_get_iommu_info(container, &info); if (ret || !(info->flags & VFIO_IOMMU_INFO_PGSIZES)) { /* Assume 4k IOVA page size */ info->iova_pgsizes = 4096; } vfio_host_win_add(container, 0, (hwaddr)-1, info->iova_pgsizes); container->pgsizes = info->iova_pgsizes; /* The default in the kernel ("dma_entry_limit") is 65535. */ container->dma_max_mappings = 65535; if (!ret) { vfio_get_info_dma_avail(info, &container->dma_max_mappings); vfio_get_iommu_info_migration(container, info); } g_free(info); break; } case VFIO_SPAPR_TCE_v2_IOMMU: case VFIO_SPAPR_TCE_IOMMU: { struct vfio_iommu_spapr_tce_info info; bool v2 = container->iommu_type == VFIO_SPAPR_TCE_v2_IOMMU; /* * The host kernel code implementing VFIO_IOMMU_DISABLE is called * when container fd is closed so we do not call it explicitly * in this file. */ if (!v2) { ret = ioctl(fd, VFIO_IOMMU_ENABLE); if (ret) { error_setg_errno(errp, errno, "failed to enable container"); ret = -errno; goto enable_discards_exit; } } else { container->prereg_listener = vfio_prereg_listener; memory_listener_register(&container->prereg_listener, &address_space_memory); if (container->error) { memory_listener_unregister(&container->prereg_listener); ret = -1; error_propagate_prepend(errp, container->error, "RAM memory listener initialization failed: "); goto enable_discards_exit; } } info.argsz = sizeof(info); ret = ioctl(fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info); if (ret) { error_setg_errno(errp, errno, "VFIO_IOMMU_SPAPR_TCE_GET_INFO failed"); ret = -errno; if (v2) { memory_listener_unregister(&container->prereg_listener); } goto enable_discards_exit; } if (v2) { container->pgsizes = info.ddw.pgsizes; /* * There is a default window in just created container. * To make region_add/del simpler, we better remove this * window now and let those iommu_listener callbacks * create/remove them when needed. */ ret = vfio_spapr_remove_window(container, info.dma32_window_start); if (ret) { error_setg_errno(errp, -ret, "failed to remove existing window"); goto enable_discards_exit; } } else { /* The default table uses 4K pages */ container->pgsizes = 0x1000; vfio_host_win_add(container, info.dma32_window_start, info.dma32_window_start + info.dma32_window_size - 1, 0x1000); } } } vfio_kvm_device_add_group(group); QLIST_INIT(&container->group_list); QLIST_INSERT_HEAD(&space->containers, container, next); group->container = container; QLIST_INSERT_HEAD(&container->group_list, group, container_next); container->listener = vfio_memory_listener; memory_listener_register(&container->listener, container->space->as); if (container->error) { ret = -1; error_propagate_prepend(errp, container->error, "memory listener initialization failed: "); goto listener_release_exit; } container->initialized = true; return 0; listener_release_exit: QLIST_REMOVE(group, container_next); QLIST_REMOVE(container, next); vfio_kvm_device_del_group(group); vfio_listener_release(container); enable_discards_exit: vfio_ram_block_discard_disable(container, false); free_container_exit: g_free(container); close_fd_exit: close(fd); put_space_exit: vfio_put_address_space(space); return ret; } static void vfio_disconnect_container(VFIOGroup *group) { VFIOContainer *container = group->container; QLIST_REMOVE(group, container_next); group->container = NULL; /* * Explicitly release the listener first before unset container, * since unset may destroy the backend container if it's the last * group. */ if (QLIST_EMPTY(&container->group_list)) { vfio_listener_release(container); } if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, &container->fd)) { error_report("vfio: error disconnecting group %d from container", group->groupid); } if (QLIST_EMPTY(&container->group_list)) { VFIOAddressSpace *space = container->space; VFIOGuestIOMMU *giommu, *tmp; VFIOHostDMAWindow *hostwin, *next; QLIST_REMOVE(container, next); QLIST_FOREACH_SAFE(giommu, &container->giommu_list, giommu_next, tmp) { memory_region_unregister_iommu_notifier( MEMORY_REGION(giommu->iommu), &giommu->n); QLIST_REMOVE(giommu, giommu_next); g_free(giommu); } QLIST_FOREACH_SAFE(hostwin, &container->hostwin_list, hostwin_next, next) { QLIST_REMOVE(hostwin, hostwin_next); g_free(hostwin); } trace_vfio_disconnect_container(container->fd); close(container->fd); g_free(container); vfio_put_address_space(space); } } VFIOGroup *vfio_get_group(int groupid, AddressSpace *as, Error **errp) { VFIOGroup *group; char path[32]; struct vfio_group_status status = { .argsz = sizeof(status) }; QLIST_FOREACH(group, &vfio_group_list, next) { if (group->groupid == groupid) { /* Found it. Now is it already in the right context? */ if (group->container->space->as == as) { return group; } else { error_setg(errp, "group %d used in multiple address spaces", group->groupid); return NULL; } } } group = g_malloc0(sizeof(*group)); snprintf(path, sizeof(path), "/dev/vfio/%d", groupid); group->fd = qemu_open_old(path, O_RDWR); if (group->fd < 0) { error_setg_errno(errp, errno, "failed to open %s", path); goto free_group_exit; } if (ioctl(group->fd, VFIO_GROUP_GET_STATUS, &status)) { error_setg_errno(errp, errno, "failed to get group %d status", groupid); goto close_fd_exit; } if (!(status.flags & VFIO_GROUP_FLAGS_VIABLE)) { error_setg(errp, "group %d is not viable", groupid); error_append_hint(errp, "Please ensure all devices within the iommu_group " "are bound to their vfio bus driver.\n"); goto close_fd_exit; } group->groupid = groupid; QLIST_INIT(&group->device_list); if (vfio_connect_container(group, as, errp)) { error_prepend(errp, "failed to setup container for group %d: ", groupid); goto close_fd_exit; } if (QLIST_EMPTY(&vfio_group_list)) { qemu_register_reset(vfio_reset_handler, NULL); } QLIST_INSERT_HEAD(&vfio_group_list, group, next); return group; close_fd_exit: close(group->fd); free_group_exit: g_free(group); return NULL; } void vfio_put_group(VFIOGroup *group) { if (!group || !QLIST_EMPTY(&group->device_list)) { return; } if (!group->ram_block_discard_allowed) { vfio_ram_block_discard_disable(group->container, false); } vfio_kvm_device_del_group(group); vfio_disconnect_container(group); QLIST_REMOVE(group, next); trace_vfio_put_group(group->fd); close(group->fd); g_free(group); if (QLIST_EMPTY(&vfio_group_list)) { qemu_unregister_reset(vfio_reset_handler, NULL); } } int vfio_get_device(VFIOGroup *group, const char *name, VFIODevice *vbasedev, Error **errp) { struct vfio_device_info dev_info = { .argsz = sizeof(dev_info) }; int ret, fd; fd = ioctl(group->fd, VFIO_GROUP_GET_DEVICE_FD, name); if (fd < 0) { error_setg_errno(errp, errno, "error getting device from group %d", group->groupid); error_append_hint(errp, "Verify all devices in group %d are bound to vfio- " "or pci-stub and not already in use\n", group->groupid); return fd; } ret = ioctl(fd, VFIO_DEVICE_GET_INFO, &dev_info); if (ret) { error_setg_errno(errp, errno, "error getting device info"); close(fd); return ret; } /* * Set discarding of RAM as not broken for this group if the driver knows * the device operates compatibly with discarding. Setting must be * consistent per group, but since compatibility is really only possible * with mdev currently, we expect singleton groups. */ if (vbasedev->ram_block_discard_allowed != group->ram_block_discard_allowed) { if (!QLIST_EMPTY(&group->device_list)) { error_setg(errp, "Inconsistent setting of support for discarding " "RAM (e.g., balloon) within group"); close(fd); return -1; } if (!group->ram_block_discard_allowed) { group->ram_block_discard_allowed = true; vfio_ram_block_discard_disable(group->container, false); } } vbasedev->fd = fd; vbasedev->group = group; QLIST_INSERT_HEAD(&group->device_list, vbasedev, next); vbasedev->num_irqs = dev_info.num_irqs; vbasedev->num_regions = dev_info.num_regions; vbasedev->flags = dev_info.flags; trace_vfio_get_device(name, dev_info.flags, dev_info.num_regions, dev_info.num_irqs); vbasedev->reset_works = !!(dev_info.flags & VFIO_DEVICE_FLAGS_RESET); return 0; } void vfio_put_base_device(VFIODevice *vbasedev) { if (!vbasedev->group) { return; } QLIST_REMOVE(vbasedev, next); vbasedev->group = NULL; trace_vfio_put_base_device(vbasedev->fd); close(vbasedev->fd); } int vfio_get_region_info(VFIODevice *vbasedev, int index, struct vfio_region_info **info) { size_t argsz = sizeof(struct vfio_region_info); *info = g_malloc0(argsz); (*info)->index = index; retry: (*info)->argsz = argsz; if (ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, *info)) { g_free(*info); *info = NULL; return -errno; } if ((*info)->argsz > argsz) { argsz = (*info)->argsz; *info = g_realloc(*info, argsz); goto retry; } return 0; } int vfio_get_dev_region_info(VFIODevice *vbasedev, uint32_t type, uint32_t subtype, struct vfio_region_info **info) { int i; for (i = 0; i < vbasedev->num_regions; i++) { struct vfio_info_cap_header *hdr; struct vfio_region_info_cap_type *cap_type; if (vfio_get_region_info(vbasedev, i, info)) { continue; } hdr = vfio_get_region_info_cap(*info, VFIO_REGION_INFO_CAP_TYPE); if (!hdr) { g_free(*info); continue; } cap_type = container_of(hdr, struct vfio_region_info_cap_type, header); trace_vfio_get_dev_region(vbasedev->name, i, cap_type->type, cap_type->subtype); if (cap_type->type == type && cap_type->subtype == subtype) { return 0; } g_free(*info); } *info = NULL; return -ENODEV; } bool vfio_has_region_cap(VFIODevice *vbasedev, int region, uint16_t cap_type) { struct vfio_region_info *info = NULL; bool ret = false; if (!vfio_get_region_info(vbasedev, region, &info)) { if (vfio_get_region_info_cap(info, cap_type)) { ret = true; } g_free(info); } return ret; } /* * Interfaces for IBM EEH (Enhanced Error Handling) */ static bool vfio_eeh_container_ok(VFIOContainer *container) { /* * As of 2016-03-04 (linux-4.5) the host kernel EEH/VFIO * implementation is broken if there are multiple groups in a * container. The hardware works in units of Partitionable * Endpoints (== IOMMU groups) and the EEH operations naively * iterate across all groups in the container, without any logic * to make sure the groups have their state synchronized. For * certain operations (ENABLE) that might be ok, until an error * occurs, but for others (GET_STATE) it's clearly broken. */ /* * XXX Once fixed kernels exist, test for them here */ if (QLIST_EMPTY(&container->group_list)) { return false; } if (QLIST_NEXT(QLIST_FIRST(&container->group_list), container_next)) { return false; } return true; } static int vfio_eeh_container_op(VFIOContainer *container, uint32_t op) { struct vfio_eeh_pe_op pe_op = { .argsz = sizeof(pe_op), .op = op, }; int ret; if (!vfio_eeh_container_ok(container)) { error_report("vfio/eeh: EEH_PE_OP 0x%x: " "kernel requires a container with exactly one group", op); return -EPERM; } ret = ioctl(container->fd, VFIO_EEH_PE_OP, &pe_op); if (ret < 0) { error_report("vfio/eeh: EEH_PE_OP 0x%x failed: %m", op); return -errno; } return ret; } static VFIOContainer *vfio_eeh_as_container(AddressSpace *as) { VFIOAddressSpace *space = vfio_get_address_space(as); VFIOContainer *container = NULL; if (QLIST_EMPTY(&space->containers)) { /* No containers to act on */ goto out; } container = QLIST_FIRST(&space->containers); if (QLIST_NEXT(container, next)) { /* We don't yet have logic to synchronize EEH state across * multiple containers */ container = NULL; goto out; } out: vfio_put_address_space(space); return container; } bool vfio_eeh_as_ok(AddressSpace *as) { VFIOContainer *container = vfio_eeh_as_container(as); return (container != NULL) && vfio_eeh_container_ok(container); } int vfio_eeh_as_op(AddressSpace *as, uint32_t op) { VFIOContainer *container = vfio_eeh_as_container(as); if (!container) { return -ENODEV; } return vfio_eeh_container_op(container, op); }