/* * Helpers for emulation of FPU-related MIPS instructions. * * Copyright (C) 2004-2005 Jocelyn Mayer * Copyright (C) 2020 Wave Computing, Inc. * Copyright (C) 2020 Aleksandar Markovic * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . * */ #include "qemu/osdep.h" #include "qemu/main-loop.h" #include "cpu.h" #include "internal.h" #include "qemu/host-utils.h" #include "exec/helper-proto.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #include "exec/memop.h" #include "sysemu/kvm.h" #include "fpu/softfloat.h" /* Complex FPU operations which may need stack space. */ #define FLOAT_TWO32 make_float32(1 << 30) #define FLOAT_TWO64 make_float64(1ULL << 62) #define FP_TO_INT32_OVERFLOW 0x7fffffff #define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL /* convert MIPS rounding mode in FCR31 to IEEE library */ unsigned int ieee_rm[] = { float_round_nearest_even, float_round_to_zero, float_round_up, float_round_down }; target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg) { target_ulong arg1 = 0; switch (reg) { case 0: arg1 = (int32_t)env->active_fpu.fcr0; break; case 1: /* UFR Support - Read Status FR */ if (env->active_fpu.fcr0 & (1 << FCR0_UFRP)) { if (env->CP0_Config5 & (1 << CP0C5_UFR)) { arg1 = (int32_t) ((env->CP0_Status & (1 << CP0St_FR)) >> CP0St_FR); } else { do_raise_exception(env, EXCP_RI, GETPC()); } } break; case 5: /* FRE Support - read Config5.FRE bit */ if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) { if (env->CP0_Config5 & (1 << CP0C5_UFE)) { arg1 = (env->CP0_Config5 >> CP0C5_FRE) & 1; } else { helper_raise_exception(env, EXCP_RI); } } break; case 25: arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1); break; case 26: arg1 = env->active_fpu.fcr31 & 0x0003f07c; break; case 28: arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4); break; default: arg1 = (int32_t)env->active_fpu.fcr31; break; } return arg1; } void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t fs, uint32_t rt) { switch (fs) { case 1: /* UFR Alias - Reset Status FR */ if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) { return; } if (env->CP0_Config5 & (1 << CP0C5_UFR)) { env->CP0_Status &= ~(1 << CP0St_FR); compute_hflags(env); } else { do_raise_exception(env, EXCP_RI, GETPC()); } break; case 4: /* UNFR Alias - Set Status FR */ if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) { return; } if (env->CP0_Config5 & (1 << CP0C5_UFR)) { env->CP0_Status |= (1 << CP0St_FR); compute_hflags(env); } else { do_raise_exception(env, EXCP_RI, GETPC()); } break; case 5: /* FRE Support - clear Config5.FRE bit */ if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) { return; } if (env->CP0_Config5 & (1 << CP0C5_UFE)) { env->CP0_Config5 &= ~(1 << CP0C5_FRE); compute_hflags(env); } else { helper_raise_exception(env, EXCP_RI); } break; case 6: /* FRE Support - set Config5.FRE bit */ if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) { return; } if (env->CP0_Config5 & (1 << CP0C5_UFE)) { env->CP0_Config5 |= (1 << CP0C5_FRE); compute_hflags(env); } else { helper_raise_exception(env, EXCP_RI); } break; case 25: if ((env->insn_flags & ISA_MIPS32R6) || (arg1 & 0xffffff00)) { return; } env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) | ((arg1 & 0x1) << 23); break; case 26: if (arg1 & 0x007c0000) { return; } env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c); break; case 28: if (arg1 & 0x007c0000) { return; } env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) | ((arg1 & 0x4) << 22); break; case 31: env->active_fpu.fcr31 = (arg1 & env->active_fpu.fcr31_rw_bitmask) | (env->active_fpu.fcr31 & ~(env->active_fpu.fcr31_rw_bitmask)); break; default: if (env->insn_flags & ISA_MIPS32R6) { do_raise_exception(env, EXCP_RI, GETPC()); } return; } restore_fp_status(env); set_float_exception_flags(0, &env->active_fpu.fp_status); if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31)) { do_raise_exception(env, EXCP_FPE, GETPC()); } } static inline int ieee_to_mips_xcpt(int ieee_xcpt) { int mips_xcpt = 0; if (ieee_xcpt & float_flag_invalid) { mips_xcpt |= FP_INVALID; } if (ieee_xcpt & float_flag_overflow) { mips_xcpt |= FP_OVERFLOW; } if (ieee_xcpt & float_flag_underflow) { mips_xcpt |= FP_UNDERFLOW; } if (ieee_xcpt & float_flag_divbyzero) { mips_xcpt |= FP_DIV0; } if (ieee_xcpt & float_flag_inexact) { mips_xcpt |= FP_INEXACT; } return mips_xcpt; } static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc) { int ieee_exception_flags = get_float_exception_flags( &env->active_fpu.fp_status); int mips_exception_flags = 0; if (ieee_exception_flags) { mips_exception_flags = ieee_to_mips_xcpt(ieee_exception_flags); } SET_FP_CAUSE(env->active_fpu.fcr31, mips_exception_flags); if (mips_exception_flags) { set_float_exception_flags(0, &env->active_fpu.fp_status); if (GET_FP_ENABLE(env->active_fpu.fcr31) & mips_exception_flags) { do_raise_exception(env, EXCP_FPE, pc); } else { UPDATE_FP_FLAGS(env->active_fpu.fcr31, mips_exception_flags); } } } /* * Float support. * Single precition routines have a "s" suffix, double precision a * "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps", * paired single lower "pl", paired single upper "pu". */ /* unary operations, modifying fp status */ uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0) { fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdt0; } uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0) { fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst0; } uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0) { uint64_t fdt2; fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdt2; } uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0) { uint64_t fdt2; fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdt2; } uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0) { uint64_t fdt2; fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdt2; } uint64_t helper_float_cvt_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_cvt_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0) { uint32_t fst2; uint32_t fsth2; fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)fsth2 << 32) | fst2; } uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; uint32_t wth2; int excp, excph; wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); excp = get_float_exception_flags(&env->active_fpu.fp_status); if (excp & (float_flag_overflow | float_flag_invalid)) { wt2 = FP_TO_INT32_OVERFLOW; } set_float_exception_flags(0, &env->active_fpu.fp_status); wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status); excph = get_float_exception_flags(&env->active_fpu.fp_status); if (excph & (float_flag_overflow | float_flag_invalid)) { wth2 = FP_TO_INT32_OVERFLOW; } set_float_exception_flags(excp | excph, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)wth2 << 32) | wt2; } uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t fst2; fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst2; } uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0) { uint32_t fst2; fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst2; } uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0) { uint32_t fst2; fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst2; } uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0) { uint32_t wt2; wt2 = wt0; update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0) { uint32_t wt2; wt2 = wth0; update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_cvt_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_cvt_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_round_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_round_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_round_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_round_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_trunc_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_trunc_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_trunc_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_trunc_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_ceil_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_ceil_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_ceil_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_ceil_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_floor_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_floor_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_floor_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_floor_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_cvt_2008_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_cvt_2008_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_cvt_2008_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_cvt_2008_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_round_2008_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_round_2008_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_round_2008_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_round_2008_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_trunc_2008_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_trunc_2008_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_trunc_2008_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_trunc_2008_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_ceil_2008_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_ceil_2008_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_ceil_2008_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_ceil_2008_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_floor_2008_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_floor_2008_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_floor_2008_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_floor_2008_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } /* unary operations, not modifying fp status */ #define FLOAT_UNOP(name) \ uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \ { \ return float64_ ## name(fdt0); \ } \ uint32_t helper_float_ ## name ## _s(uint32_t fst0) \ { \ return float32_ ## name(fst0); \ } \ uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \ { \ uint32_t wt0; \ uint32_t wth0; \ \ wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \ wth0 = float32_ ## name(fdt0 >> 32); \ return ((uint64_t)wth0 << 32) | wt0; \ } FLOAT_UNOP(abs) FLOAT_UNOP(chs) #undef FLOAT_UNOP /* MIPS specific unary operations */ uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t fdt2; fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdt2; } uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0) { uint32_t fst2; fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst2; } uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t fdt2; fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status); fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdt2; } uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0) { uint32_t fst2; fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status); fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst2; } uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t fdt2; fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdt2; } uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0) { uint32_t fst2; fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst2; } uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0) { uint32_t fstl2; uint32_t fsth2; fstl2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)fsth2 << 32) | fstl2; } uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t fdt2; fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status); fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdt2; } uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0) { uint32_t fst2; fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status); fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst2; } uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0) { uint32_t fstl2; uint32_t fsth2; fstl2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status); fstl2 = float32_div(float32_one, fstl2, &env->active_fpu.fp_status); fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)fsth2 << 32) | fstl2; } uint64_t helper_float_rint_d(CPUMIPSState *env, uint64_t fs) { uint64_t fdret; fdret = float64_round_to_int(fs, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdret; } uint32_t helper_float_rint_s(CPUMIPSState *env, uint32_t fs) { uint32_t fdret; fdret = float32_round_to_int(fs, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdret; } #define FLOAT_CLASS_SIGNALING_NAN 0x001 #define FLOAT_CLASS_QUIET_NAN 0x002 #define FLOAT_CLASS_NEGATIVE_INFINITY 0x004 #define FLOAT_CLASS_NEGATIVE_NORMAL 0x008 #define FLOAT_CLASS_NEGATIVE_SUBNORMAL 0x010 #define FLOAT_CLASS_NEGATIVE_ZERO 0x020 #define FLOAT_CLASS_POSITIVE_INFINITY 0x040 #define FLOAT_CLASS_POSITIVE_NORMAL 0x080 #define FLOAT_CLASS_POSITIVE_SUBNORMAL 0x100 #define FLOAT_CLASS_POSITIVE_ZERO 0x200 uint64_t float_class_d(uint64_t arg, float_status *status) { if (float64_is_signaling_nan(arg, status)) { return FLOAT_CLASS_SIGNALING_NAN; } else if (float64_is_quiet_nan(arg, status)) { return FLOAT_CLASS_QUIET_NAN; } else if (float64_is_neg(arg)) { if (float64_is_infinity(arg)) { return FLOAT_CLASS_NEGATIVE_INFINITY; } else if (float64_is_zero(arg)) { return FLOAT_CLASS_NEGATIVE_ZERO; } else if (float64_is_zero_or_denormal(arg)) { return FLOAT_CLASS_NEGATIVE_SUBNORMAL; } else { return FLOAT_CLASS_NEGATIVE_NORMAL; } } else { if (float64_is_infinity(arg)) { return FLOAT_CLASS_POSITIVE_INFINITY; } else if (float64_is_zero(arg)) { return FLOAT_CLASS_POSITIVE_ZERO; } else if (float64_is_zero_or_denormal(arg)) { return FLOAT_CLASS_POSITIVE_SUBNORMAL; } else { return FLOAT_CLASS_POSITIVE_NORMAL; } } } uint64_t helper_float_class_d(CPUMIPSState *env, uint64_t arg) { return float_class_d(arg, &env->active_fpu.fp_status); } uint32_t float_class_s(uint32_t arg, float_status *status) { if (float32_is_signaling_nan(arg, status)) { return FLOAT_CLASS_SIGNALING_NAN; } else if (float32_is_quiet_nan(arg, status)) { return FLOAT_CLASS_QUIET_NAN; } else if (float32_is_neg(arg)) { if (float32_is_infinity(arg)) { return FLOAT_CLASS_NEGATIVE_INFINITY; } else if (float32_is_zero(arg)) { return FLOAT_CLASS_NEGATIVE_ZERO; } else if (float32_is_zero_or_denormal(arg)) { return FLOAT_CLASS_NEGATIVE_SUBNORMAL; } else { return FLOAT_CLASS_NEGATIVE_NORMAL; } } else { if (float32_is_infinity(arg)) { return FLOAT_CLASS_POSITIVE_INFINITY; } else if (float32_is_zero(arg)) { return FLOAT_CLASS_POSITIVE_ZERO; } else if (float32_is_zero_or_denormal(arg)) { return FLOAT_CLASS_POSITIVE_SUBNORMAL; } else { return FLOAT_CLASS_POSITIVE_NORMAL; } } } uint32_t helper_float_class_s(CPUMIPSState *env, uint32_t arg) { return float_class_s(arg, &env->active_fpu.fp_status); } /* binary operations */ uint64_t helper_float_add_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1) { uint64_t dt2; dt2 = float64_add(fdt0, fdt1, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_add_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst1) { uint32_t wt2; wt2 = float32_sub(fst0, fst1, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_add_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1) { uint32_t fstl0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fstl1 = fdt1 & 0XFFFFFFFF; uint32_t fsth1 = fdt1 >> 32; uint32_t wtl2; uint32_t wth2; wtl2 = float32_add(fstl0, fstl1, &env->active_fpu.fp_status); wth2 = float32_add(fsth0, fsth1, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)wth2 << 32) | wtl2; } uint64_t helper_float_sub_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1) { uint64_t dt2; dt2 = float64_sub(fdt0, fdt1, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_sub_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst1) { uint32_t wt2; wt2 = float32_sub(fst0, fst1, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_sub_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1) { uint32_t fstl0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fstl1 = fdt1 & 0XFFFFFFFF; uint32_t fsth1 = fdt1 >> 32; uint32_t wtl2; uint32_t wth2; wtl2 = float32_sub(fstl0, fstl1, &env->active_fpu.fp_status); wth2 = float32_sub(fsth0, fsth1, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)wth2 << 32) | wtl2; } uint64_t helper_float_mul_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1) { uint64_t dt2; dt2 = float64_mul(fdt0, fdt1, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_mul_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst1) { uint32_t wt2; wt2 = float32_mul(fst0, fst1, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_mul_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1) { uint32_t fstl0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fstl1 = fdt1 & 0XFFFFFFFF; uint32_t fsth1 = fdt1 >> 32; uint32_t wtl2; uint32_t wth2; wtl2 = float32_mul(fstl0, fstl1, &env->active_fpu.fp_status); wth2 = float32_mul(fsth0, fsth1, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)wth2 << 32) | wtl2; } uint64_t helper_float_div_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1) { uint64_t dt2; dt2 = float64_div(fdt0, fdt1, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_div_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst1) { uint32_t wt2; wt2 = float32_div(fst0, fst1, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_div_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1) { uint32_t fstl0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fstl1 = fdt1 & 0XFFFFFFFF; uint32_t fsth1 = fdt1 >> 32; uint32_t wtl2; uint32_t wth2; wtl2 = float32_div(fstl0, fstl1, &env->active_fpu.fp_status); wth2 = float32_div(fsth0, fsth1, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)wth2 << 32) | wtl2; } /* MIPS specific binary operations */ uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2) { fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status); fdt2 = float64_chs(float64_sub(fdt2, float64_one, &env->active_fpu.fp_status)); update_fcr31(env, GETPC()); return fdt2; } uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2) { fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status)); update_fcr31(env, GETPC()); return fst2; } uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2) { uint32_t fstl0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fstl2 = fdt2 & 0XFFFFFFFF; uint32_t fsth2 = fdt2 >> 32; fstl2 = float32_mul(fstl0, fstl2, &env->active_fpu.fp_status); fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status); fstl2 = float32_chs(float32_sub(fstl2, float32_one, &env->active_fpu.fp_status)); fsth2 = float32_chs(float32_sub(fsth2, float32_one, &env->active_fpu.fp_status)); update_fcr31(env, GETPC()); return ((uint64_t)fsth2 << 32) | fstl2; } uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2) { fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status); fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status); fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status)); update_fcr31(env, GETPC()); return fdt2; } uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2) { fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status); fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status)); update_fcr31(env, GETPC()); return fst2; } uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2) { uint32_t fstl0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fstl2 = fdt2 & 0XFFFFFFFF; uint32_t fsth2 = fdt2 >> 32; fstl2 = float32_mul(fstl0, fstl2, &env->active_fpu.fp_status); fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status); fstl2 = float32_sub(fstl2, float32_one, &env->active_fpu.fp_status); fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status); fstl2 = float32_chs(float32_div(fstl2, FLOAT_TWO32, &env->active_fpu.fp_status)); fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status)); update_fcr31(env, GETPC()); return ((uint64_t)fsth2 << 32) | fstl2; } uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1) { uint32_t fstl0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fstl1 = fdt1 & 0XFFFFFFFF; uint32_t fsth1 = fdt1 >> 32; uint32_t fstl2; uint32_t fsth2; fstl2 = float32_add(fstl0, fsth0, &env->active_fpu.fp_status); fsth2 = float32_add(fstl1, fsth1, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)fsth2 << 32) | fstl2; } uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1) { uint32_t fstl0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fstl1 = fdt1 & 0XFFFFFFFF; uint32_t fsth1 = fdt1 >> 32; uint32_t fstl2; uint32_t fsth2; fstl2 = float32_mul(fstl0, fsth0, &env->active_fpu.fp_status); fsth2 = float32_mul(fstl1, fsth1, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)fsth2 << 32) | fstl2; } #define FLOAT_MINMAX(name, bits, minmaxfunc) \ uint ## bits ## _t helper_float_ ## name(CPUMIPSState *env, \ uint ## bits ## _t fs, \ uint ## bits ## _t ft) \ { \ uint ## bits ## _t fdret; \ \ fdret = float ## bits ## _ ## minmaxfunc(fs, ft, \ &env->active_fpu.fp_status); \ update_fcr31(env, GETPC()); \ return fdret; \ } FLOAT_MINMAX(max_s, 32, maxnum) FLOAT_MINMAX(max_d, 64, maxnum) FLOAT_MINMAX(maxa_s, 32, maxnummag) FLOAT_MINMAX(maxa_d, 64, maxnummag) FLOAT_MINMAX(min_s, 32, minnum) FLOAT_MINMAX(min_d, 64, minnum) FLOAT_MINMAX(mina_s, 32, minnummag) FLOAT_MINMAX(mina_d, 64, minnummag) #undef FLOAT_MINMAX /* ternary operations */ uint64_t helper_float_madd_d(CPUMIPSState *env, uint64_t fst0, uint64_t fst1, uint64_t fst2) { fst0 = float64_mul(fst0, fst1, &env->active_fpu.fp_status); fst0 = float64_add(fst0, fst2, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst0; } uint32_t helper_float_madd_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst1, uint32_t fst2) { fst0 = float32_mul(fst0, fst1, &env->active_fpu.fp_status); fst0 = float32_add(fst0, fst2, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst0; } uint64_t helper_float_madd_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1, uint64_t fdt2) { uint32_t fstl0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fstl1 = fdt1 & 0XFFFFFFFF; uint32_t fsth1 = fdt1 >> 32; uint32_t fstl2 = fdt2 & 0XFFFFFFFF; uint32_t fsth2 = fdt2 >> 32; fstl0 = float32_mul(fstl0, fstl1, &env->active_fpu.fp_status); fstl0 = float32_add(fstl0, fstl2, &env->active_fpu.fp_status); fsth0 = float32_mul(fsth0, fsth1, &env->active_fpu.fp_status); fsth0 = float32_add(fsth0, fsth2, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)fsth0 << 32) | fstl0; } uint64_t helper_float_msub_d(CPUMIPSState *env, uint64_t fst0, uint64_t fst1, uint64_t fst2) { fst0 = float64_mul(fst0, fst1, &env->active_fpu.fp_status); fst0 = float64_sub(fst0, fst2, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst0; } uint32_t helper_float_msub_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst1, uint32_t fst2) { fst0 = float32_mul(fst0, fst1, &env->active_fpu.fp_status); fst0 = float32_sub(fst0, fst2, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst0; } uint64_t helper_float_msub_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1, uint64_t fdt2) { uint32_t fstl0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fstl1 = fdt1 & 0XFFFFFFFF; uint32_t fsth1 = fdt1 >> 32; uint32_t fstl2 = fdt2 & 0XFFFFFFFF; uint32_t fsth2 = fdt2 >> 32; fstl0 = float32_mul(fstl0, fstl1, &env->active_fpu.fp_status); fstl0 = float32_sub(fstl0, fstl2, &env->active_fpu.fp_status); fsth0 = float32_mul(fsth0, fsth1, &env->active_fpu.fp_status); fsth0 = float32_sub(fsth0, fsth2, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)fsth0 << 32) | fstl0; } uint64_t helper_float_nmadd_d(CPUMIPSState *env, uint64_t fst0, uint64_t fst1, uint64_t fst2) { fst0 = float64_mul(fst0, fst1, &env->active_fpu.fp_status); fst0 = float64_add(fst0, fst2, &env->active_fpu.fp_status); fst0 = float64_chs(fst0); update_fcr31(env, GETPC()); return fst0; } uint32_t helper_float_nmadd_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst1, uint32_t fst2) { fst0 = float32_mul(fst0, fst1, &env->active_fpu.fp_status); fst0 = float32_add(fst0, fst2, &env->active_fpu.fp_status); fst0 = float32_chs(fst0); update_fcr31(env, GETPC()); return fst0; } uint64_t helper_float_nmadd_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1, uint64_t fdt2) { uint32_t fstl0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fstl1 = fdt1 & 0XFFFFFFFF; uint32_t fsth1 = fdt1 >> 32; uint32_t fstl2 = fdt2 & 0XFFFFFFFF; uint32_t fsth2 = fdt2 >> 32; fstl0 = float32_mul(fstl0, fstl1, &env->active_fpu.fp_status); fstl0 = float32_add(fstl0, fstl2, &env->active_fpu.fp_status); fstl0 = float32_chs(fstl0); fsth0 = float32_mul(fsth0, fsth1, &env->active_fpu.fp_status); fsth0 = float32_add(fsth0, fsth2, &env->active_fpu.fp_status); fsth0 = float32_chs(fsth0); update_fcr31(env, GETPC()); return ((uint64_t)fsth0 << 32) | fstl0; } uint64_t helper_float_nmsub_d(CPUMIPSState *env, uint64_t fst0, uint64_t fst1, uint64_t fst2) { fst0 = float64_mul(fst0, fst1, &env->active_fpu.fp_status); fst0 = float64_sub(fst0, fst2, &env->active_fpu.fp_status); fst0 = float64_chs(fst0); update_fcr31(env, GETPC()); return fst0; } uint32_t helper_float_nmsub_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst1, uint32_t fst2) { fst0 = float32_mul(fst0, fst1, &env->active_fpu.fp_status); fst0 = float32_sub(fst0, fst2, &env->active_fpu.fp_status); fst0 = float32_chs(fst0); update_fcr31(env, GETPC()); return fst0; } uint64_t helper_float_nmsub_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1, uint64_t fdt2) { uint32_t fstl0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fstl1 = fdt1 & 0XFFFFFFFF; uint32_t fsth1 = fdt1 >> 32; uint32_t fstl2 = fdt2 & 0XFFFFFFFF; uint32_t fsth2 = fdt2 >> 32; fstl0 = float32_mul(fstl0, fstl1, &env->active_fpu.fp_status); fstl0 = float32_sub(fstl0, fstl2, &env->active_fpu.fp_status); fstl0 = float32_chs(fstl0); fsth0 = float32_mul(fsth0, fsth1, &env->active_fpu.fp_status); fsth0 = float32_sub(fsth0, fsth2, &env->active_fpu.fp_status); fsth0 = float32_chs(fsth0); update_fcr31(env, GETPC()); return ((uint64_t)fsth0 << 32) | fstl0; } #define FLOAT_FMADDSUB(name, bits, muladd_arg) \ uint ## bits ## _t helper_float_ ## name(CPUMIPSState *env, \ uint ## bits ## _t fs, \ uint ## bits ## _t ft, \ uint ## bits ## _t fd) \ { \ uint ## bits ## _t fdret; \ \ fdret = float ## bits ## _muladd(fs, ft, fd, muladd_arg, \ &env->active_fpu.fp_status); \ update_fcr31(env, GETPC()); \ return fdret; \ } FLOAT_FMADDSUB(maddf_s, 32, 0) FLOAT_FMADDSUB(maddf_d, 64, 0) FLOAT_FMADDSUB(msubf_s, 32, float_muladd_negate_product) FLOAT_FMADDSUB(msubf_d, 64, float_muladd_negate_product) #undef FLOAT_FMADDSUB /* compare operations */ #define FOP_COND_D(op, cond) \ void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \ uint64_t fdt1, int cc) \ { \ int c; \ c = cond; \ update_fcr31(env, GETPC()); \ if (c) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ } \ void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \ uint64_t fdt1, int cc) \ { \ int c; \ fdt0 = float64_abs(fdt0); \ fdt1 = float64_abs(fdt1); \ c = cond; \ update_fcr31(env, GETPC()); \ if (c) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ } /* * NOTE: the comma operator will make "cond" to eval to false, * but float64_unordered_quiet() is still called. */ FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0)) FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)) FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) /* * NOTE: the comma operator will make "cond" to eval to false, * but float64_unordered() is still called. */ FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0)) FOP_COND_D(ngle, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)) FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) #define FOP_COND_S(op, cond) \ void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \ uint32_t fst1, int cc) \ { \ int c; \ c = cond; \ update_fcr31(env, GETPC()); \ if (c) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ } \ void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \ uint32_t fst1, int cc) \ { \ int c; \ fst0 = float32_abs(fst0); \ fst1 = float32_abs(fst1); \ c = cond; \ update_fcr31(env, GETPC()); \ if (c) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ } /* * NOTE: the comma operator will make "cond" to eval to false, * but float32_unordered_quiet() is still called. */ FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0)) FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)) FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)) /* * NOTE: the comma operator will make "cond" to eval to false, * but float32_unordered() is still called. */ FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0)) FOP_COND_S(ngle, float32_unordered(fst1, fst0, &env->active_fpu.fp_status)) FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status)) #define FOP_COND_PS(op, condl, condh) \ void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \ uint64_t fdt1, int cc) \ { \ uint32_t fst0, fsth0, fst1, fsth1; \ int ch, cl; \ fst0 = fdt0 & 0XFFFFFFFF; \ fsth0 = fdt0 >> 32; \ fst1 = fdt1 & 0XFFFFFFFF; \ fsth1 = fdt1 >> 32; \ cl = condl; \ ch = condh; \ update_fcr31(env, GETPC()); \ if (cl) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ if (ch) \ SET_FP_COND(cc + 1, env->active_fpu); \ else \ CLEAR_FP_COND(cc + 1, env->active_fpu); \ } \ void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \ uint64_t fdt1, int cc) \ { \ uint32_t fst0, fsth0, fst1, fsth1; \ int ch, cl; \ fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \ fsth0 = float32_abs(fdt0 >> 32); \ fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \ fsth1 = float32_abs(fdt1 >> 32); \ cl = condl; \ ch = condh; \ update_fcr31(env, GETPC()); \ if (cl) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ if (ch) \ SET_FP_COND(cc + 1, env->active_fpu); \ else \ CLEAR_FP_COND(cc + 1, env->active_fpu); \ } /* * NOTE: the comma operator will make "cond" to eval to false, * but float32_unordered_quiet() is still called. */ FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0), (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0)) FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status)) FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status), float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status), float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status), float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status), float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status), float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status), float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) /* * NOTE: the comma operator will make "cond" to eval to false, * but float32_unordered() is still called. */ FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0), (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0)) FOP_COND_PS(ngle, float32_unordered(fst1, fst0, &env->active_fpu.fp_status), float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status)) FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status), float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status), float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status), float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status), float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status), float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status), float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) /* R6 compare operations */ #define FOP_CONDN_D(op, cond) \ uint64_t helper_r6_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \ uint64_t fdt1) \ { \ uint64_t c; \ c = cond; \ update_fcr31(env, GETPC()); \ if (c) { \ return -1; \ } else { \ return 0; \ } \ } /* * NOTE: the comma operator will make "cond" to eval to false, * but float64_unordered_quiet() is still called. */ FOP_CONDN_D(af, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0)) FOP_CONDN_D(un, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))) FOP_CONDN_D(eq, (float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(ueq, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(lt, (float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(ult, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(le, (float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(ule, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) /* * NOTE: the comma operator will make "cond" to eval to false, * but float64_unordered() is still called.\ */ FOP_CONDN_D(saf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0)) FOP_CONDN_D(sun, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))) FOP_CONDN_D(seq, (float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(sueq, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(slt, (float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(sult, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(sle, (float64_le(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(sule, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(or, (float64_le_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(une, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(ne, (float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(sor, (float64_le(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(sune, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(sne, (float64_lt(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))) #define FOP_CONDN_S(op, cond) \ uint32_t helper_r6_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \ uint32_t fst1) \ { \ uint64_t c; \ c = cond; \ update_fcr31(env, GETPC()); \ if (c) { \ return -1; \ } else { \ return 0; \ } \ } /* * NOTE: the comma operator will make "cond" to eval to false, * but float32_unordered_quiet() is still called. */ FOP_CONDN_S(af, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0)) FOP_CONDN_S(un, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))) FOP_CONDN_S(eq, (float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(ueq, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(lt, (float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(ult, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(le, (float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(ule, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))) /* * NOTE: the comma operator will make "cond" to eval to false, * but float32_unordered() is still called. */ FOP_CONDN_S(saf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0)) FOP_CONDN_S(sun, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status))) FOP_CONDN_S(seq, (float32_eq(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(sueq, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(slt, (float32_lt(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(sult, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(sle, (float32_le(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(sule, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(or, (float32_le_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(une, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(ne, (float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(sor, (float32_le(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(sune, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(sne, (float32_lt(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))