/* * QEMU PCI bus manager * * Copyright (c) 2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "pci.h" #include "pci_bridge.h" #include "pci_internals.h" #include "msix.h" #include "msi.h" #include "monitor.h" #include "net.h" #include "sysemu.h" #include "loader.h" #include "qemu-objects.h" #include "range.h" //#define DEBUG_PCI #ifdef DEBUG_PCI # define PCI_DPRINTF(format, ...) printf(format, ## __VA_ARGS__) #else # define PCI_DPRINTF(format, ...) do { } while (0) #endif static void pcibus_dev_print(Monitor *mon, DeviceState *dev, int indent); static char *pcibus_get_dev_path(DeviceState *dev); struct BusInfo pci_bus_info = { .name = "PCI", .size = sizeof(PCIBus), .print_dev = pcibus_dev_print, .get_dev_path = pcibus_get_dev_path, .props = (Property[]) { DEFINE_PROP_PCI_DEVFN("addr", PCIDevice, devfn, -1), DEFINE_PROP_STRING("romfile", PCIDevice, romfile), DEFINE_PROP_UINT32("rombar", PCIDevice, rom_bar, 1), DEFINE_PROP_BIT("multifunction", PCIDevice, cap_present, QEMU_PCI_CAP_MULTIFUNCTION_BITNR, false), DEFINE_PROP_END_OF_LIST() } }; static void pci_update_mappings(PCIDevice *d); static void pci_set_irq(void *opaque, int irq_num, int level); static int pci_add_option_rom(PCIDevice *pdev, bool is_default_rom); static void pci_del_option_rom(PCIDevice *pdev); static uint16_t pci_default_sub_vendor_id = PCI_SUBVENDOR_ID_REDHAT_QUMRANET; static uint16_t pci_default_sub_device_id = PCI_SUBDEVICE_ID_QEMU; struct PCIHostBus { int domain; struct PCIBus *bus; QLIST_ENTRY(PCIHostBus) next; }; static QLIST_HEAD(, PCIHostBus) host_buses; static const VMStateDescription vmstate_pcibus = { .name = "PCIBUS", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField []) { VMSTATE_INT32_EQUAL(nirq, PCIBus), VMSTATE_VARRAY_INT32(irq_count, PCIBus, nirq, 0, vmstate_info_int32, int32_t), VMSTATE_END_OF_LIST() } }; static int pci_bar(PCIDevice *d, int reg) { uint8_t type; if (reg != PCI_ROM_SLOT) return PCI_BASE_ADDRESS_0 + reg * 4; type = d->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION; return type == PCI_HEADER_TYPE_BRIDGE ? PCI_ROM_ADDRESS1 : PCI_ROM_ADDRESS; } static inline int pci_irq_state(PCIDevice *d, int irq_num) { return (d->irq_state >> irq_num) & 0x1; } static inline void pci_set_irq_state(PCIDevice *d, int irq_num, int level) { d->irq_state &= ~(0x1 << irq_num); d->irq_state |= level << irq_num; } static void pci_change_irq_level(PCIDevice *pci_dev, int irq_num, int change) { PCIBus *bus; for (;;) { bus = pci_dev->bus; irq_num = bus->map_irq(pci_dev, irq_num); if (bus->set_irq) break; pci_dev = bus->parent_dev; } bus->irq_count[irq_num] += change; bus->set_irq(bus->irq_opaque, irq_num, bus->irq_count[irq_num] != 0); } /* Update interrupt status bit in config space on interrupt * state change. */ static void pci_update_irq_status(PCIDevice *dev) { if (dev->irq_state) { dev->config[PCI_STATUS] |= PCI_STATUS_INTERRUPT; } else { dev->config[PCI_STATUS] &= ~PCI_STATUS_INTERRUPT; } } static void pci_device_reset(PCIDevice *dev) { int r; dev->irq_state = 0; pci_update_irq_status(dev); /* Clear all writeable bits */ pci_word_test_and_clear_mask(dev->config + PCI_COMMAND, pci_get_word(dev->wmask + PCI_COMMAND) | pci_get_word(dev->w1cmask + PCI_COMMAND)); pci_word_test_and_clear_mask(dev->config + PCI_STATUS, pci_get_word(dev->wmask + PCI_STATUS) | pci_get_word(dev->w1cmask + PCI_STATUS)); dev->config[PCI_CACHE_LINE_SIZE] = 0x0; dev->config[PCI_INTERRUPT_LINE] = 0x0; for (r = 0; r < PCI_NUM_REGIONS; ++r) { PCIIORegion *region = &dev->io_regions[r]; if (!region->size) { continue; } if (!(region->type & PCI_BASE_ADDRESS_SPACE_IO) && region->type & PCI_BASE_ADDRESS_MEM_TYPE_64) { pci_set_quad(dev->config + pci_bar(dev, r), region->type); } else { pci_set_long(dev->config + pci_bar(dev, r), region->type); } } pci_update_mappings(dev); } static void pci_bus_reset(void *opaque) { PCIBus *bus = opaque; int i; for (i = 0; i < bus->nirq; i++) { bus->irq_count[i] = 0; } for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) { if (bus->devices[i]) { pci_device_reset(bus->devices[i]); } } } static void pci_host_bus_register(int domain, PCIBus *bus) { struct PCIHostBus *host; host = qemu_mallocz(sizeof(*host)); host->domain = domain; host->bus = bus; QLIST_INSERT_HEAD(&host_buses, host, next); } PCIBus *pci_find_root_bus(int domain) { struct PCIHostBus *host; QLIST_FOREACH(host, &host_buses, next) { if (host->domain == domain) { return host->bus; } } return NULL; } int pci_find_domain(const PCIBus *bus) { PCIDevice *d; struct PCIHostBus *host; /* obtain root bus */ while ((d = bus->parent_dev) != NULL) { bus = d->bus; } QLIST_FOREACH(host, &host_buses, next) { if (host->bus == bus) { return host->domain; } } abort(); /* should not be reached */ return -1; } void pci_bus_new_inplace(PCIBus *bus, DeviceState *parent, const char *name, int devfn_min) { qbus_create_inplace(&bus->qbus, &pci_bus_info, parent, name); assert(PCI_FUNC(devfn_min) == 0); bus->devfn_min = devfn_min; /* host bridge */ QLIST_INIT(&bus->child); pci_host_bus_register(0, bus); /* for now only pci domain 0 is supported */ vmstate_register(NULL, -1, &vmstate_pcibus, bus); qemu_register_reset(pci_bus_reset, bus); } PCIBus *pci_bus_new(DeviceState *parent, const char *name, int devfn_min) { PCIBus *bus; bus = qemu_mallocz(sizeof(*bus)); bus->qbus.qdev_allocated = 1; pci_bus_new_inplace(bus, parent, name, devfn_min); return bus; } void pci_bus_irqs(PCIBus *bus, pci_set_irq_fn set_irq, pci_map_irq_fn map_irq, void *irq_opaque, int nirq) { bus->set_irq = set_irq; bus->map_irq = map_irq; bus->irq_opaque = irq_opaque; bus->nirq = nirq; bus->irq_count = qemu_mallocz(nirq * sizeof(bus->irq_count[0])); } void pci_bus_hotplug(PCIBus *bus, pci_hotplug_fn hotplug, DeviceState *qdev) { bus->qbus.allow_hotplug = 1; bus->hotplug = hotplug; bus->hotplug_qdev = qdev; } void pci_bus_set_mem_base(PCIBus *bus, target_phys_addr_t base) { bus->mem_base = base; } PCIBus *pci_register_bus(DeviceState *parent, const char *name, pci_set_irq_fn set_irq, pci_map_irq_fn map_irq, void *irq_opaque, int devfn_min, int nirq) { PCIBus *bus; bus = pci_bus_new(parent, name, devfn_min); pci_bus_irqs(bus, set_irq, map_irq, irq_opaque, nirq); return bus; } int pci_bus_num(PCIBus *s) { if (!s->parent_dev) return 0; /* pci host bridge */ return s->parent_dev->config[PCI_SECONDARY_BUS]; } static int get_pci_config_device(QEMUFile *f, void *pv, size_t size) { PCIDevice *s = container_of(pv, PCIDevice, config); uint8_t *config; int i; assert(size == pci_config_size(s)); config = qemu_malloc(size); qemu_get_buffer(f, config, size); for (i = 0; i < size; ++i) { if ((config[i] ^ s->config[i]) & s->cmask[i] & ~s->wmask[i] & ~s->w1cmask[i]) { qemu_free(config); return -EINVAL; } } memcpy(s->config, config, size); pci_update_mappings(s); qemu_free(config); return 0; } /* just put buffer */ static void put_pci_config_device(QEMUFile *f, void *pv, size_t size) { const uint8_t **v = pv; assert(size == pci_config_size(container_of(pv, PCIDevice, config))); qemu_put_buffer(f, *v, size); } static VMStateInfo vmstate_info_pci_config = { .name = "pci config", .get = get_pci_config_device, .put = put_pci_config_device, }; static int get_pci_irq_state(QEMUFile *f, void *pv, size_t size) { PCIDevice *s = container_of(pv, PCIDevice, irq_state); uint32_t irq_state[PCI_NUM_PINS]; int i; for (i = 0; i < PCI_NUM_PINS; ++i) { irq_state[i] = qemu_get_be32(f); if (irq_state[i] != 0x1 && irq_state[i] != 0) { fprintf(stderr, "irq state %d: must be 0 or 1.\n", irq_state[i]); return -EINVAL; } } for (i = 0; i < PCI_NUM_PINS; ++i) { pci_set_irq_state(s, i, irq_state[i]); } return 0; } static void put_pci_irq_state(QEMUFile *f, void *pv, size_t size) { int i; PCIDevice *s = container_of(pv, PCIDevice, irq_state); for (i = 0; i < PCI_NUM_PINS; ++i) { qemu_put_be32(f, pci_irq_state(s, i)); } } static VMStateInfo vmstate_info_pci_irq_state = { .name = "pci irq state", .get = get_pci_irq_state, .put = put_pci_irq_state, }; const VMStateDescription vmstate_pci_device = { .name = "PCIDevice", .version_id = 2, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField []) { VMSTATE_INT32_LE(version_id, PCIDevice), VMSTATE_BUFFER_UNSAFE_INFO(config, PCIDevice, 0, vmstate_info_pci_config, PCI_CONFIG_SPACE_SIZE), VMSTATE_BUFFER_UNSAFE_INFO(irq_state, PCIDevice, 2, vmstate_info_pci_irq_state, PCI_NUM_PINS * sizeof(int32_t)), VMSTATE_END_OF_LIST() } }; const VMStateDescription vmstate_pcie_device = { .name = "PCIDevice", .version_id = 2, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField []) { VMSTATE_INT32_LE(version_id, PCIDevice), VMSTATE_BUFFER_UNSAFE_INFO(config, PCIDevice, 0, vmstate_info_pci_config, PCIE_CONFIG_SPACE_SIZE), VMSTATE_BUFFER_UNSAFE_INFO(irq_state, PCIDevice, 2, vmstate_info_pci_irq_state, PCI_NUM_PINS * sizeof(int32_t)), VMSTATE_END_OF_LIST() } }; static inline const VMStateDescription *pci_get_vmstate(PCIDevice *s) { return pci_is_express(s) ? &vmstate_pcie_device : &vmstate_pci_device; } void pci_device_save(PCIDevice *s, QEMUFile *f) { /* Clear interrupt status bit: it is implicit * in irq_state which we are saving. * This makes us compatible with old devices * which never set or clear this bit. */ s->config[PCI_STATUS] &= ~PCI_STATUS_INTERRUPT; vmstate_save_state(f, pci_get_vmstate(s), s); /* Restore the interrupt status bit. */ pci_update_irq_status(s); } int pci_device_load(PCIDevice *s, QEMUFile *f) { int ret; ret = vmstate_load_state(f, pci_get_vmstate(s), s, s->version_id); /* Restore the interrupt status bit. */ pci_update_irq_status(s); return ret; } static void pci_set_default_subsystem_id(PCIDevice *pci_dev) { pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID, pci_default_sub_vendor_id); pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, pci_default_sub_device_id); } /* * Parse [[:]:], return -1 on error if funcp == NULL * [[:]:]., return -1 on error */ int pci_parse_devaddr(const char *addr, int *domp, int *busp, unsigned int *slotp, unsigned int *funcp) { const char *p; char *e; unsigned long val; unsigned long dom = 0, bus = 0; unsigned int slot = 0; unsigned int func = 0; p = addr; val = strtoul(p, &e, 16); if (e == p) return -1; if (*e == ':') { bus = val; p = e + 1; val = strtoul(p, &e, 16); if (e == p) return -1; if (*e == ':') { dom = bus; bus = val; p = e + 1; val = strtoul(p, &e, 16); if (e == p) return -1; } } slot = val; if (funcp != NULL) { if (*e != '.') return -1; p = e + 1; val = strtoul(p, &e, 16); if (e == p) return -1; func = val; } /* if funcp == NULL func is 0 */ if (dom > 0xffff || bus > 0xff || slot > 0x1f || func > 7) return -1; if (*e) return -1; /* Note: QEMU doesn't implement domains other than 0 */ if (!pci_find_bus(pci_find_root_bus(dom), bus)) return -1; *domp = dom; *busp = bus; *slotp = slot; if (funcp != NULL) *funcp = func; return 0; } int pci_read_devaddr(Monitor *mon, const char *addr, int *domp, int *busp, unsigned *slotp) { /* strip legacy tag */ if (!strncmp(addr, "pci_addr=", 9)) { addr += 9; } if (pci_parse_devaddr(addr, domp, busp, slotp, NULL)) { monitor_printf(mon, "Invalid pci address\n"); return -1; } return 0; } PCIBus *pci_get_bus_devfn(int *devfnp, const char *devaddr) { int dom, bus; unsigned slot; if (!devaddr) { *devfnp = -1; return pci_find_bus(pci_find_root_bus(0), 0); } if (pci_parse_devaddr(devaddr, &dom, &bus, &slot, NULL) < 0) { return NULL; } *devfnp = slot << 3; return pci_find_bus(pci_find_root_bus(dom), bus); } static void pci_init_cmask(PCIDevice *dev) { pci_set_word(dev->cmask + PCI_VENDOR_ID, 0xffff); pci_set_word(dev->cmask + PCI_DEVICE_ID, 0xffff); dev->cmask[PCI_STATUS] = PCI_STATUS_CAP_LIST; dev->cmask[PCI_REVISION_ID] = 0xff; dev->cmask[PCI_CLASS_PROG] = 0xff; pci_set_word(dev->cmask + PCI_CLASS_DEVICE, 0xffff); dev->cmask[PCI_HEADER_TYPE] = 0xff; dev->cmask[PCI_CAPABILITY_LIST] = 0xff; } static void pci_init_wmask(PCIDevice *dev) { int config_size = pci_config_size(dev); dev->wmask[PCI_CACHE_LINE_SIZE] = 0xff; dev->wmask[PCI_INTERRUPT_LINE] = 0xff; pci_set_word(dev->wmask + PCI_COMMAND, PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INTX_DISABLE); memset(dev->wmask + PCI_CONFIG_HEADER_SIZE, 0xff, config_size - PCI_CONFIG_HEADER_SIZE); } static void pci_init_w1cmask(PCIDevice *dev) { /* * Note: It's okay to set w1cmask even for readonly bits as * long as their value is hardwired to 0. */ pci_set_word(dev->w1cmask + PCI_STATUS, PCI_STATUS_PARITY | PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_DETECTED_PARITY); } static void pci_init_wmask_bridge(PCIDevice *d) { /* PCI_PRIMARY_BUS, PCI_SECONDARY_BUS, PCI_SUBORDINATE_BUS and PCI_SEC_LETENCY_TIMER */ memset(d->wmask + PCI_PRIMARY_BUS, 0xff, 4); /* base and limit */ d->wmask[PCI_IO_BASE] = PCI_IO_RANGE_MASK & 0xff; d->wmask[PCI_IO_LIMIT] = PCI_IO_RANGE_MASK & 0xff; pci_set_word(d->wmask + PCI_MEMORY_BASE, PCI_MEMORY_RANGE_MASK & 0xffff); pci_set_word(d->wmask + PCI_MEMORY_LIMIT, PCI_MEMORY_RANGE_MASK & 0xffff); pci_set_word(d->wmask + PCI_PREF_MEMORY_BASE, PCI_PREF_RANGE_MASK & 0xffff); pci_set_word(d->wmask + PCI_PREF_MEMORY_LIMIT, PCI_PREF_RANGE_MASK & 0xffff); /* PCI_PREF_BASE_UPPER32 and PCI_PREF_LIMIT_UPPER32 */ memset(d->wmask + PCI_PREF_BASE_UPPER32, 0xff, 8); /* TODO: add this define to pci_regs.h in linux and then in qemu. */ #define PCI_BRIDGE_CTL_VGA_16BIT 0x10 /* VGA 16-bit decode */ #define PCI_BRIDGE_CTL_DISCARD 0x100 /* Primary discard timer */ #define PCI_BRIDGE_CTL_SEC_DISCARD 0x200 /* Secondary discard timer */ #define PCI_BRIDGE_CTL_DISCARD_STATUS 0x400 /* Discard timer status */ #define PCI_BRIDGE_CTL_DISCARD_SERR 0x800 /* Discard timer SERR# enable */ pci_set_word(d->wmask + PCI_BRIDGE_CONTROL, PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR | PCI_BRIDGE_CTL_ISA | PCI_BRIDGE_CTL_VGA | PCI_BRIDGE_CTL_VGA_16BIT | PCI_BRIDGE_CTL_MASTER_ABORT | PCI_BRIDGE_CTL_BUS_RESET | PCI_BRIDGE_CTL_FAST_BACK | PCI_BRIDGE_CTL_DISCARD | PCI_BRIDGE_CTL_SEC_DISCARD | PCI_BRIDGE_CTL_DISCARD_STATUS | PCI_BRIDGE_CTL_DISCARD_SERR); /* Below does not do anything as we never set this bit, put here for * completeness. */ pci_set_word(d->w1cmask + PCI_BRIDGE_CONTROL, PCI_BRIDGE_CTL_DISCARD_STATUS); } static int pci_init_multifunction(PCIBus *bus, PCIDevice *dev) { uint8_t slot = PCI_SLOT(dev->devfn); uint8_t func; if (dev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { dev->config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION; } /* * multifunction bit is interpreted in two ways as follows. * - all functions must set the bit to 1. * Example: Intel X53 * - function 0 must set the bit, but the rest function (> 0) * is allowed to leave the bit to 0. * Example: PIIX3(also in qemu), PIIX4(also in qemu), ICH10, * * So OS (at least Linux) checks the bit of only function 0, * and doesn't see the bit of function > 0. * * The below check allows both interpretation. */ if (PCI_FUNC(dev->devfn)) { PCIDevice *f0 = bus->devices[PCI_DEVFN(slot, 0)]; if (f0 && !(f0->cap_present & QEMU_PCI_CAP_MULTIFUNCTION)) { /* function 0 should set multifunction bit */ error_report("PCI: single function device can't be populated " "in function %x.%x", slot, PCI_FUNC(dev->devfn)); return -1; } return 0; } if (dev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { return 0; } /* function 0 indicates single function, so function > 0 must be NULL */ for (func = 1; func < PCI_FUNC_MAX; ++func) { if (bus->devices[PCI_DEVFN(slot, func)]) { error_report("PCI: %x.0 indicates single function, " "but %x.%x is already populated.", slot, slot, func); return -1; } } return 0; } static void pci_config_alloc(PCIDevice *pci_dev) { int config_size = pci_config_size(pci_dev); pci_dev->config = qemu_mallocz(config_size); pci_dev->cmask = qemu_mallocz(config_size); pci_dev->wmask = qemu_mallocz(config_size); pci_dev->w1cmask = qemu_mallocz(config_size); pci_dev->used = qemu_mallocz(config_size); } static void pci_config_free(PCIDevice *pci_dev) { qemu_free(pci_dev->config); qemu_free(pci_dev->cmask); qemu_free(pci_dev->wmask); qemu_free(pci_dev->w1cmask); qemu_free(pci_dev->used); } /* -1 for devfn means auto assign */ static PCIDevice *do_pci_register_device(PCIDevice *pci_dev, PCIBus *bus, const char *name, int devfn, PCIConfigReadFunc *config_read, PCIConfigWriteFunc *config_write, bool is_bridge) { if (devfn < 0) { for(devfn = bus->devfn_min ; devfn < ARRAY_SIZE(bus->devices); devfn += PCI_FUNC_MAX) { if (!bus->devices[devfn]) goto found; } error_report("PCI: no slot/function available for %s, all in use", name); return NULL; found: ; } else if (bus->devices[devfn]) { error_report("PCI: slot %d function %d not available for %s, in use by %s", PCI_SLOT(devfn), PCI_FUNC(devfn), name, bus->devices[devfn]->name); return NULL; } pci_dev->bus = bus; pci_dev->devfn = devfn; pstrcpy(pci_dev->name, sizeof(pci_dev->name), name); pci_dev->irq_state = 0; pci_config_alloc(pci_dev); if (!is_bridge) { pci_set_default_subsystem_id(pci_dev); } pci_init_cmask(pci_dev); pci_init_wmask(pci_dev); pci_init_w1cmask(pci_dev); if (is_bridge) { pci_init_wmask_bridge(pci_dev); } if (pci_init_multifunction(bus, pci_dev)) { pci_config_free(pci_dev); return NULL; } if (!config_read) config_read = pci_default_read_config; if (!config_write) config_write = pci_default_write_config; pci_dev->config_read = config_read; pci_dev->config_write = config_write; bus->devices[devfn] = pci_dev; pci_dev->irq = qemu_allocate_irqs(pci_set_irq, pci_dev, PCI_NUM_PINS); pci_dev->version_id = 2; /* Current pci device vmstate version */ return pci_dev; } static void do_pci_unregister_device(PCIDevice *pci_dev) { qemu_free_irqs(pci_dev->irq); pci_dev->bus->devices[pci_dev->devfn] = NULL; pci_config_free(pci_dev); } PCIDevice *pci_register_device(PCIBus *bus, const char *name, int instance_size, int devfn, PCIConfigReadFunc *config_read, PCIConfigWriteFunc *config_write) { PCIDevice *pci_dev; pci_dev = qemu_mallocz(instance_size); pci_dev = do_pci_register_device(pci_dev, bus, name, devfn, config_read, config_write, PCI_HEADER_TYPE_NORMAL); if (pci_dev == NULL) { hw_error("PCI: can't register device\n"); } return pci_dev; } static target_phys_addr_t pci_to_cpu_addr(PCIBus *bus, target_phys_addr_t addr) { return addr + bus->mem_base; } static void pci_unregister_io_regions(PCIDevice *pci_dev) { PCIIORegion *r; int i; for(i = 0; i < PCI_NUM_REGIONS; i++) { r = &pci_dev->io_regions[i]; if (!r->size || r->addr == PCI_BAR_UNMAPPED) continue; if (r->type == PCI_BASE_ADDRESS_SPACE_IO) { isa_unassign_ioport(r->addr, r->filtered_size); } else { cpu_register_physical_memory(pci_to_cpu_addr(pci_dev->bus, r->addr), r->filtered_size, IO_MEM_UNASSIGNED); } } } static int pci_unregister_device(DeviceState *dev) { PCIDevice *pci_dev = DO_UPCAST(PCIDevice, qdev, dev); PCIDeviceInfo *info = DO_UPCAST(PCIDeviceInfo, qdev, dev->info); int ret = 0; if (info->exit) ret = info->exit(pci_dev); if (ret) return ret; pci_unregister_io_regions(pci_dev); pci_del_option_rom(pci_dev); do_pci_unregister_device(pci_dev); return 0; } void pci_register_bar(PCIDevice *pci_dev, int region_num, pcibus_t size, uint8_t type, PCIMapIORegionFunc *map_func) { PCIIORegion *r; uint32_t addr; uint64_t wmask; assert(region_num >= 0); assert(region_num < PCI_NUM_REGIONS); if (size & (size-1)) { fprintf(stderr, "ERROR: PCI region size must be pow2 " "type=0x%x, size=0x%"FMT_PCIBUS"\n", type, size); exit(1); } r = &pci_dev->io_regions[region_num]; r->addr = PCI_BAR_UNMAPPED; r->size = size; r->filtered_size = size; r->type = type; r->map_func = map_func; wmask = ~(size - 1); addr = pci_bar(pci_dev, region_num); if (region_num == PCI_ROM_SLOT) { /* ROM enable bit is writeable */ wmask |= PCI_ROM_ADDRESS_ENABLE; } pci_set_long(pci_dev->config + addr, type); if (!(r->type & PCI_BASE_ADDRESS_SPACE_IO) && r->type & PCI_BASE_ADDRESS_MEM_TYPE_64) { pci_set_quad(pci_dev->wmask + addr, wmask); pci_set_quad(pci_dev->cmask + addr, ~0ULL); } else { pci_set_long(pci_dev->wmask + addr, wmask & 0xffffffff); pci_set_long(pci_dev->cmask + addr, 0xffffffff); } } static void pci_bridge_filter(PCIDevice *d, pcibus_t *addr, pcibus_t *size, uint8_t type) { pcibus_t base = *addr; pcibus_t limit = *addr + *size - 1; PCIDevice *br; for (br = d->bus->parent_dev; br; br = br->bus->parent_dev) { uint16_t cmd = pci_get_word(d->config + PCI_COMMAND); if (type & PCI_BASE_ADDRESS_SPACE_IO) { if (!(cmd & PCI_COMMAND_IO)) { goto no_map; } } else { if (!(cmd & PCI_COMMAND_MEMORY)) { goto no_map; } } base = MAX(base, pci_bridge_get_base(br, type)); limit = MIN(limit, pci_bridge_get_limit(br, type)); } if (base > limit) { goto no_map; } *addr = base; *size = limit - base + 1; return; no_map: *addr = PCI_BAR_UNMAPPED; *size = 0; } static pcibus_t pci_bar_address(PCIDevice *d, int reg, uint8_t type, pcibus_t size) { pcibus_t new_addr, last_addr; int bar = pci_bar(d, reg); uint16_t cmd = pci_get_word(d->config + PCI_COMMAND); if (type & PCI_BASE_ADDRESS_SPACE_IO) { if (!(cmd & PCI_COMMAND_IO)) { return PCI_BAR_UNMAPPED; } new_addr = pci_get_long(d->config + bar) & ~(size - 1); last_addr = new_addr + size - 1; /* NOTE: we have only 64K ioports on PC */ if (last_addr <= new_addr || new_addr == 0 || last_addr > UINT16_MAX) { return PCI_BAR_UNMAPPED; } return new_addr; } if (!(cmd & PCI_COMMAND_MEMORY)) { return PCI_BAR_UNMAPPED; } if (type & PCI_BASE_ADDRESS_MEM_TYPE_64) { new_addr = pci_get_quad(d->config + bar); } else { new_addr = pci_get_long(d->config + bar); } /* the ROM slot has a specific enable bit */ if (reg == PCI_ROM_SLOT && !(new_addr & PCI_ROM_ADDRESS_ENABLE)) { return PCI_BAR_UNMAPPED; } new_addr &= ~(size - 1); last_addr = new_addr + size - 1; /* NOTE: we do not support wrapping */ /* XXX: as we cannot support really dynamic mappings, we handle specific values as invalid mappings. */ if (last_addr <= new_addr || new_addr == 0 || last_addr == PCI_BAR_UNMAPPED) { return PCI_BAR_UNMAPPED; } /* Now pcibus_t is 64bit. * Check if 32 bit BAR wraps around explicitly. * Without this, PC ide doesn't work well. * TODO: remove this work around. */ if (!(type & PCI_BASE_ADDRESS_MEM_TYPE_64) && last_addr >= UINT32_MAX) { return PCI_BAR_UNMAPPED; } /* * OS is allowed to set BAR beyond its addressable * bits. For example, 32 bit OS can set 64bit bar * to >4G. Check it. TODO: we might need to support * it in the future for e.g. PAE. */ if (last_addr >= TARGET_PHYS_ADDR_MAX) { return PCI_BAR_UNMAPPED; } return new_addr; } static void pci_update_mappings(PCIDevice *d) { PCIIORegion *r; int i; pcibus_t new_addr, filtered_size; for(i = 0; i < PCI_NUM_REGIONS; i++) { r = &d->io_regions[i]; /* this region isn't registered */ if (!r->size) continue; new_addr = pci_bar_address(d, i, r->type, r->size); /* bridge filtering */ filtered_size = r->size; if (new_addr != PCI_BAR_UNMAPPED) { pci_bridge_filter(d, &new_addr, &filtered_size, r->type); } /* This bar isn't changed */ if (new_addr == r->addr && filtered_size == r->filtered_size) continue; /* now do the real mapping */ if (r->addr != PCI_BAR_UNMAPPED) { if (r->type & PCI_BASE_ADDRESS_SPACE_IO) { int class; /* NOTE: specific hack for IDE in PC case: only one byte must be mapped. */ class = pci_get_word(d->config + PCI_CLASS_DEVICE); if (class == 0x0101 && r->size == 4) { isa_unassign_ioport(r->addr + 2, 1); } else { isa_unassign_ioport(r->addr, r->filtered_size); } } else { cpu_register_physical_memory(pci_to_cpu_addr(d->bus, r->addr), r->filtered_size, IO_MEM_UNASSIGNED); qemu_unregister_coalesced_mmio(r->addr, r->filtered_size); } } r->addr = new_addr; r->filtered_size = filtered_size; if (r->addr != PCI_BAR_UNMAPPED) { /* * TODO: currently almost all the map funcions assumes * filtered_size == size and addr & ~(size - 1) == addr. * However with bridge filtering, they aren't always true. * Teach them such cases, such that filtered_size < size and * addr & (size - 1) != 0. */ if (r->type & PCI_BASE_ADDRESS_SPACE_IO) { r->map_func(d, i, r->addr, r->filtered_size, r->type); } else { r->map_func(d, i, pci_to_cpu_addr(d->bus, r->addr), r->filtered_size, r->type); } } } } static inline int pci_irq_disabled(PCIDevice *d) { return pci_get_word(d->config + PCI_COMMAND) & PCI_COMMAND_INTX_DISABLE; } /* Called after interrupt disabled field update in config space, * assert/deassert interrupts if necessary. * Gets original interrupt disable bit value (before update). */ static void pci_update_irq_disabled(PCIDevice *d, int was_irq_disabled) { int i, disabled = pci_irq_disabled(d); if (disabled == was_irq_disabled) return; for (i = 0; i < PCI_NUM_PINS; ++i) { int state = pci_irq_state(d, i); pci_change_irq_level(d, i, disabled ? -state : state); } } uint32_t pci_default_read_config(PCIDevice *d, uint32_t address, int len) { uint32_t val = 0; assert(len == 1 || len == 2 || len == 4); len = MIN(len, pci_config_size(d) - address); memcpy(&val, d->config + address, len); return le32_to_cpu(val); } void pci_default_write_config(PCIDevice *d, uint32_t addr, uint32_t val, int l) { int i, was_irq_disabled = pci_irq_disabled(d); uint32_t config_size = pci_config_size(d); for (i = 0; i < l && addr + i < config_size; val >>= 8, ++i) { uint8_t wmask = d->wmask[addr + i]; uint8_t w1cmask = d->w1cmask[addr + i]; assert(!(wmask & w1cmask)); d->config[addr + i] = (d->config[addr + i] & ~wmask) | (val & wmask); d->config[addr + i] &= ~(val & w1cmask); /* W1C: Write 1 to Clear */ } if (ranges_overlap(addr, l, PCI_BASE_ADDRESS_0, 24) || ranges_overlap(addr, l, PCI_ROM_ADDRESS, 4) || ranges_overlap(addr, l, PCI_ROM_ADDRESS1, 4) || range_covers_byte(addr, l, PCI_COMMAND)) pci_update_mappings(d); if (range_covers_byte(addr, l, PCI_COMMAND)) pci_update_irq_disabled(d, was_irq_disabled); } /***********************************************************/ /* generic PCI irq support */ /* 0 <= irq_num <= 3. level must be 0 or 1 */ static void pci_set_irq(void *opaque, int irq_num, int level) { PCIDevice *pci_dev = opaque; int change; change = level - pci_irq_state(pci_dev, irq_num); if (!change) return; pci_set_irq_state(pci_dev, irq_num, level); pci_update_irq_status(pci_dev); if (pci_irq_disabled(pci_dev)) return; pci_change_irq_level(pci_dev, irq_num, change); } bool pci_msi_enabled(PCIDevice *dev) { return msix_enabled(dev) || msi_enabled(dev); } void pci_msi_notify(PCIDevice *dev, unsigned int vector) { if (msix_enabled(dev)) { msix_notify(dev, vector); } else if (msi_enabled(dev)) { msi_notify(dev, vector); } else { /* MSI/MSI-X must be enabled */ abort(); } } /***********************************************************/ /* monitor info on PCI */ typedef struct { uint16_t class; const char *desc; } pci_class_desc; static const pci_class_desc pci_class_descriptions[] = { { 0x0100, "SCSI controller"}, { 0x0101, "IDE controller"}, { 0x0102, "Floppy controller"}, { 0x0103, "IPI controller"}, { 0x0104, "RAID controller"}, { 0x0106, "SATA controller"}, { 0x0107, "SAS controller"}, { 0x0180, "Storage controller"}, { 0x0200, "Ethernet controller"}, { 0x0201, "Token Ring controller"}, { 0x0202, "FDDI controller"}, { 0x0203, "ATM controller"}, { 0x0280, "Network controller"}, { 0x0300, "VGA controller"}, { 0x0301, "XGA controller"}, { 0x0302, "3D controller"}, { 0x0380, "Display controller"}, { 0x0400, "Video controller"}, { 0x0401, "Audio controller"}, { 0x0402, "Phone"}, { 0x0480, "Multimedia controller"}, { 0x0500, "RAM controller"}, { 0x0501, "Flash controller"}, { 0x0580, "Memory controller"}, { 0x0600, "Host bridge"}, { 0x0601, "ISA bridge"}, { 0x0602, "EISA bridge"}, { 0x0603, "MC bridge"}, { 0x0604, "PCI bridge"}, { 0x0605, "PCMCIA bridge"}, { 0x0606, "NUBUS bridge"}, { 0x0607, "CARDBUS bridge"}, { 0x0608, "RACEWAY bridge"}, { 0x0680, "Bridge"}, { 0x0c03, "USB controller"}, { 0, NULL} }; static void pci_for_each_device_under_bus(PCIBus *bus, void (*fn)(PCIBus *b, PCIDevice *d)) { PCIDevice *d; int devfn; for(devfn = 0; devfn < ARRAY_SIZE(bus->devices); devfn++) { d = bus->devices[devfn]; if (d) { fn(bus, d); } } } void pci_for_each_device(PCIBus *bus, int bus_num, void (*fn)(PCIBus *b, PCIDevice *d)) { bus = pci_find_bus(bus, bus_num); if (bus) { pci_for_each_device_under_bus(bus, fn); } } static void pci_device_print(Monitor *mon, QDict *device) { QDict *qdict; QListEntry *entry; uint64_t addr, size; monitor_printf(mon, " Bus %2" PRId64 ", ", qdict_get_int(device, "bus")); monitor_printf(mon, "device %3" PRId64 ", function %" PRId64 ":\n", qdict_get_int(device, "slot"), qdict_get_int(device, "function")); monitor_printf(mon, " "); qdict = qdict_get_qdict(device, "class_info"); if (qdict_haskey(qdict, "desc")) { monitor_printf(mon, "%s", qdict_get_str(qdict, "desc")); } else { monitor_printf(mon, "Class %04" PRId64, qdict_get_int(qdict, "class")); } qdict = qdict_get_qdict(device, "id"); monitor_printf(mon, ": PCI device %04" PRIx64 ":%04" PRIx64 "\n", qdict_get_int(qdict, "device"), qdict_get_int(qdict, "vendor")); if (qdict_haskey(device, "irq")) { monitor_printf(mon, " IRQ %" PRId64 ".\n", qdict_get_int(device, "irq")); } if (qdict_haskey(device, "pci_bridge")) { QDict *info; qdict = qdict_get_qdict(device, "pci_bridge"); info = qdict_get_qdict(qdict, "bus"); monitor_printf(mon, " BUS %" PRId64 ".\n", qdict_get_int(info, "number")); monitor_printf(mon, " secondary bus %" PRId64 ".\n", qdict_get_int(info, "secondary")); monitor_printf(mon, " subordinate bus %" PRId64 ".\n", qdict_get_int(info, "subordinate")); info = qdict_get_qdict(qdict, "io_range"); monitor_printf(mon, " IO range [0x%04"PRIx64", 0x%04"PRIx64"]\n", qdict_get_int(info, "base"), qdict_get_int(info, "limit")); info = qdict_get_qdict(qdict, "memory_range"); monitor_printf(mon, " memory range [0x%08"PRIx64", 0x%08"PRIx64"]\n", qdict_get_int(info, "base"), qdict_get_int(info, "limit")); info = qdict_get_qdict(qdict, "prefetchable_range"); monitor_printf(mon, " prefetchable memory range " "[0x%08"PRIx64", 0x%08"PRIx64"]\n", qdict_get_int(info, "base"), qdict_get_int(info, "limit")); } QLIST_FOREACH_ENTRY(qdict_get_qlist(device, "regions"), entry) { qdict = qobject_to_qdict(qlist_entry_obj(entry)); monitor_printf(mon, " BAR%d: ", (int) qdict_get_int(qdict, "bar")); addr = qdict_get_int(qdict, "address"); size = qdict_get_int(qdict, "size"); if (!strcmp(qdict_get_str(qdict, "type"), "io")) { monitor_printf(mon, "I/O at 0x%04"FMT_PCIBUS " [0x%04"FMT_PCIBUS"].\n", addr, addr + size - 1); } else { monitor_printf(mon, "%d bit%s memory at 0x%08"FMT_PCIBUS " [0x%08"FMT_PCIBUS"].\n", qdict_get_bool(qdict, "mem_type_64") ? 64 : 32, qdict_get_bool(qdict, "prefetch") ? " prefetchable" : "", addr, addr + size - 1); } } monitor_printf(mon, " id \"%s\"\n", qdict_get_str(device, "qdev_id")); if (qdict_haskey(device, "pci_bridge")) { qdict = qdict_get_qdict(device, "pci_bridge"); if (qdict_haskey(qdict, "devices")) { QListEntry *dev; QLIST_FOREACH_ENTRY(qdict_get_qlist(qdict, "devices"), dev) { pci_device_print(mon, qobject_to_qdict(qlist_entry_obj(dev))); } } } } void do_pci_info_print(Monitor *mon, const QObject *data) { QListEntry *bus, *dev; QLIST_FOREACH_ENTRY(qobject_to_qlist(data), bus) { QDict *qdict = qobject_to_qdict(qlist_entry_obj(bus)); QLIST_FOREACH_ENTRY(qdict_get_qlist(qdict, "devices"), dev) { pci_device_print(mon, qobject_to_qdict(qlist_entry_obj(dev))); } } } static QObject *pci_get_dev_class(const PCIDevice *dev) { int class; const pci_class_desc *desc; class = pci_get_word(dev->config + PCI_CLASS_DEVICE); desc = pci_class_descriptions; while (desc->desc && class != desc->class) desc++; if (desc->desc) { return qobject_from_jsonf("{ 'desc': %s, 'class': %d }", desc->desc, class); } else { return qobject_from_jsonf("{ 'class': %d }", class); } } static QObject *pci_get_dev_id(const PCIDevice *dev) { return qobject_from_jsonf("{ 'device': %d, 'vendor': %d }", pci_get_word(dev->config + PCI_VENDOR_ID), pci_get_word(dev->config + PCI_DEVICE_ID)); } static QObject *pci_get_regions_list(const PCIDevice *dev) { int i; QList *regions_list; regions_list = qlist_new(); for (i = 0; i < PCI_NUM_REGIONS; i++) { QObject *obj; const PCIIORegion *r = &dev->io_regions[i]; if (!r->size) { continue; } if (r->type & PCI_BASE_ADDRESS_SPACE_IO) { obj = qobject_from_jsonf("{ 'bar': %d, 'type': 'io', " "'address': %" PRId64 ", " "'size': %" PRId64 " }", i, r->addr, r->size); } else { int mem_type_64 = r->type & PCI_BASE_ADDRESS_MEM_TYPE_64; obj = qobject_from_jsonf("{ 'bar': %d, 'type': 'memory', " "'mem_type_64': %i, 'prefetch': %i, " "'address': %" PRId64 ", " "'size': %" PRId64 " }", i, mem_type_64, r->type & PCI_BASE_ADDRESS_MEM_PREFETCH, r->addr, r->size); } qlist_append_obj(regions_list, obj); } return QOBJECT(regions_list); } static QObject *pci_get_devices_list(PCIBus *bus, int bus_num); static QObject *pci_get_dev_dict(PCIDevice *dev, PCIBus *bus, int bus_num) { uint8_t type; QObject *obj; obj = qobject_from_jsonf("{ 'bus': %d, 'slot': %d, 'function': %d," "'class_info': %p, 'id': %p, 'regions': %p," " 'qdev_id': %s }", bus_num, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), pci_get_dev_class(dev), pci_get_dev_id(dev), pci_get_regions_list(dev), dev->qdev.id ? dev->qdev.id : ""); if (dev->config[PCI_INTERRUPT_PIN] != 0) { QDict *qdict = qobject_to_qdict(obj); qdict_put(qdict, "irq", qint_from_int(dev->config[PCI_INTERRUPT_LINE])); } type = dev->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION; if (type == PCI_HEADER_TYPE_BRIDGE) { QDict *qdict; QObject *pci_bridge; pci_bridge = qobject_from_jsonf("{ 'bus': " "{ 'number': %d, 'secondary': %d, 'subordinate': %d }, " "'io_range': { 'base': %" PRId64 ", 'limit': %" PRId64 "}, " "'memory_range': { 'base': %" PRId64 ", 'limit': %" PRId64 "}, " "'prefetchable_range': { 'base': %" PRId64 ", 'limit': %" PRId64 "} }", dev->config[PCI_PRIMARY_BUS], dev->config[PCI_SECONDARY_BUS], dev->config[PCI_SUBORDINATE_BUS], pci_bridge_get_base(dev, PCI_BASE_ADDRESS_SPACE_IO), pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_SPACE_IO), pci_bridge_get_base(dev, PCI_BASE_ADDRESS_SPACE_MEMORY), pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_SPACE_MEMORY), pci_bridge_get_base(dev, PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_PREFETCH), pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_PREFETCH)); if (dev->config[PCI_SECONDARY_BUS] != 0) { PCIBus *child_bus = pci_find_bus(bus, dev->config[PCI_SECONDARY_BUS]); if (child_bus) { qdict = qobject_to_qdict(pci_bridge); qdict_put_obj(qdict, "devices", pci_get_devices_list(child_bus, dev->config[PCI_SECONDARY_BUS])); } } qdict = qobject_to_qdict(obj); qdict_put_obj(qdict, "pci_bridge", pci_bridge); } return obj; } static QObject *pci_get_devices_list(PCIBus *bus, int bus_num) { int devfn; PCIDevice *dev; QList *dev_list; dev_list = qlist_new(); for (devfn = 0; devfn < ARRAY_SIZE(bus->devices); devfn++) { dev = bus->devices[devfn]; if (dev) { qlist_append_obj(dev_list, pci_get_dev_dict(dev, bus, bus_num)); } } return QOBJECT(dev_list); } static QObject *pci_get_bus_dict(PCIBus *bus, int bus_num) { bus = pci_find_bus(bus, bus_num); if (bus) { return qobject_from_jsonf("{ 'bus': %d, 'devices': %p }", bus_num, pci_get_devices_list(bus, bus_num)); } return NULL; } void do_pci_info(Monitor *mon, QObject **ret_data) { QList *bus_list; struct PCIHostBus *host; bus_list = qlist_new(); QLIST_FOREACH(host, &host_buses, next) { QObject *obj = pci_get_bus_dict(host->bus, 0); if (obj) { qlist_append_obj(bus_list, obj); } } *ret_data = QOBJECT(bus_list); } static const char * const pci_nic_models[] = { "ne2k_pci", "i82551", "i82557b", "i82559er", "rtl8139", "e1000", "pcnet", "virtio", NULL }; static const char * const pci_nic_names[] = { "ne2k_pci", "i82551", "i82557b", "i82559er", "rtl8139", "e1000", "pcnet", "virtio-net-pci", NULL }; /* Initialize a PCI NIC. */ /* FIXME callers should check for failure, but don't */ PCIDevice *pci_nic_init(NICInfo *nd, const char *default_model, const char *default_devaddr) { const char *devaddr = nd->devaddr ? nd->devaddr : default_devaddr; PCIBus *bus; int devfn; PCIDevice *pci_dev; DeviceState *dev; int i; i = qemu_find_nic_model(nd, pci_nic_models, default_model); if (i < 0) return NULL; bus = pci_get_bus_devfn(&devfn, devaddr); if (!bus) { error_report("Invalid PCI device address %s for device %s", devaddr, pci_nic_names[i]); return NULL; } pci_dev = pci_create(bus, devfn, pci_nic_names[i]); dev = &pci_dev->qdev; qdev_set_nic_properties(dev, nd); if (qdev_init(dev) < 0) return NULL; return pci_dev; } PCIDevice *pci_nic_init_nofail(NICInfo *nd, const char *default_model, const char *default_devaddr) { PCIDevice *res; if (qemu_show_nic_models(nd->model, pci_nic_models)) exit(0); res = pci_nic_init(nd, default_model, default_devaddr); if (!res) exit(1); return res; } static void pci_bridge_update_mappings_fn(PCIBus *b, PCIDevice *d) { pci_update_mappings(d); } void pci_bridge_update_mappings(PCIBus *b) { PCIBus *child; pci_for_each_device_under_bus(b, pci_bridge_update_mappings_fn); QLIST_FOREACH(child, &b->child, sibling) { pci_bridge_update_mappings(child); } } PCIBus *pci_find_bus(PCIBus *bus, int bus_num) { PCIBus *sec; if (!bus) { return NULL; } if (pci_bus_num(bus) == bus_num) { return bus; } /* try child bus */ if (!bus->parent_dev /* host pci bridge */ || (bus->parent_dev->config[PCI_SECONDARY_BUS] < bus_num && bus_num <= bus->parent_dev->config[PCI_SUBORDINATE_BUS])) { for (; bus; bus = sec) { QLIST_FOREACH(sec, &bus->child, sibling) { assert(sec->parent_dev); if (sec->parent_dev->config[PCI_SECONDARY_BUS] == bus_num) { return sec; } if (sec->parent_dev->config[PCI_SECONDARY_BUS] < bus_num && bus_num <= sec->parent_dev->config[PCI_SUBORDINATE_BUS]) { break; } } } } return NULL; } PCIDevice *pci_find_device(PCIBus *bus, int bus_num, int slot, int function) { bus = pci_find_bus(bus, bus_num); if (!bus) return NULL; return bus->devices[PCI_DEVFN(slot, function)]; } static int pci_qdev_init(DeviceState *qdev, DeviceInfo *base) { PCIDevice *pci_dev = (PCIDevice *)qdev; PCIDeviceInfo *info = container_of(base, PCIDeviceInfo, qdev); PCIBus *bus; int devfn, rc; bool is_default_rom; /* initialize cap_present for pci_is_express() and pci_config_size() */ if (info->is_express) { pci_dev->cap_present |= QEMU_PCI_CAP_EXPRESS; } bus = FROM_QBUS(PCIBus, qdev_get_parent_bus(qdev)); devfn = pci_dev->devfn; pci_dev = do_pci_register_device(pci_dev, bus, base->name, devfn, info->config_read, info->config_write, info->is_bridge); if (pci_dev == NULL) return -1; rc = info->init(pci_dev); if (rc != 0) { do_pci_unregister_device(pci_dev); return rc; } /* rom loading */ is_default_rom = false; if (pci_dev->romfile == NULL && info->romfile != NULL) { pci_dev->romfile = qemu_strdup(info->romfile); is_default_rom = true; } pci_add_option_rom(pci_dev, is_default_rom); if (bus->hotplug) { /* Let buses differentiate between hotplug and when device is * enabled during qemu machine creation. */ rc = bus->hotplug(bus->hotplug_qdev, pci_dev, qdev->hotplugged ? PCI_HOTPLUG_ENABLED: PCI_COLDPLUG_ENABLED); if (rc != 0) { int r = pci_unregister_device(&pci_dev->qdev); assert(!r); return rc; } } return 0; } static int pci_unplug_device(DeviceState *qdev) { PCIDevice *dev = DO_UPCAST(PCIDevice, qdev, qdev); return dev->bus->hotplug(dev->bus->hotplug_qdev, dev, PCI_HOTPLUG_DISABLED); } void pci_qdev_register(PCIDeviceInfo *info) { info->qdev.init = pci_qdev_init; info->qdev.unplug = pci_unplug_device; info->qdev.exit = pci_unregister_device; info->qdev.bus_info = &pci_bus_info; qdev_register(&info->qdev); } void pci_qdev_register_many(PCIDeviceInfo *info) { while (info->qdev.name) { pci_qdev_register(info); info++; } } PCIDevice *pci_create_multifunction(PCIBus *bus, int devfn, bool multifunction, const char *name) { DeviceState *dev; dev = qdev_create(&bus->qbus, name); qdev_prop_set_uint32(dev, "addr", devfn); qdev_prop_set_bit(dev, "multifunction", multifunction); return DO_UPCAST(PCIDevice, qdev, dev); } PCIDevice *pci_create_simple_multifunction(PCIBus *bus, int devfn, bool multifunction, const char *name) { PCIDevice *dev = pci_create_multifunction(bus, devfn, multifunction, name); qdev_init_nofail(&dev->qdev); return dev; } PCIDevice *pci_create(PCIBus *bus, int devfn, const char *name) { return pci_create_multifunction(bus, devfn, false, name); } PCIDevice *pci_create_simple(PCIBus *bus, int devfn, const char *name) { return pci_create_simple_multifunction(bus, devfn, false, name); } static int pci_find_space(PCIDevice *pdev, uint8_t size) { int config_size = pci_config_size(pdev); int offset = PCI_CONFIG_HEADER_SIZE; int i; for (i = PCI_CONFIG_HEADER_SIZE; i < config_size; ++i) if (pdev->used[i]) offset = i + 1; else if (i - offset + 1 == size) return offset; return 0; } static uint8_t pci_find_capability_list(PCIDevice *pdev, uint8_t cap_id, uint8_t *prev_p) { uint8_t next, prev; if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST)) return 0; for (prev = PCI_CAPABILITY_LIST; (next = pdev->config[prev]); prev = next + PCI_CAP_LIST_NEXT) if (pdev->config[next + PCI_CAP_LIST_ID] == cap_id) break; if (prev_p) *prev_p = prev; return next; } static void pci_map_option_rom(PCIDevice *pdev, int region_num, pcibus_t addr, pcibus_t size, int type) { cpu_register_physical_memory(addr, size, pdev->rom_offset); } /* Patch the PCI vendor and device ids in a PCI rom image if necessary. This is needed for an option rom which is used for more than one device. */ static void pci_patch_ids(PCIDevice *pdev, uint8_t *ptr, int size) { uint16_t vendor_id; uint16_t device_id; uint16_t rom_vendor_id; uint16_t rom_device_id; uint16_t rom_magic; uint16_t pcir_offset; uint8_t checksum; /* Words in rom data are little endian (like in PCI configuration), so they can be read / written with pci_get_word / pci_set_word. */ /* Only a valid rom will be patched. */ rom_magic = pci_get_word(ptr); if (rom_magic != 0xaa55) { PCI_DPRINTF("Bad ROM magic %04x\n", rom_magic); return; } pcir_offset = pci_get_word(ptr + 0x18); if (pcir_offset + 8 >= size || memcmp(ptr + pcir_offset, "PCIR", 4)) { PCI_DPRINTF("Bad PCIR offset 0x%x or signature\n", pcir_offset); return; } vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID); device_id = pci_get_word(pdev->config + PCI_DEVICE_ID); rom_vendor_id = pci_get_word(ptr + pcir_offset + 4); rom_device_id = pci_get_word(ptr + pcir_offset + 6); PCI_DPRINTF("%s: ROM id %04x%04x / PCI id %04x%04x\n", pdev->romfile, vendor_id, device_id, rom_vendor_id, rom_device_id); checksum = ptr[6]; if (vendor_id != rom_vendor_id) { /* Patch vendor id and checksum (at offset 6 for etherboot roms). */ checksum += (uint8_t)rom_vendor_id + (uint8_t)(rom_vendor_id >> 8); checksum -= (uint8_t)vendor_id + (uint8_t)(vendor_id >> 8); PCI_DPRINTF("ROM checksum %02x / %02x\n", ptr[6], checksum); ptr[6] = checksum; pci_set_word(ptr + pcir_offset + 4, vendor_id); } if (device_id != rom_device_id) { /* Patch device id and checksum (at offset 6 for etherboot roms). */ checksum += (uint8_t)rom_device_id + (uint8_t)(rom_device_id >> 8); checksum -= (uint8_t)device_id + (uint8_t)(device_id >> 8); PCI_DPRINTF("ROM checksum %02x / %02x\n", ptr[6], checksum); ptr[6] = checksum; pci_set_word(ptr + pcir_offset + 6, device_id); } } /* Add an option rom for the device */ static int pci_add_option_rom(PCIDevice *pdev, bool is_default_rom) { int size; char *path; void *ptr; char name[32]; if (!pdev->romfile) return 0; if (strlen(pdev->romfile) == 0) return 0; if (!pdev->rom_bar) { /* * Load rom via fw_cfg instead of creating a rom bar, * for 0.11 compatibility. */ int class = pci_get_word(pdev->config + PCI_CLASS_DEVICE); if (class == 0x0300) { rom_add_vga(pdev->romfile); } else { rom_add_option(pdev->romfile); } return 0; } path = qemu_find_file(QEMU_FILE_TYPE_BIOS, pdev->romfile); if (path == NULL) { path = qemu_strdup(pdev->romfile); } size = get_image_size(path); if (size < 0) { error_report("%s: failed to find romfile \"%s\"", __FUNCTION__, pdev->romfile); return -1; } if (size & (size - 1)) { size = 1 << qemu_fls(size); } if (pdev->qdev.info->vmsd) snprintf(name, sizeof(name), "%s.rom", pdev->qdev.info->vmsd->name); else snprintf(name, sizeof(name), "%s.rom", pdev->qdev.info->name); pdev->rom_offset = qemu_ram_alloc(&pdev->qdev, name, size); ptr = qemu_get_ram_ptr(pdev->rom_offset); load_image(path, ptr); qemu_free(path); if (is_default_rom) { /* Only the default rom images will be patched (if needed). */ pci_patch_ids(pdev, ptr, size); } pci_register_bar(pdev, PCI_ROM_SLOT, size, 0, pci_map_option_rom); return 0; } static void pci_del_option_rom(PCIDevice *pdev) { if (!pdev->rom_offset) return; qemu_ram_free(pdev->rom_offset); pdev->rom_offset = 0; } /* * if !offset * Reserve space and add capability to the linked list in pci config space * * if offset = 0, * Find and reserve space and add capability to the linked list * in pci config space */ int pci_add_capability(PCIDevice *pdev, uint8_t cap_id, uint8_t offset, uint8_t size) { uint8_t *config; if (!offset) { offset = pci_find_space(pdev, size); if (!offset) { return -ENOSPC; } } config = pdev->config + offset; config[PCI_CAP_LIST_ID] = cap_id; config[PCI_CAP_LIST_NEXT] = pdev->config[PCI_CAPABILITY_LIST]; pdev->config[PCI_CAPABILITY_LIST] = offset; pdev->config[PCI_STATUS] |= PCI_STATUS_CAP_LIST; memset(pdev->used + offset, 0xFF, size); /* Make capability read-only by default */ memset(pdev->wmask + offset, 0, size); /* Check capability by default */ memset(pdev->cmask + offset, 0xFF, size); return offset; } /* Unlink capability from the pci config space. */ void pci_del_capability(PCIDevice *pdev, uint8_t cap_id, uint8_t size) { uint8_t prev, offset = pci_find_capability_list(pdev, cap_id, &prev); if (!offset) return; pdev->config[prev] = pdev->config[offset + PCI_CAP_LIST_NEXT]; /* Make capability writeable again */ memset(pdev->wmask + offset, 0xff, size); memset(pdev->w1cmask + offset, 0, size); /* Clear cmask as device-specific registers can't be checked */ memset(pdev->cmask + offset, 0, size); memset(pdev->used + offset, 0, size); if (!pdev->config[PCI_CAPABILITY_LIST]) pdev->config[PCI_STATUS] &= ~PCI_STATUS_CAP_LIST; } /* Reserve space for capability at a known offset (to call after load). */ void pci_reserve_capability(PCIDevice *pdev, uint8_t offset, uint8_t size) { memset(pdev->used + offset, 0xff, size); } uint8_t pci_find_capability(PCIDevice *pdev, uint8_t cap_id) { return pci_find_capability_list(pdev, cap_id, NULL); } static void pcibus_dev_print(Monitor *mon, DeviceState *dev, int indent) { PCIDevice *d = (PCIDevice *)dev; const pci_class_desc *desc; char ctxt[64]; PCIIORegion *r; int i, class; class = pci_get_word(d->config + PCI_CLASS_DEVICE); desc = pci_class_descriptions; while (desc->desc && class != desc->class) desc++; if (desc->desc) { snprintf(ctxt, sizeof(ctxt), "%s", desc->desc); } else { snprintf(ctxt, sizeof(ctxt), "Class %04x", class); } monitor_printf(mon, "%*sclass %s, addr %02x:%02x.%x, " "pci id %04x:%04x (sub %04x:%04x)\n", indent, "", ctxt, pci_bus_num(d->bus), PCI_SLOT(d->devfn), PCI_FUNC(d->devfn), pci_get_word(d->config + PCI_VENDOR_ID), pci_get_word(d->config + PCI_DEVICE_ID), pci_get_word(d->config + PCI_SUBSYSTEM_VENDOR_ID), pci_get_word(d->config + PCI_SUBSYSTEM_ID)); for (i = 0; i < PCI_NUM_REGIONS; i++) { r = &d->io_regions[i]; if (!r->size) continue; monitor_printf(mon, "%*sbar %d: %s at 0x%"FMT_PCIBUS " [0x%"FMT_PCIBUS"]\n", indent, "", i, r->type & PCI_BASE_ADDRESS_SPACE_IO ? "i/o" : "mem", r->addr, r->addr + r->size - 1); } } static char *pcibus_get_dev_path(DeviceState *dev) { PCIDevice *d = (PCIDevice *)dev; char path[16]; snprintf(path, sizeof(path), "%04x:%02x:%02x.%x", pci_find_domain(d->bus), d->config[PCI_SECONDARY_BUS], PCI_SLOT(d->devfn), PCI_FUNC(d->devfn)); return strdup(path); }