/* * QEMU PowerPC PowerNV Processor Service Interface (PSI) model * * Copyright (c) 2015-2017, IBM Corporation. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "hw/irq.h" #include "target/ppc/cpu.h" #include "qemu/log.h" #include "qemu/module.h" #include "sysemu/reset.h" #include "qapi/error.h" #include "monitor/monitor.h" #include "exec/address-spaces.h" #include "hw/ppc/fdt.h" #include "hw/ppc/pnv.h" #include "hw/ppc/pnv_xscom.h" #include "hw/qdev-properties.h" #include "hw/ppc/pnv_psi.h" #include #define PSIHB_XSCOM_FIR_RW 0x00 #define PSIHB_XSCOM_FIR_AND 0x01 #define PSIHB_XSCOM_FIR_OR 0x02 #define PSIHB_XSCOM_FIRMASK_RW 0x03 #define PSIHB_XSCOM_FIRMASK_AND 0x04 #define PSIHB_XSCOM_FIRMASK_OR 0x05 #define PSIHB_XSCOM_FIRACT0 0x06 #define PSIHB_XSCOM_FIRACT1 0x07 /* Host Bridge Base Address Register */ #define PSIHB_XSCOM_BAR 0x0a #define PSIHB_BAR_EN 0x0000000000000001ull /* FSP Base Address Register */ #define PSIHB_XSCOM_FSPBAR 0x0b /* PSI Host Bridge Control/Status Register */ #define PSIHB_XSCOM_CR 0x0e #define PSIHB_CR_FSP_CMD_ENABLE 0x8000000000000000ull #define PSIHB_CR_FSP_MMIO_ENABLE 0x4000000000000000ull #define PSIHB_CR_FSP_IRQ_ENABLE 0x1000000000000000ull #define PSIHB_CR_FSP_ERR_RSP_ENABLE 0x0800000000000000ull #define PSIHB_CR_PSI_LINK_ENABLE 0x0400000000000000ull #define PSIHB_CR_FSP_RESET 0x0200000000000000ull #define PSIHB_CR_PSIHB_RESET 0x0100000000000000ull #define PSIHB_CR_PSI_IRQ 0x0000800000000000ull #define PSIHB_CR_FSP_IRQ 0x0000400000000000ull #define PSIHB_CR_FSP_LINK_ACTIVE 0x0000200000000000ull #define PSIHB_CR_IRQ_CMD_EXPECT 0x0000010000000000ull /* and more ... */ /* PSIHB Status / Error Mask Register */ #define PSIHB_XSCOM_SEMR 0x0f /* XIVR, to signal interrupts to the CEC firmware. more XIVR below. */ #define PSIHB_XSCOM_XIVR_FSP 0x10 #define PSIHB_XIVR_SERVER_SH 40 #define PSIHB_XIVR_SERVER_MSK (0xffffull << PSIHB_XIVR_SERVER_SH) #define PSIHB_XIVR_PRIO_SH 32 #define PSIHB_XIVR_PRIO_MSK (0xffull << PSIHB_XIVR_PRIO_SH) #define PSIHB_XIVR_SRC_SH 29 #define PSIHB_XIVR_SRC_MSK (0x7ull << PSIHB_XIVR_SRC_SH) #define PSIHB_XIVR_PENDING 0x01000000ull /* PSI Host Bridge Set Control/ Status Register */ #define PSIHB_XSCOM_SCR 0x12 /* PSI Host Bridge Clear Control/ Status Register */ #define PSIHB_XSCOM_CCR 0x13 /* DMA Upper Address Register */ #define PSIHB_XSCOM_DMA_UPADD 0x14 /* Interrupt Status */ #define PSIHB_XSCOM_IRQ_STAT 0x15 #define PSIHB_IRQ_STAT_OCC 0x0000001000000000ull #define PSIHB_IRQ_STAT_FSI 0x0000000800000000ull #define PSIHB_IRQ_STAT_LPCI2C 0x0000000400000000ull #define PSIHB_IRQ_STAT_LOCERR 0x0000000200000000ull #define PSIHB_IRQ_STAT_EXT 0x0000000100000000ull /* remaining XIVR */ #define PSIHB_XSCOM_XIVR_OCC 0x16 #define PSIHB_XSCOM_XIVR_FSI 0x17 #define PSIHB_XSCOM_XIVR_LPCI2C 0x18 #define PSIHB_XSCOM_XIVR_LOCERR 0x19 #define PSIHB_XSCOM_XIVR_EXT 0x1a /* Interrupt Requester Source Compare Register */ #define PSIHB_XSCOM_IRSN 0x1b #define PSIHB_IRSN_COMP_SH 45 #define PSIHB_IRSN_COMP_MSK (0x7ffffull << PSIHB_IRSN_COMP_SH) #define PSIHB_IRSN_IRQ_MUX 0x0000000800000000ull #define PSIHB_IRSN_IRQ_RESET 0x0000000400000000ull #define PSIHB_IRSN_DOWNSTREAM_EN 0x0000000200000000ull #define PSIHB_IRSN_UPSTREAM_EN 0x0000000100000000ull #define PSIHB_IRSN_COMPMASK_SH 13 #define PSIHB_IRSN_COMPMASK_MSK (0x7ffffull << PSIHB_IRSN_COMPMASK_SH) #define PSIHB_BAR_MASK 0x0003fffffff00000ull #define PSIHB_FSPBAR_MASK 0x0003ffff00000000ull #define PSIHB9_BAR_MASK 0x00fffffffff00000ull #define PSIHB9_FSPBAR_MASK 0x00ffffff00000000ull #define PSIHB_REG(addr) (((addr) >> 3) + PSIHB_XSCOM_BAR) static void pnv_psi_set_bar(PnvPsi *psi, uint64_t bar) { PnvPsiClass *ppc = PNV_PSI_GET_CLASS(psi); MemoryRegion *sysmem = get_system_memory(); uint64_t old = psi->regs[PSIHB_XSCOM_BAR]; psi->regs[PSIHB_XSCOM_BAR] = bar & (ppc->bar_mask | PSIHB_BAR_EN); /* Update MR, always remove it first */ if (old & PSIHB_BAR_EN) { memory_region_del_subregion(sysmem, &psi->regs_mr); } /* Then add it back if needed */ if (bar & PSIHB_BAR_EN) { uint64_t addr = bar & ppc->bar_mask; memory_region_add_subregion(sysmem, addr, &psi->regs_mr); } } static void pnv_psi_update_fsp_mr(PnvPsi *psi) { /* TODO: Update FSP MR if/when we support FSP BAR */ } static void pnv_psi_set_cr(PnvPsi *psi, uint64_t cr) { uint64_t old = psi->regs[PSIHB_XSCOM_CR]; psi->regs[PSIHB_XSCOM_CR] = cr; /* Check some bit changes */ if ((old ^ psi->regs[PSIHB_XSCOM_CR]) & PSIHB_CR_FSP_MMIO_ENABLE) { pnv_psi_update_fsp_mr(psi); } } static void pnv_psi_set_irsn(PnvPsi *psi, uint64_t val) { ICSState *ics = &PNV8_PSI(psi)->ics; /* In this model we ignore the up/down enable bits for now * as SW doesn't use them (other than setting them at boot). * We ignore IRQ_MUX, its meaning isn't clear and we don't use * it and finally we ignore reset (XXX fix that ?) */ psi->regs[PSIHB_XSCOM_IRSN] = val & (PSIHB_IRSN_COMP_MSK | PSIHB_IRSN_IRQ_MUX | PSIHB_IRSN_IRQ_RESET | PSIHB_IRSN_DOWNSTREAM_EN | PSIHB_IRSN_UPSTREAM_EN); /* We ignore the compare mask as well, our ICS emulation is too * simplistic to make any use if it, and we extract the offset * from the compare value */ ics->offset = (val & PSIHB_IRSN_COMP_MSK) >> PSIHB_IRSN_COMP_SH; } /* * FSP and PSI interrupts are muxed under the same number. */ static const uint32_t xivr_regs[] = { [PSIHB_IRQ_PSI] = PSIHB_XSCOM_XIVR_FSP, [PSIHB_IRQ_FSP] = PSIHB_XSCOM_XIVR_FSP, [PSIHB_IRQ_OCC] = PSIHB_XSCOM_XIVR_OCC, [PSIHB_IRQ_FSI] = PSIHB_XSCOM_XIVR_FSI, [PSIHB_IRQ_LPC_I2C] = PSIHB_XSCOM_XIVR_LPCI2C, [PSIHB_IRQ_LOCAL_ERR] = PSIHB_XSCOM_XIVR_LOCERR, [PSIHB_IRQ_EXTERNAL] = PSIHB_XSCOM_XIVR_EXT, }; static const uint32_t stat_regs[] = { [PSIHB_IRQ_PSI] = PSIHB_XSCOM_CR, [PSIHB_IRQ_FSP] = PSIHB_XSCOM_CR, [PSIHB_IRQ_OCC] = PSIHB_XSCOM_IRQ_STAT, [PSIHB_IRQ_FSI] = PSIHB_XSCOM_IRQ_STAT, [PSIHB_IRQ_LPC_I2C] = PSIHB_XSCOM_IRQ_STAT, [PSIHB_IRQ_LOCAL_ERR] = PSIHB_XSCOM_IRQ_STAT, [PSIHB_IRQ_EXTERNAL] = PSIHB_XSCOM_IRQ_STAT, }; static const uint64_t stat_bits[] = { [PSIHB_IRQ_PSI] = PSIHB_CR_PSI_IRQ, [PSIHB_IRQ_FSP] = PSIHB_CR_FSP_IRQ, [PSIHB_IRQ_OCC] = PSIHB_IRQ_STAT_OCC, [PSIHB_IRQ_FSI] = PSIHB_IRQ_STAT_FSI, [PSIHB_IRQ_LPC_I2C] = PSIHB_IRQ_STAT_LPCI2C, [PSIHB_IRQ_LOCAL_ERR] = PSIHB_IRQ_STAT_LOCERR, [PSIHB_IRQ_EXTERNAL] = PSIHB_IRQ_STAT_EXT, }; void pnv_psi_irq_set(PnvPsi *psi, int irq, bool state) { PNV_PSI_GET_CLASS(psi)->irq_set(psi, irq, state); } static void pnv_psi_power8_irq_set(PnvPsi *psi, int irq, bool state) { uint32_t xivr_reg; uint32_t stat_reg; uint32_t src; bool masked; if (irq > PSIHB_IRQ_EXTERNAL) { qemu_log_mask(LOG_GUEST_ERROR, "PSI: Unsupported irq %d\n", irq); return; } xivr_reg = xivr_regs[irq]; stat_reg = stat_regs[irq]; src = (psi->regs[xivr_reg] & PSIHB_XIVR_SRC_MSK) >> PSIHB_XIVR_SRC_SH; if (state) { psi->regs[stat_reg] |= stat_bits[irq]; /* TODO: optimization, check mask here. That means * re-evaluating when unmasking */ qemu_irq_raise(psi->qirqs[src]); } else { psi->regs[stat_reg] &= ~stat_bits[irq]; /* FSP and PSI are muxed so don't lower if either is still set */ if (stat_reg != PSIHB_XSCOM_CR || !(psi->regs[stat_reg] & (PSIHB_CR_PSI_IRQ | PSIHB_CR_FSP_IRQ))) { qemu_irq_lower(psi->qirqs[src]); } else { state = true; } } /* Note about the emulation of the pending bit: This isn't * entirely correct. The pending bit should be cleared when the * EOI has been received. However, we don't have callbacks on EOI * (especially not under KVM) so no way to emulate that properly, * so instead we just set that bit as the logical "output" of the * XIVR (ie pending & !masked) * * CLG: We could define a new ICS object with a custom eoi() * handler to clear the pending bit. But I am not sure this would * be useful for the software anyhow. */ masked = (psi->regs[xivr_reg] & PSIHB_XIVR_PRIO_MSK) == PSIHB_XIVR_PRIO_MSK; if (state && !masked) { psi->regs[xivr_reg] |= PSIHB_XIVR_PENDING; } else { psi->regs[xivr_reg] &= ~PSIHB_XIVR_PENDING; } } static void pnv_psi_set_xivr(PnvPsi *psi, uint32_t reg, uint64_t val) { ICSState *ics = &PNV8_PSI(psi)->ics; uint16_t server; uint8_t prio; uint8_t src; psi->regs[reg] = (psi->regs[reg] & PSIHB_XIVR_PENDING) | (val & (PSIHB_XIVR_SERVER_MSK | PSIHB_XIVR_PRIO_MSK | PSIHB_XIVR_SRC_MSK)); val = psi->regs[reg]; server = (val & PSIHB_XIVR_SERVER_MSK) >> PSIHB_XIVR_SERVER_SH; prio = (val & PSIHB_XIVR_PRIO_MSK) >> PSIHB_XIVR_PRIO_SH; src = (val & PSIHB_XIVR_SRC_MSK) >> PSIHB_XIVR_SRC_SH; if (src >= PSI_NUM_INTERRUPTS) { qemu_log_mask(LOG_GUEST_ERROR, "PSI: Unsupported irq %d\n", src); return; } /* Remove pending bit if the IRQ is masked */ if ((psi->regs[reg] & PSIHB_XIVR_PRIO_MSK) == PSIHB_XIVR_PRIO_MSK) { psi->regs[reg] &= ~PSIHB_XIVR_PENDING; } /* The low order 2 bits are the link pointer (Type II interrupts). * Shift back to get a valid IRQ server. */ server >>= 2; /* Now because of source remapping, weird things can happen * if you change the source number dynamically, our simple ICS * doesn't deal with remapping. So we just poke a different * ICS entry based on what source number was written. This will * do for now but a more accurate implementation would instead * use a fixed server/prio and a remapper of the generated irq. */ ics_write_xive(ics, src, server, prio, prio); } static uint64_t pnv_psi_reg_read(PnvPsi *psi, uint32_t offset, bool mmio) { uint64_t val = 0xffffffffffffffffull; switch (offset) { case PSIHB_XSCOM_FIR_RW: case PSIHB_XSCOM_FIRACT0: case PSIHB_XSCOM_FIRACT1: case PSIHB_XSCOM_BAR: case PSIHB_XSCOM_FSPBAR: case PSIHB_XSCOM_CR: case PSIHB_XSCOM_XIVR_FSP: case PSIHB_XSCOM_XIVR_OCC: case PSIHB_XSCOM_XIVR_FSI: case PSIHB_XSCOM_XIVR_LPCI2C: case PSIHB_XSCOM_XIVR_LOCERR: case PSIHB_XSCOM_XIVR_EXT: case PSIHB_XSCOM_IRQ_STAT: case PSIHB_XSCOM_SEMR: case PSIHB_XSCOM_DMA_UPADD: case PSIHB_XSCOM_IRSN: val = psi->regs[offset]; break; default: qemu_log_mask(LOG_UNIMP, "PSI: read at 0x%" PRIx32 "\n", offset); } return val; } static void pnv_psi_reg_write(PnvPsi *psi, uint32_t offset, uint64_t val, bool mmio) { switch (offset) { case PSIHB_XSCOM_FIR_RW: case PSIHB_XSCOM_FIRACT0: case PSIHB_XSCOM_FIRACT1: case PSIHB_XSCOM_SEMR: case PSIHB_XSCOM_DMA_UPADD: psi->regs[offset] = val; break; case PSIHB_XSCOM_FIR_OR: psi->regs[PSIHB_XSCOM_FIR_RW] |= val; break; case PSIHB_XSCOM_FIR_AND: psi->regs[PSIHB_XSCOM_FIR_RW] &= val; break; case PSIHB_XSCOM_BAR: /* Only XSCOM can write this one */ if (!mmio) { pnv_psi_set_bar(psi, val); } else { qemu_log_mask(LOG_GUEST_ERROR, "PSI: invalid write of BAR\n"); } break; case PSIHB_XSCOM_FSPBAR: psi->regs[PSIHB_XSCOM_FSPBAR] = val & PSIHB_FSPBAR_MASK; pnv_psi_update_fsp_mr(psi); break; case PSIHB_XSCOM_CR: pnv_psi_set_cr(psi, val); break; case PSIHB_XSCOM_SCR: pnv_psi_set_cr(psi, psi->regs[PSIHB_XSCOM_CR] | val); break; case PSIHB_XSCOM_CCR: pnv_psi_set_cr(psi, psi->regs[PSIHB_XSCOM_CR] & ~val); break; case PSIHB_XSCOM_XIVR_FSP: case PSIHB_XSCOM_XIVR_OCC: case PSIHB_XSCOM_XIVR_FSI: case PSIHB_XSCOM_XIVR_LPCI2C: case PSIHB_XSCOM_XIVR_LOCERR: case PSIHB_XSCOM_XIVR_EXT: pnv_psi_set_xivr(psi, offset, val); break; case PSIHB_XSCOM_IRQ_STAT: /* Read only */ qemu_log_mask(LOG_GUEST_ERROR, "PSI: invalid write of IRQ_STAT\n"); break; case PSIHB_XSCOM_IRSN: pnv_psi_set_irsn(psi, val); break; default: qemu_log_mask(LOG_UNIMP, "PSI: write at 0x%" PRIx32 "\n", offset); } } /* * The values of the registers when accessed through the MMIO region * follow the relation : xscom = (mmio + 0x50) >> 3 */ static uint64_t pnv_psi_mmio_read(void *opaque, hwaddr addr, unsigned size) { return pnv_psi_reg_read(opaque, PSIHB_REG(addr), true); } static void pnv_psi_mmio_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { pnv_psi_reg_write(opaque, PSIHB_REG(addr), val, true); } static const MemoryRegionOps psi_mmio_ops = { .read = pnv_psi_mmio_read, .write = pnv_psi_mmio_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; static uint64_t pnv_psi_xscom_read(void *opaque, hwaddr addr, unsigned size) { return pnv_psi_reg_read(opaque, addr >> 3, false); } static void pnv_psi_xscom_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { pnv_psi_reg_write(opaque, addr >> 3, val, false); } static const MemoryRegionOps pnv_psi_xscom_ops = { .read = pnv_psi_xscom_read, .write = pnv_psi_xscom_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, } }; static void pnv_psi_reset(void *dev) { PnvPsi *psi = PNV_PSI(dev); memset(psi->regs, 0x0, sizeof(psi->regs)); psi->regs[PSIHB_XSCOM_BAR] = psi->bar | PSIHB_BAR_EN; } static void pnv_psi_power8_instance_init(Object *obj) { Pnv8Psi *psi8 = PNV8_PSI(obj); object_initialize_child(obj, "ics-psi", &psi8->ics, sizeof(psi8->ics), TYPE_ICS, &error_abort, NULL); object_property_add_alias(obj, ICS_PROP_XICS, OBJECT(&psi8->ics), ICS_PROP_XICS, &error_abort); } static const uint8_t irq_to_xivr[] = { PSIHB_XSCOM_XIVR_FSP, PSIHB_XSCOM_XIVR_OCC, PSIHB_XSCOM_XIVR_FSI, PSIHB_XSCOM_XIVR_LPCI2C, PSIHB_XSCOM_XIVR_LOCERR, PSIHB_XSCOM_XIVR_EXT, }; static void pnv_psi_power8_realize(DeviceState *dev, Error **errp) { PnvPsi *psi = PNV_PSI(dev); ICSState *ics = &PNV8_PSI(psi)->ics; Error *err = NULL; unsigned int i; /* Create PSI interrupt control source */ object_property_set_int(OBJECT(ics), PSI_NUM_INTERRUPTS, "nr-irqs", &err); if (err) { error_propagate(errp, err); return; } object_property_set_bool(OBJECT(ics), true, "realized", &err); if (err) { error_propagate(errp, err); return; } for (i = 0; i < ics->nr_irqs; i++) { ics_set_irq_type(ics, i, true); } psi->qirqs = qemu_allocate_irqs(ics_set_irq, ics, ics->nr_irqs); /* XSCOM region for PSI registers */ pnv_xscom_region_init(&psi->xscom_regs, OBJECT(dev), &pnv_psi_xscom_ops, psi, "xscom-psi", PNV_XSCOM_PSIHB_SIZE); /* Initialize MMIO region */ memory_region_init_io(&psi->regs_mr, OBJECT(dev), &psi_mmio_ops, psi, "psihb", PNV_PSIHB_SIZE); /* Default BAR for MMIO region */ pnv_psi_set_bar(psi, psi->bar | PSIHB_BAR_EN); /* Default sources in XIVR */ for (i = 0; i < PSI_NUM_INTERRUPTS; i++) { uint8_t xivr = irq_to_xivr[i]; psi->regs[xivr] = PSIHB_XIVR_PRIO_MSK | ((uint64_t) i << PSIHB_XIVR_SRC_SH); } qemu_register_reset(pnv_psi_reset, dev); } static int pnv_psi_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset) { PnvPsiClass *ppc = PNV_PSI_GET_CLASS(dev); char *name; int offset; uint32_t reg[] = { cpu_to_be32(ppc->xscom_pcba), cpu_to_be32(ppc->xscom_size) }; name = g_strdup_printf("psihb@%x", ppc->xscom_pcba); offset = fdt_add_subnode(fdt, xscom_offset, name); _FDT(offset); g_free(name); _FDT(fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))); _FDT(fdt_setprop_cell(fdt, offset, "#address-cells", 2)); _FDT(fdt_setprop_cell(fdt, offset, "#size-cells", 1)); _FDT(fdt_setprop(fdt, offset, "compatible", ppc->compat, ppc->compat_size)); return 0; } static Property pnv_psi_properties[] = { DEFINE_PROP_UINT64("bar", PnvPsi, bar, 0), DEFINE_PROP_UINT64("fsp-bar", PnvPsi, fsp_bar, 0), DEFINE_PROP_END_OF_LIST(), }; static void pnv_psi_power8_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvPsiClass *ppc = PNV_PSI_CLASS(klass); static const char compat[] = "ibm,power8-psihb-x\0ibm,psihb-x"; dc->desc = "PowerNV PSI Controller POWER8"; dc->realize = pnv_psi_power8_realize; ppc->xscom_pcba = PNV_XSCOM_PSIHB_BASE; ppc->xscom_size = PNV_XSCOM_PSIHB_SIZE; ppc->bar_mask = PSIHB_BAR_MASK; ppc->irq_set = pnv_psi_power8_irq_set; ppc->compat = compat; ppc->compat_size = sizeof(compat); } static const TypeInfo pnv_psi_power8_info = { .name = TYPE_PNV8_PSI, .parent = TYPE_PNV_PSI, .instance_size = sizeof(Pnv8Psi), .instance_init = pnv_psi_power8_instance_init, .class_init = pnv_psi_power8_class_init, }; /* Common registers */ #define PSIHB9_CR 0x20 #define PSIHB9_SEMR 0x28 /* P9 registers */ #define PSIHB9_INTERRUPT_CONTROL 0x58 #define PSIHB9_IRQ_METHOD PPC_BIT(0) #define PSIHB9_IRQ_RESET PPC_BIT(1) #define PSIHB9_ESB_CI_BASE 0x60 #define PSIHB9_ESB_CI_64K PPC_BIT(1) #define PSIHB9_ESB_CI_ADDR_MASK PPC_BITMASK(8, 47) #define PSIHB9_ESB_CI_VALID PPC_BIT(63) #define PSIHB9_ESB_NOTIF_ADDR 0x68 #define PSIHB9_ESB_NOTIF_ADDR_MASK PPC_BITMASK(8, 60) #define PSIHB9_ESB_NOTIF_VALID PPC_BIT(63) #define PSIHB9_IVT_OFFSET 0x70 #define PSIHB9_IVT_OFF_SHIFT 32 #define PSIHB9_IRQ_LEVEL 0x78 /* assertion */ #define PSIHB9_IRQ_LEVEL_PSI PPC_BIT(0) #define PSIHB9_IRQ_LEVEL_OCC PPC_BIT(1) #define PSIHB9_IRQ_LEVEL_FSI PPC_BIT(2) #define PSIHB9_IRQ_LEVEL_LPCHC PPC_BIT(3) #define PSIHB9_IRQ_LEVEL_LOCAL_ERR PPC_BIT(4) #define PSIHB9_IRQ_LEVEL_GLOBAL_ERR PPC_BIT(5) #define PSIHB9_IRQ_LEVEL_TPM PPC_BIT(6) #define PSIHB9_IRQ_LEVEL_LPC_SIRQ1 PPC_BIT(7) #define PSIHB9_IRQ_LEVEL_LPC_SIRQ2 PPC_BIT(8) #define PSIHB9_IRQ_LEVEL_LPC_SIRQ3 PPC_BIT(9) #define PSIHB9_IRQ_LEVEL_LPC_SIRQ4 PPC_BIT(10) #define PSIHB9_IRQ_LEVEL_SBE_I2C PPC_BIT(11) #define PSIHB9_IRQ_LEVEL_DIO PPC_BIT(12) #define PSIHB9_IRQ_LEVEL_PSU PPC_BIT(13) #define PSIHB9_IRQ_LEVEL_I2C_C PPC_BIT(14) #define PSIHB9_IRQ_LEVEL_I2C_D PPC_BIT(15) #define PSIHB9_IRQ_LEVEL_I2C_E PPC_BIT(16) #define PSIHB9_IRQ_LEVEL_SBE PPC_BIT(19) #define PSIHB9_IRQ_STAT 0x80 /* P bit */ #define PSIHB9_IRQ_STAT_PSI PPC_BIT(0) #define PSIHB9_IRQ_STAT_OCC PPC_BIT(1) #define PSIHB9_IRQ_STAT_FSI PPC_BIT(2) #define PSIHB9_IRQ_STAT_LPCHC PPC_BIT(3) #define PSIHB9_IRQ_STAT_LOCAL_ERR PPC_BIT(4) #define PSIHB9_IRQ_STAT_GLOBAL_ERR PPC_BIT(5) #define PSIHB9_IRQ_STAT_TPM PPC_BIT(6) #define PSIHB9_IRQ_STAT_LPC_SIRQ1 PPC_BIT(7) #define PSIHB9_IRQ_STAT_LPC_SIRQ2 PPC_BIT(8) #define PSIHB9_IRQ_STAT_LPC_SIRQ3 PPC_BIT(9) #define PSIHB9_IRQ_STAT_LPC_SIRQ4 PPC_BIT(10) #define PSIHB9_IRQ_STAT_SBE_I2C PPC_BIT(11) #define PSIHB9_IRQ_STAT_DIO PPC_BIT(12) #define PSIHB9_IRQ_STAT_PSU PPC_BIT(13) static void pnv_psi_notify(XiveNotifier *xf, uint32_t srcno) { PnvPsi *psi = PNV_PSI(xf); uint64_t notif_port = psi->regs[PSIHB_REG(PSIHB9_ESB_NOTIF_ADDR)]; bool valid = notif_port & PSIHB9_ESB_NOTIF_VALID; uint64_t notify_addr = notif_port & ~PSIHB9_ESB_NOTIF_VALID; uint32_t offset = (psi->regs[PSIHB_REG(PSIHB9_IVT_OFFSET)] >> PSIHB9_IVT_OFF_SHIFT); uint64_t data = XIVE_TRIGGER_PQ | offset | srcno; MemTxResult result; if (!valid) { return; } address_space_stq_be(&address_space_memory, notify_addr, data, MEMTXATTRS_UNSPECIFIED, &result); if (result != MEMTX_OK) { qemu_log_mask(LOG_GUEST_ERROR, "%s: trigger failed @%" HWADDR_PRIx "\n", __func__, notif_port); return; } } static uint64_t pnv_psi_p9_mmio_read(void *opaque, hwaddr addr, unsigned size) { PnvPsi *psi = PNV_PSI(opaque); uint32_t reg = PSIHB_REG(addr); uint64_t val = -1; switch (addr) { case PSIHB9_CR: case PSIHB9_SEMR: /* FSP stuff */ case PSIHB9_INTERRUPT_CONTROL: case PSIHB9_ESB_CI_BASE: case PSIHB9_ESB_NOTIF_ADDR: case PSIHB9_IVT_OFFSET: val = psi->regs[reg]; break; default: qemu_log_mask(LOG_GUEST_ERROR, "PSI: read at 0x%" PRIx64 "\n", addr); } return val; } static void pnv_psi_p9_mmio_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PnvPsi *psi = PNV_PSI(opaque); Pnv9Psi *psi9 = PNV9_PSI(psi); uint32_t reg = PSIHB_REG(addr); MemoryRegion *sysmem = get_system_memory(); switch (addr) { case PSIHB9_CR: case PSIHB9_SEMR: /* FSP stuff */ break; case PSIHB9_INTERRUPT_CONTROL: if (val & PSIHB9_IRQ_RESET) { device_reset(DEVICE(&psi9->source)); } psi->regs[reg] = val; break; case PSIHB9_ESB_CI_BASE: if (!(val & PSIHB9_ESB_CI_VALID)) { if (psi->regs[reg] & PSIHB9_ESB_CI_VALID) { memory_region_del_subregion(sysmem, &psi9->source.esb_mmio); } } else { if (!(psi->regs[reg] & PSIHB9_ESB_CI_VALID)) { memory_region_add_subregion(sysmem, val & ~PSIHB9_ESB_CI_VALID, &psi9->source.esb_mmio); } } psi->regs[reg] = val; break; case PSIHB9_ESB_NOTIF_ADDR: psi->regs[reg] = val; break; case PSIHB9_IVT_OFFSET: psi->regs[reg] = val; break; default: qemu_log_mask(LOG_GUEST_ERROR, "PSI: write at 0x%" PRIx64 "\n", addr); } } static const MemoryRegionOps pnv_psi_p9_mmio_ops = { .read = pnv_psi_p9_mmio_read, .write = pnv_psi_p9_mmio_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; static uint64_t pnv_psi_p9_xscom_read(void *opaque, hwaddr addr, unsigned size) { /* No read are expected */ qemu_log_mask(LOG_GUEST_ERROR, "PSI: xscom read at 0x%" PRIx64 "\n", addr); return -1; } static void pnv_psi_p9_xscom_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PnvPsi *psi = PNV_PSI(opaque); /* XSCOM is only used to set the PSIHB MMIO region */ switch (addr >> 3) { case PSIHB_XSCOM_BAR: pnv_psi_set_bar(psi, val); break; default: qemu_log_mask(LOG_GUEST_ERROR, "PSI: xscom write at 0x%" PRIx64 "\n", addr); } } static const MemoryRegionOps pnv_psi_p9_xscom_ops = { .read = pnv_psi_p9_xscom_read, .write = pnv_psi_p9_xscom_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, } }; static void pnv_psi_power9_irq_set(PnvPsi *psi, int irq, bool state) { uint64_t irq_method = psi->regs[PSIHB_REG(PSIHB9_INTERRUPT_CONTROL)]; if (irq > PSIHB9_NUM_IRQS) { qemu_log_mask(LOG_GUEST_ERROR, "PSI: Unsupported irq %d\n", irq); return; } if (irq_method & PSIHB9_IRQ_METHOD) { qemu_log_mask(LOG_GUEST_ERROR, "PSI: LSI IRQ method no supported\n"); return; } /* Update LSI levels */ if (state) { psi->regs[PSIHB_REG(PSIHB9_IRQ_LEVEL)] |= PPC_BIT(irq); } else { psi->regs[PSIHB_REG(PSIHB9_IRQ_LEVEL)] &= ~PPC_BIT(irq); } qemu_set_irq(psi->qirqs[irq], state); } static void pnv_psi_power9_reset(void *dev) { Pnv9Psi *psi = PNV9_PSI(dev); pnv_psi_reset(dev); if (memory_region_is_mapped(&psi->source.esb_mmio)) { memory_region_del_subregion(get_system_memory(), &psi->source.esb_mmio); } } static void pnv_psi_power9_instance_init(Object *obj) { Pnv9Psi *psi = PNV9_PSI(obj); object_initialize_child(obj, "source", &psi->source, sizeof(psi->source), TYPE_XIVE_SOURCE, &error_abort, NULL); } static void pnv_psi_power9_realize(DeviceState *dev, Error **errp) { PnvPsi *psi = PNV_PSI(dev); XiveSource *xsrc = &PNV9_PSI(psi)->source; Error *local_err = NULL; int i; /* This is the only device with 4k ESB pages */ object_property_set_int(OBJECT(xsrc), XIVE_ESB_4K, "shift", &error_fatal); object_property_set_int(OBJECT(xsrc), PSIHB9_NUM_IRQS, "nr-irqs", &error_fatal); object_property_set_link(OBJECT(xsrc), OBJECT(psi), "xive", &error_abort); object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err); if (local_err) { error_propagate(errp, local_err); return; } for (i = 0; i < xsrc->nr_irqs; i++) { xive_source_irq_set_lsi(xsrc, i); } psi->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs); /* XSCOM region for PSI registers */ pnv_xscom_region_init(&psi->xscom_regs, OBJECT(dev), &pnv_psi_p9_xscom_ops, psi, "xscom-psi", PNV9_XSCOM_PSIHB_SIZE); /* MMIO region for PSI registers */ memory_region_init_io(&psi->regs_mr, OBJECT(dev), &pnv_psi_p9_mmio_ops, psi, "psihb", PNV9_PSIHB_SIZE); pnv_psi_set_bar(psi, psi->bar | PSIHB_BAR_EN); qemu_register_reset(pnv_psi_power9_reset, dev); } static void pnv_psi_power9_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvPsiClass *ppc = PNV_PSI_CLASS(klass); XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass); static const char compat[] = "ibm,power9-psihb-x\0ibm,psihb-x"; dc->desc = "PowerNV PSI Controller POWER9"; dc->realize = pnv_psi_power9_realize; ppc->xscom_pcba = PNV9_XSCOM_PSIHB_BASE; ppc->xscom_size = PNV9_XSCOM_PSIHB_SIZE; ppc->bar_mask = PSIHB9_BAR_MASK; ppc->irq_set = pnv_psi_power9_irq_set; ppc->compat = compat; ppc->compat_size = sizeof(compat); xfc->notify = pnv_psi_notify; } static const TypeInfo pnv_psi_power9_info = { .name = TYPE_PNV9_PSI, .parent = TYPE_PNV_PSI, .instance_size = sizeof(Pnv9Psi), .instance_init = pnv_psi_power9_instance_init, .class_init = pnv_psi_power9_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_XIVE_NOTIFIER }, { }, }, }; static void pnv_psi_power10_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvPsiClass *ppc = PNV_PSI_CLASS(klass); static const char compat[] = "ibm,power10-psihb-x\0ibm,psihb-x"; dc->desc = "PowerNV PSI Controller POWER10"; ppc->xscom_pcba = PNV10_XSCOM_PSIHB_BASE; ppc->xscom_size = PNV10_XSCOM_PSIHB_SIZE; ppc->compat = compat; ppc->compat_size = sizeof(compat); } static const TypeInfo pnv_psi_power10_info = { .name = TYPE_PNV10_PSI, .parent = TYPE_PNV9_PSI, .class_init = pnv_psi_power10_class_init, }; static void pnv_psi_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass); xdc->dt_xscom = pnv_psi_dt_xscom; dc->desc = "PowerNV PSI Controller"; dc->props = pnv_psi_properties; } static const TypeInfo pnv_psi_info = { .name = TYPE_PNV_PSI, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(PnvPsi), .class_init = pnv_psi_class_init, .class_size = sizeof(PnvPsiClass), .abstract = true, .interfaces = (InterfaceInfo[]) { { TYPE_PNV_XSCOM_INTERFACE }, { } } }; static void pnv_psi_register_types(void) { type_register_static(&pnv_psi_info); type_register_static(&pnv_psi_power8_info); type_register_static(&pnv_psi_power9_info); type_register_static(&pnv_psi_power10_info); } type_init(pnv_psi_register_types); void pnv_psi_pic_print_info(Pnv9Psi *psi9, Monitor *mon) { PnvPsi *psi = PNV_PSI(psi9); uint32_t offset = (psi->regs[PSIHB_REG(PSIHB9_IVT_OFFSET)] >> PSIHB9_IVT_OFF_SHIFT); monitor_printf(mon, "PSIHB Source %08x .. %08x\n", offset, offset + psi9->source.nr_irqs - 1); xive_source_pic_print_info(&psi9->source, offset, mon); }