/* * Arm SSE Subsystem System Counter * * Copyright (c) 2020 Linaro Limited * Written by Peter Maydell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 or * (at your option) any later version. */ /* * This is a model of the "System counter" which is documented in * the Arm SSE-123 Example Subsystem Technical Reference Manual: * https://developer.arm.com/documentation/101370/latest/ * * The system counter is a non-stop 64-bit up-counter. It provides * this count value to other devices like the SSE system timer, * which are driven by this system timestamp rather than directly * from a clock. Internally to the counter the count is actually * 88-bit precision (64.24 fixed point), with a programmable scale factor. * * The hardware has the optional feature that it supports dynamic * clock switching, where two clock inputs are connected, and which * one is used is selected via a CLKSEL input signal. Since the * users of this device in QEMU don't use this feature, we only model * the HWCLKSW=0 configuration. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/timer.h" #include "qapi/error.h" #include "trace.h" #include "hw/timer/sse-counter.h" #include "hw/sysbus.h" #include "hw/registerfields.h" #include "hw/clock.h" #include "hw/qdev-clock.h" #include "migration/vmstate.h" /* Registers in the control frame */ REG32(CNTCR, 0x0) FIELD(CNTCR, EN, 0, 1) FIELD(CNTCR, HDBG, 1, 1) FIELD(CNTCR, SCEN, 2, 1) FIELD(CNTCR, INTRMASK, 3, 1) FIELD(CNTCR, PSLVERRDIS, 4, 1) FIELD(CNTCR, INTRCLR, 5, 1) /* * Although CNTCR defines interrupt-related bits, the counter doesn't * appear to actually have an interrupt output. So INTRCLR is * effectively a RAZ/WI bit, as are the reserved bits [31:6]. */ #define CNTCR_VALID_MASK (R_CNTCR_EN_MASK | R_CNTCR_HDBG_MASK | \ R_CNTCR_SCEN_MASK | R_CNTCR_INTRMASK_MASK | \ R_CNTCR_PSLVERRDIS_MASK) REG32(CNTSR, 0x4) REG32(CNTCV_LO, 0x8) REG32(CNTCV_HI, 0xc) REG32(CNTSCR, 0x10) /* Aliased with CNTSCR0 */ REG32(CNTID, 0x1c) FIELD(CNTID, CNTSC, 0, 4) FIELD(CNTID, CNTCS, 16, 1) FIELD(CNTID, CNTSELCLK, 17, 2) FIELD(CNTID, CNTSCR_OVR, 19, 1) REG32(CNTSCR0, 0xd0) REG32(CNTSCR1, 0xd4) /* Registers in the status frame */ REG32(STATUS_CNTCV_LO, 0x0) REG32(STATUS_CNTCV_HI, 0x4) /* Standard ID registers, present in both frames */ REG32(PID4, 0xFD0) REG32(PID5, 0xFD4) REG32(PID6, 0xFD8) REG32(PID7, 0xFDC) REG32(PID0, 0xFE0) REG32(PID1, 0xFE4) REG32(PID2, 0xFE8) REG32(PID3, 0xFEC) REG32(CID0, 0xFF0) REG32(CID1, 0xFF4) REG32(CID2, 0xFF8) REG32(CID3, 0xFFC) /* PID/CID values */ static const int control_id[] = { 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */ 0xba, 0xb0, 0x0b, 0x00, /* PID0..PID3 */ 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */ }; static const int status_id[] = { 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */ 0xbb, 0xb0, 0x0b, 0x00, /* PID0..PID3 */ 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */ }; static void sse_counter_notify_users(SSECounter *s) { /* * Notify users of the count timestamp that they may * need to recalculate. */ notifier_list_notify(&s->notifier_list, NULL); } static bool sse_counter_enabled(SSECounter *s) { return (s->cntcr & R_CNTCR_EN_MASK) != 0; } uint64_t sse_counter_tick_to_time(SSECounter *s, uint64_t tick) { if (!sse_counter_enabled(s)) { return UINT64_MAX; } tick -= s->ticks_then; if (s->cntcr & R_CNTCR_SCEN_MASK) { /* Adjust the tick count to account for the scale factor */ tick = muldiv64(tick, 0x01000000, s->cntscr0); } return s->ns_then + clock_ticks_to_ns(s->clk, tick); } void sse_counter_register_consumer(SSECounter *s, Notifier *notifier) { /* * For the moment we assume that both we and the devices * which consume us last for the life of the simulation, * and so there is no mechanism for removing a notifier. */ notifier_list_add(&s->notifier_list, notifier); } uint64_t sse_counter_for_timestamp(SSECounter *s, uint64_t now) { /* Return the CNTCV value for a particular timestamp (clock ns value). */ uint64_t ticks; if (!sse_counter_enabled(s)) { /* Counter is disabled and does not increment */ return s->ticks_then; } ticks = clock_ns_to_ticks(s->clk, now - s->ns_then); if (s->cntcr & R_CNTCR_SCEN_MASK) { /* * Scaling is enabled. The CNTSCR value is the amount added to * the underlying 88-bit counter for every tick of the * underlying clock; CNTCV is the top 64 bits of that full * 88-bit value. Multiplying the tick count by CNTSCR tells us * how much the full 88-bit counter has moved on; we then * divide that by 0x01000000 to find out how much the 64-bit * visible portion has advanced. muldiv64() gives us the * necessary at-least-88-bit precision for the intermediate * result. */ ticks = muldiv64(ticks, s->cntscr0, 0x01000000); } return s->ticks_then + ticks; } static uint64_t sse_cntcv(SSECounter *s) { /* Return the CNTCV value for the current time */ return sse_counter_for_timestamp(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); } static void sse_write_cntcv(SSECounter *s, uint32_t value, unsigned startbit) { /* * Write one 32-bit half of the counter value; startbit is the * bit position of this half in the 64-bit word, either 0 or 32. */ uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); uint64_t cntcv = sse_counter_for_timestamp(s, now); cntcv = deposit64(cntcv, startbit, 32, value); s->ticks_then = cntcv; s->ns_then = now; sse_counter_notify_users(s); } static uint64_t sse_counter_control_read(void *opaque, hwaddr offset, unsigned size) { SSECounter *s = SSE_COUNTER(opaque); uint64_t r; switch (offset) { case A_CNTCR: r = s->cntcr; break; case A_CNTSR: /* * The only bit here is DBGH, indicating that the counter has been * halted via the Halt-on-Debug signal. We don't implement halting * debug, so the whole register always reads as zero. */ r = 0; break; case A_CNTCV_LO: r = extract64(sse_cntcv(s), 0, 32); break; case A_CNTCV_HI: r = extract64(sse_cntcv(s), 32, 32); break; case A_CNTID: /* * For our implementation: * - CNTSCR can only be written when CNTCR.EN == 0 * - HWCLKSW=0, so selected clock is always CLK0 * - counter scaling is implemented */ r = (1 << R_CNTID_CNTSELCLK_SHIFT) | (1 << R_CNTID_CNTSC_SHIFT); break; case A_CNTSCR: case A_CNTSCR0: r = s->cntscr0; break; case A_CNTSCR1: /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */ r = 0; break; case A_PID4 ... A_CID3: r = control_id[(offset - A_PID4) / 4]; break; default: qemu_log_mask(LOG_GUEST_ERROR, "SSE System Counter control frame read: bad offset 0x%x", (unsigned)offset); r = 0; break; } trace_sse_counter_control_read(offset, r, size); return r; } static void sse_counter_control_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { SSECounter *s = SSE_COUNTER(opaque); trace_sse_counter_control_write(offset, value, size); switch (offset) { case A_CNTCR: /* * Although CNTCR defines interrupt-related bits, the counter doesn't * appear to actually have an interrupt output. So INTRCLR is * effectively a RAZ/WI bit, as are the reserved bits [31:6]. * The documentation does not explicitly say so, but we assume * that changing the scale factor while the counter is enabled * by toggling CNTCR.SCEN has the same behaviour (making the counter * value UNKNOWN) as changing it by writing to CNTSCR, and so we * don't need to try to recalculate for that case. */ value &= CNTCR_VALID_MASK; if ((value ^ s->cntcr) & R_CNTCR_EN_MASK) { /* * Whether the counter is being enabled or disabled, the * required action is the same: sync the (ns_then, ticks_then) * tuple. */ uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); s->ticks_then = sse_counter_for_timestamp(s, now); s->ns_then = now; sse_counter_notify_users(s); } s->cntcr = value; break; case A_CNTCV_LO: sse_write_cntcv(s, value, 0); break; case A_CNTCV_HI: sse_write_cntcv(s, value, 32); break; case A_CNTSCR: case A_CNTSCR0: /* * If the scale registers are changed when the counter is enabled, * the count value becomes UNKNOWN. So we don't try to recalculate * anything here but only do it on a write to CNTCR.EN. */ s->cntscr0 = value; break; case A_CNTSCR1: /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */ break; case A_CNTSR: case A_CNTID: case A_PID4 ... A_CID3: qemu_log_mask(LOG_GUEST_ERROR, "SSE System Counter control frame: write to RO offset 0x%x\n", (unsigned)offset); break; default: qemu_log_mask(LOG_GUEST_ERROR, "SSE System Counter control frame: write to bad offset 0x%x\n", (unsigned)offset); break; } } static uint64_t sse_counter_status_read(void *opaque, hwaddr offset, unsigned size) { SSECounter *s = SSE_COUNTER(opaque); uint64_t r; switch (offset) { case A_STATUS_CNTCV_LO: r = extract64(sse_cntcv(s), 0, 32); break; case A_STATUS_CNTCV_HI: r = extract64(sse_cntcv(s), 32, 32); break; case A_PID4 ... A_CID3: r = status_id[(offset - A_PID4) / 4]; break; default: qemu_log_mask(LOG_GUEST_ERROR, "SSE System Counter status frame read: bad offset 0x%x", (unsigned)offset); r = 0; break; } trace_sse_counter_status_read(offset, r, size); return r; } static void sse_counter_status_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { trace_sse_counter_status_write(offset, value, size); switch (offset) { case A_STATUS_CNTCV_LO: case A_STATUS_CNTCV_HI: case A_PID4 ... A_CID3: qemu_log_mask(LOG_GUEST_ERROR, "SSE System Counter status frame: write to RO offset 0x%x\n", (unsigned)offset); break; default: qemu_log_mask(LOG_GUEST_ERROR, "SSE System Counter status frame: write to bad offset 0x%x\n", (unsigned)offset); break; } } static const MemoryRegionOps sse_counter_control_ops = { .read = sse_counter_control_read, .write = sse_counter_control_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid.min_access_size = 4, .valid.max_access_size = 4, }; static const MemoryRegionOps sse_counter_status_ops = { .read = sse_counter_status_read, .write = sse_counter_status_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid.min_access_size = 4, .valid.max_access_size = 4, }; static void sse_counter_reset(DeviceState *dev) { SSECounter *s = SSE_COUNTER(dev); trace_sse_counter_reset(); s->cntcr = 0; s->cntscr0 = 0x01000000; s->ns_then = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); s->ticks_then = 0; } static void sse_clk_callback(void *opaque, ClockEvent event) { SSECounter *s = SSE_COUNTER(opaque); uint64_t now; switch (event) { case ClockPreUpdate: /* * Before the clock period updates, set (ticks_then, ns_then) * to the current time and tick count (as calculated with * the old clock period). */ if (sse_counter_enabled(s)) { now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); s->ticks_then = sse_counter_for_timestamp(s, now); s->ns_then = now; } break; case ClockUpdate: sse_counter_notify_users(s); break; default: break; } } static void sse_counter_init(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); SSECounter *s = SSE_COUNTER(obj); notifier_list_init(&s->notifier_list); s->clk = qdev_init_clock_in(DEVICE(obj), "CLK", sse_clk_callback, s, ClockPreUpdate | ClockUpdate); memory_region_init_io(&s->control_mr, obj, &sse_counter_control_ops, s, "sse-counter-control", 0x1000); memory_region_init_io(&s->status_mr, obj, &sse_counter_status_ops, s, "sse-counter-status", 0x1000); sysbus_init_mmio(sbd, &s->control_mr); sysbus_init_mmio(sbd, &s->status_mr); } static void sse_counter_realize(DeviceState *dev, Error **errp) { SSECounter *s = SSE_COUNTER(dev); if (!clock_has_source(s->clk)) { error_setg(errp, "SSE system counter: CLK must be connected"); return; } } static const VMStateDescription sse_counter_vmstate = { .name = "sse-counter", .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_CLOCK(clk, SSECounter), VMSTATE_END_OF_LIST() } }; static void sse_counter_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = sse_counter_realize; dc->vmsd = &sse_counter_vmstate; device_class_set_legacy_reset(dc, sse_counter_reset); } static const TypeInfo sse_counter_info = { .name = TYPE_SSE_COUNTER, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(SSECounter), .instance_init = sse_counter_init, .class_init = sse_counter_class_init, }; static void sse_counter_register_types(void) { type_register_static(&sse_counter_info); } type_init(sse_counter_register_types);