/* * ColdFire Fast Ethernet Controller emulation. * * Copyright (c) 2007 CodeSourcery. * * This code is licensed under the GPL */ #include "qemu/osdep.h" #include "qemu/log.h" #include "hw/irq.h" #include "net/net.h" #include "qemu/module.h" #include "hw/m68k/mcf.h" #include "hw/m68k/mcf_fec.h" #include "hw/net/mii.h" #include "hw/qdev-properties.h" #include "hw/sysbus.h" /* For crc32 */ #include //#define DEBUG_FEC 1 #ifdef DEBUG_FEC #define DPRINTF(fmt, ...) \ do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) do {} while(0) #endif #define FEC_MAX_DESC 1024 #define FEC_MAX_FRAME_SIZE 2032 #define FEC_MIB_SIZE 64 struct mcf_fec_state { SysBusDevice parent_obj; MemoryRegion iomem; qemu_irq irq[FEC_NUM_IRQ]; NICState *nic; NICConf conf; uint32_t irq_state; uint32_t eir; uint32_t eimr; int rx_enabled; uint32_t rx_descriptor; uint32_t tx_descriptor; uint32_t ecr; uint32_t mmfr; uint32_t mscr; uint32_t rcr; uint32_t tcr; uint32_t tfwr; uint32_t rfsr; uint32_t erdsr; uint32_t etdsr; uint32_t emrbr; uint32_t mib[FEC_MIB_SIZE]; }; #define FEC_INT_HB 0x80000000 #define FEC_INT_BABR 0x40000000 #define FEC_INT_BABT 0x20000000 #define FEC_INT_GRA 0x10000000 #define FEC_INT_TXF 0x08000000 #define FEC_INT_TXB 0x04000000 #define FEC_INT_RXF 0x02000000 #define FEC_INT_RXB 0x01000000 #define FEC_INT_MII 0x00800000 #define FEC_INT_EB 0x00400000 #define FEC_INT_LC 0x00200000 #define FEC_INT_RL 0x00100000 #define FEC_INT_UN 0x00080000 #define FEC_EN 2 #define FEC_RESET 1 /* Map interrupt flags onto IRQ lines. */ static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = { FEC_INT_TXF, FEC_INT_TXB, FEC_INT_UN, FEC_INT_RL, FEC_INT_RXF, FEC_INT_RXB, FEC_INT_MII, FEC_INT_LC, FEC_INT_HB, FEC_INT_GRA, FEC_INT_EB, FEC_INT_BABT, FEC_INT_BABR }; /* Buffer Descriptor. */ typedef struct { uint16_t flags; uint16_t length; uint32_t data; } mcf_fec_bd; #define FEC_BD_R 0x8000 #define FEC_BD_E 0x8000 #define FEC_BD_O1 0x4000 #define FEC_BD_W 0x2000 #define FEC_BD_O2 0x1000 #define FEC_BD_L 0x0800 #define FEC_BD_TC 0x0400 #define FEC_BD_ABC 0x0200 #define FEC_BD_M 0x0100 #define FEC_BD_BC 0x0080 #define FEC_BD_MC 0x0040 #define FEC_BD_LG 0x0020 #define FEC_BD_NO 0x0010 #define FEC_BD_CR 0x0004 #define FEC_BD_OV 0x0002 #define FEC_BD_TR 0x0001 #define MIB_RMON_T_DROP 0 #define MIB_RMON_T_PACKETS 1 #define MIB_RMON_T_BC_PKT 2 #define MIB_RMON_T_MC_PKT 3 #define MIB_RMON_T_CRC_ALIGN 4 #define MIB_RMON_T_UNDERSIZE 5 #define MIB_RMON_T_OVERSIZE 6 #define MIB_RMON_T_FRAG 7 #define MIB_RMON_T_JAB 8 #define MIB_RMON_T_COL 9 #define MIB_RMON_T_P64 10 #define MIB_RMON_T_P65TO127 11 #define MIB_RMON_T_P128TO255 12 #define MIB_RMON_T_P256TO511 13 #define MIB_RMON_T_P512TO1023 14 #define MIB_RMON_T_P1024TO2047 15 #define MIB_RMON_T_P_GTE2048 16 #define MIB_RMON_T_OCTETS 17 #define MIB_IEEE_T_DROP 18 #define MIB_IEEE_T_FRAME_OK 19 #define MIB_IEEE_T_1COL 20 #define MIB_IEEE_T_MCOL 21 #define MIB_IEEE_T_DEF 22 #define MIB_IEEE_T_LCOL 23 #define MIB_IEEE_T_EXCOL 24 #define MIB_IEEE_T_MACERR 25 #define MIB_IEEE_T_CSERR 26 #define MIB_IEEE_T_SQE 27 #define MIB_IEEE_T_FDXFC 28 #define MIB_IEEE_T_OCTETS_OK 29 #define MIB_RMON_R_DROP 32 #define MIB_RMON_R_PACKETS 33 #define MIB_RMON_R_BC_PKT 34 #define MIB_RMON_R_MC_PKT 35 #define MIB_RMON_R_CRC_ALIGN 36 #define MIB_RMON_R_UNDERSIZE 37 #define MIB_RMON_R_OVERSIZE 38 #define MIB_RMON_R_FRAG 39 #define MIB_RMON_R_JAB 40 #define MIB_RMON_R_RESVD_0 41 #define MIB_RMON_R_P64 42 #define MIB_RMON_R_P65TO127 43 #define MIB_RMON_R_P128TO255 44 #define MIB_RMON_R_P256TO511 45 #define MIB_RMON_R_P512TO1023 46 #define MIB_RMON_R_P1024TO2047 47 #define MIB_RMON_R_P_GTE2048 48 #define MIB_RMON_R_OCTETS 49 #define MIB_IEEE_R_DROP 50 #define MIB_IEEE_R_FRAME_OK 51 #define MIB_IEEE_R_CRC 52 #define MIB_IEEE_R_ALIGN 53 #define MIB_IEEE_R_MACERR 54 #define MIB_IEEE_R_FDXFC 55 #define MIB_IEEE_R_OCTETS_OK 56 static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr) { cpu_physical_memory_read(addr, bd, sizeof(*bd)); be16_to_cpus(&bd->flags); be16_to_cpus(&bd->length); be32_to_cpus(&bd->data); } static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr) { mcf_fec_bd tmp; tmp.flags = cpu_to_be16(bd->flags); tmp.length = cpu_to_be16(bd->length); tmp.data = cpu_to_be32(bd->data); cpu_physical_memory_write(addr, &tmp, sizeof(tmp)); } static void mcf_fec_update(mcf_fec_state *s) { uint32_t active; uint32_t changed; uint32_t mask; int i; active = s->eir & s->eimr; changed = active ^s->irq_state; for (i = 0; i < FEC_NUM_IRQ; i++) { mask = mcf_fec_irq_map[i]; if (changed & mask) { DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0); qemu_set_irq(s->irq[i], (active & mask) != 0); } } s->irq_state = active; } static void mcf_fec_tx_stats(mcf_fec_state *s, int size) { s->mib[MIB_RMON_T_PACKETS]++; s->mib[MIB_RMON_T_OCTETS] += size; if (size < 64) { s->mib[MIB_RMON_T_FRAG]++; } else if (size == 64) { s->mib[MIB_RMON_T_P64]++; } else if (size < 128) { s->mib[MIB_RMON_T_P65TO127]++; } else if (size < 256) { s->mib[MIB_RMON_T_P128TO255]++; } else if (size < 512) { s->mib[MIB_RMON_T_P256TO511]++; } else if (size < 1024) { s->mib[MIB_RMON_T_P512TO1023]++; } else if (size < 2048) { s->mib[MIB_RMON_T_P1024TO2047]++; } else { s->mib[MIB_RMON_T_P_GTE2048]++; } s->mib[MIB_IEEE_T_FRAME_OK]++; s->mib[MIB_IEEE_T_OCTETS_OK] += size; } static void mcf_fec_do_tx(mcf_fec_state *s) { uint32_t addr; mcf_fec_bd bd; int frame_size; int len, descnt = 0; uint8_t frame[FEC_MAX_FRAME_SIZE]; uint8_t *ptr; DPRINTF("do_tx\n"); ptr = frame; frame_size = 0; addr = s->tx_descriptor; while (descnt++ < FEC_MAX_DESC) { mcf_fec_read_bd(&bd, addr); DPRINTF("tx_bd %x flags %04x len %d data %08x\n", addr, bd.flags, bd.length, bd.data); if ((bd.flags & FEC_BD_R) == 0) { /* Run out of descriptors to transmit. */ break; } len = bd.length; if (frame_size + len > FEC_MAX_FRAME_SIZE) { len = FEC_MAX_FRAME_SIZE - frame_size; s->eir |= FEC_INT_BABT; } cpu_physical_memory_read(bd.data, ptr, len); ptr += len; frame_size += len; if (bd.flags & FEC_BD_L) { /* Last buffer in frame. */ DPRINTF("Sending packet\n"); qemu_send_packet(qemu_get_queue(s->nic), frame, frame_size); mcf_fec_tx_stats(s, frame_size); ptr = frame; frame_size = 0; s->eir |= FEC_INT_TXF; } s->eir |= FEC_INT_TXB; bd.flags &= ~FEC_BD_R; /* Write back the modified descriptor. */ mcf_fec_write_bd(&bd, addr); /* Advance to the next descriptor. */ if ((bd.flags & FEC_BD_W) != 0) { addr = s->etdsr; } else { addr += 8; } } s->tx_descriptor = addr; } static void mcf_fec_enable_rx(mcf_fec_state *s) { NetClientState *nc = qemu_get_queue(s->nic); mcf_fec_bd bd; mcf_fec_read_bd(&bd, s->rx_descriptor); s->rx_enabled = ((bd.flags & FEC_BD_E) != 0); if (s->rx_enabled) { qemu_flush_queued_packets(nc); } } static void mcf_fec_reset(DeviceState *dev) { mcf_fec_state *s = MCF_FEC_NET(dev); s->eir = 0; s->eimr = 0; s->rx_enabled = 0; s->ecr = 0; s->mscr = 0; s->rcr = 0x05ee0001; s->tcr = 0; s->tfwr = 0; s->rfsr = 0x500; } #define MMFR_WRITE_OP (1 << 28) #define MMFR_READ_OP (2 << 28) #define MMFR_PHYADDR(v) (((v) >> 23) & 0x1f) #define MMFR_REGNUM(v) (((v) >> 18) & 0x1f) static uint64_t mcf_fec_read_mdio(mcf_fec_state *s) { uint64_t v; if (s->mmfr & MMFR_WRITE_OP) return s->mmfr; if (MMFR_PHYADDR(s->mmfr) != 1) return s->mmfr |= 0xffff; switch (MMFR_REGNUM(s->mmfr)) { case MII_BMCR: v = MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_FD; break; case MII_BMSR: v = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD | MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AN_COMP | MII_BMSR_AUTONEG | MII_BMSR_LINK_ST; break; case MII_PHYID1: v = DP83848_PHYID1; break; case MII_PHYID2: v = DP83848_PHYID2; break; case MII_ANAR: v = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 | MII_ANAR_CSMACD; break; case MII_ANLPAR: v = MII_ANLPAR_ACK | MII_ANLPAR_TXFD | MII_ANLPAR_TX | MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD; break; default: v = 0xffff; break; } s->mmfr = (s->mmfr & ~0xffff) | v; return s->mmfr; } static uint64_t mcf_fec_read(void *opaque, hwaddr addr, unsigned size) { mcf_fec_state *s = (mcf_fec_state *)opaque; switch (addr & 0x3ff) { case 0x004: return s->eir; case 0x008: return s->eimr; case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */ case 0x014: return 0; /* TDAR */ case 0x024: return s->ecr; case 0x040: return mcf_fec_read_mdio(s); case 0x044: return s->mscr; case 0x064: return 0; /* MIBC */ case 0x084: return s->rcr; case 0x0c4: return s->tcr; case 0x0e4: /* PALR */ return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16) | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3]; break; case 0x0e8: /* PAUR */ return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808; case 0x0ec: return 0x10000; /* OPD */ case 0x118: return 0; case 0x11c: return 0; case 0x120: return 0; case 0x124: return 0; case 0x144: return s->tfwr; case 0x14c: return 0x600; case 0x150: return s->rfsr; case 0x180: return s->erdsr; case 0x184: return s->etdsr; case 0x188: return s->emrbr; case 0x200 ... 0x2e0: return s->mib[(addr & 0x1ff) / 4]; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address 0x%" HWADDR_PRIX "\n", __func__, addr); return 0; } } static void mcf_fec_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { mcf_fec_state *s = (mcf_fec_state *)opaque; switch (addr & 0x3ff) { case 0x004: s->eir &= ~value; break; case 0x008: s->eimr = value; break; case 0x010: /* RDAR */ if ((s->ecr & FEC_EN) && !s->rx_enabled) { DPRINTF("RX enable\n"); mcf_fec_enable_rx(s); } break; case 0x014: /* TDAR */ if (s->ecr & FEC_EN) { mcf_fec_do_tx(s); } break; case 0x024: s->ecr = value; if (value & FEC_RESET) { DPRINTF("Reset\n"); mcf_fec_reset(opaque); } if ((s->ecr & FEC_EN) == 0) { s->rx_enabled = 0; } break; case 0x040: s->mmfr = value; s->eir |= FEC_INT_MII; break; case 0x044: s->mscr = value & 0xfe; break; case 0x064: /* TODO: Implement MIB. */ break; case 0x084: s->rcr = value & 0x07ff003f; /* TODO: Implement LOOP mode. */ break; case 0x0c4: /* TCR */ /* We transmit immediately, so raise GRA immediately. */ s->tcr = value; if (value & 1) s->eir |= FEC_INT_GRA; break; case 0x0e4: /* PALR */ s->conf.macaddr.a[0] = value >> 24; s->conf.macaddr.a[1] = value >> 16; s->conf.macaddr.a[2] = value >> 8; s->conf.macaddr.a[3] = value; break; case 0x0e8: /* PAUR */ s->conf.macaddr.a[4] = value >> 24; s->conf.macaddr.a[5] = value >> 16; break; case 0x0ec: /* OPD */ break; case 0x118: case 0x11c: case 0x120: case 0x124: /* TODO: implement MAC hash filtering. */ break; case 0x144: s->tfwr = value & 3; break; case 0x14c: /* FRBR writes ignored. */ break; case 0x150: s->rfsr = (value & 0x3fc) | 0x400; break; case 0x180: s->erdsr = value & ~3; s->rx_descriptor = s->erdsr; break; case 0x184: s->etdsr = value & ~3; s->tx_descriptor = s->etdsr; break; case 0x188: s->emrbr = value > 0 ? value & 0x7F0 : 0x7F0; break; case 0x200 ... 0x2e0: s->mib[(addr & 0x1ff) / 4] = value; break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address 0x%" HWADDR_PRIX "\n", __func__, addr); return; } mcf_fec_update(s); } static void mcf_fec_rx_stats(mcf_fec_state *s, int size) { s->mib[MIB_RMON_R_PACKETS]++; s->mib[MIB_RMON_R_OCTETS] += size; if (size < 64) { s->mib[MIB_RMON_R_FRAG]++; } else if (size == 64) { s->mib[MIB_RMON_R_P64]++; } else if (size < 128) { s->mib[MIB_RMON_R_P65TO127]++; } else if (size < 256) { s->mib[MIB_RMON_R_P128TO255]++; } else if (size < 512) { s->mib[MIB_RMON_R_P256TO511]++; } else if (size < 1024) { s->mib[MIB_RMON_R_P512TO1023]++; } else if (size < 2048) { s->mib[MIB_RMON_R_P1024TO2047]++; } else { s->mib[MIB_RMON_R_P_GTE2048]++; } s->mib[MIB_IEEE_R_FRAME_OK]++; s->mib[MIB_IEEE_R_OCTETS_OK] += size; } static int mcf_fec_have_receive_space(mcf_fec_state *s, size_t want) { mcf_fec_bd bd; uint32_t addr; /* Walk descriptor list to determine if we have enough buffer */ addr = s->rx_descriptor; while (want > 0) { mcf_fec_read_bd(&bd, addr); if ((bd.flags & FEC_BD_E) == 0) { return 0; } if (want < s->emrbr) { return 1; } want -= s->emrbr; /* Advance to the next descriptor. */ if ((bd.flags & FEC_BD_W) != 0) { addr = s->erdsr; } else { addr += 8; } } return 0; } static ssize_t mcf_fec_receive(NetClientState *nc, const uint8_t *buf, size_t size) { mcf_fec_state *s = qemu_get_nic_opaque(nc); mcf_fec_bd bd; uint32_t flags = 0; uint32_t addr; uint32_t crc; uint32_t buf_addr; uint8_t *crc_ptr; unsigned int buf_len; size_t retsize; DPRINTF("do_rx len %d\n", size); if (!s->rx_enabled) { return -1; } /* 4 bytes for the CRC. */ size += 4; crc = cpu_to_be32(crc32(~0, buf, size)); crc_ptr = (uint8_t *)&crc; /* Huge frames are truncated. */ if (size > FEC_MAX_FRAME_SIZE) { size = FEC_MAX_FRAME_SIZE; flags |= FEC_BD_TR | FEC_BD_LG; } /* Frames larger than the user limit just set error flags. */ if (size > (s->rcr >> 16)) { flags |= FEC_BD_LG; } /* Check if we have enough space in current descriptors */ if (!mcf_fec_have_receive_space(s, size)) { return 0; } addr = s->rx_descriptor; retsize = size; while (size > 0) { mcf_fec_read_bd(&bd, addr); buf_len = (size <= s->emrbr) ? size: s->emrbr; bd.length = buf_len; size -= buf_len; DPRINTF("rx_bd %x length %d\n", addr, bd.length); /* The last 4 bytes are the CRC. */ if (size < 4) buf_len += size - 4; buf_addr = bd.data; cpu_physical_memory_write(buf_addr, buf, buf_len); buf += buf_len; if (size < 4) { cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size); crc_ptr += 4 - size; } bd.flags &= ~FEC_BD_E; if (size == 0) { /* Last buffer in frame. */ bd.flags |= flags | FEC_BD_L; DPRINTF("rx frame flags %04x\n", bd.flags); s->eir |= FEC_INT_RXF; } else { s->eir |= FEC_INT_RXB; } mcf_fec_write_bd(&bd, addr); /* Advance to the next descriptor. */ if ((bd.flags & FEC_BD_W) != 0) { addr = s->erdsr; } else { addr += 8; } } s->rx_descriptor = addr; mcf_fec_rx_stats(s, retsize); mcf_fec_enable_rx(s); mcf_fec_update(s); return retsize; } static const MemoryRegionOps mcf_fec_ops = { .read = mcf_fec_read, .write = mcf_fec_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static NetClientInfo net_mcf_fec_info = { .type = NET_CLIENT_DRIVER_NIC, .size = sizeof(NICState), .receive = mcf_fec_receive, }; static void mcf_fec_realize(DeviceState *dev, Error **errp) { mcf_fec_state *s = MCF_FEC_NET(dev); s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf, object_get_typename(OBJECT(dev)), dev->id, &dev->mem_reentrancy_guard, s); qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); } static void mcf_fec_instance_init(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); mcf_fec_state *s = MCF_FEC_NET(obj); int i; memory_region_init_io(&s->iomem, obj, &mcf_fec_ops, s, "fec", 0x400); sysbus_init_mmio(sbd, &s->iomem); for (i = 0; i < FEC_NUM_IRQ; i++) { sysbus_init_irq(sbd, &s->irq[i]); } } static Property mcf_fec_properties[] = { DEFINE_NIC_PROPERTIES(mcf_fec_state, conf), DEFINE_PROP_END_OF_LIST(), }; static void mcf_fec_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); dc->realize = mcf_fec_realize; dc->desc = "MCF Fast Ethernet Controller network device"; device_class_set_legacy_reset(dc, mcf_fec_reset); device_class_set_props(dc, mcf_fec_properties); } static const TypeInfo mcf_fec_info = { .name = TYPE_MCF_FEC_NET, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(mcf_fec_state), .instance_init = mcf_fec_instance_init, .class_init = mcf_fec_class_init, }; static void mcf_fec_register_types(void) { type_register_static(&mcf_fec_info); } type_init(mcf_fec_register_types)