/* * Image mirroring * * Copyright Red Hat, Inc. 2012 * * Authors: * Paolo Bonzini * * This work is licensed under the terms of the GNU LGPL, version 2 or later. * See the COPYING.LIB file in the top-level directory. * */ #include "qemu/osdep.h" #include "qemu/cutils.h" #include "qemu/coroutine.h" #include "qemu/range.h" #include "trace.h" #include "block/blockjob_int.h" #include "block/block_int.h" #include "block/dirty-bitmap.h" #include "sysemu/block-backend.h" #include "qapi/error.h" #include "qemu/ratelimit.h" #include "qemu/bitmap.h" #include "qemu/memalign.h" #define MAX_IN_FLIGHT 16 #define MAX_IO_BYTES (1 << 20) /* 1 Mb */ #define DEFAULT_MIRROR_BUF_SIZE (MAX_IN_FLIGHT * MAX_IO_BYTES) /* The mirroring buffer is a list of granularity-sized chunks. * Free chunks are organized in a list. */ typedef struct MirrorBuffer { QSIMPLEQ_ENTRY(MirrorBuffer) next; } MirrorBuffer; typedef struct MirrorOp MirrorOp; typedef struct MirrorBlockJob { BlockJob common; BlockBackend *target; BlockDriverState *mirror_top_bs; BlockDriverState *base; BlockDriverState *base_overlay; /* The name of the graph node to replace */ char *replaces; /* The BDS to replace */ BlockDriverState *to_replace; /* Used to block operations on the drive-mirror-replace target */ Error *replace_blocker; bool is_none_mode; BlockMirrorBackingMode backing_mode; /* Whether the target image requires explicit zero-initialization */ bool zero_target; /* * To be accesssed with atomics. Written only under the BQL (required by the * current implementation of mirror_change()). */ MirrorCopyMode copy_mode; BlockdevOnError on_source_error, on_target_error; /* * To be accessed with atomics. * * Set when the target is synced (dirty bitmap is clean, nothing in flight) * and the job is running in active mode. */ bool actively_synced; bool should_complete; int64_t granularity; size_t buf_size; int64_t bdev_length; unsigned long *cow_bitmap; BdrvDirtyBitmap *dirty_bitmap; BdrvDirtyBitmapIter *dbi; uint8_t *buf; QSIMPLEQ_HEAD(, MirrorBuffer) buf_free; int buf_free_count; uint64_t last_pause_ns; unsigned long *in_flight_bitmap; unsigned in_flight; int64_t bytes_in_flight; QTAILQ_HEAD(, MirrorOp) ops_in_flight; int ret; bool unmap; int target_cluster_size; int max_iov; bool initial_zeroing_ongoing; int in_active_write_counter; int64_t active_write_bytes_in_flight; bool prepared; bool in_drain; } MirrorBlockJob; typedef struct MirrorBDSOpaque { MirrorBlockJob *job; bool stop; bool is_commit; } MirrorBDSOpaque; struct MirrorOp { MirrorBlockJob *s; QEMUIOVector qiov; int64_t offset; uint64_t bytes; /* The pointee is set by mirror_co_read(), mirror_co_zero(), and * mirror_co_discard() before yielding for the first time */ int64_t *bytes_handled; bool is_pseudo_op; bool is_active_write; bool is_in_flight; CoQueue waiting_requests; Coroutine *co; MirrorOp *waiting_for_op; QTAILQ_ENTRY(MirrorOp) next; }; typedef enum MirrorMethod { MIRROR_METHOD_COPY, MIRROR_METHOD_ZERO, MIRROR_METHOD_DISCARD, } MirrorMethod; static BlockErrorAction mirror_error_action(MirrorBlockJob *s, bool read, int error) { qatomic_set(&s->actively_synced, false); if (read) { return block_job_error_action(&s->common, s->on_source_error, true, error); } else { return block_job_error_action(&s->common, s->on_target_error, false, error); } } static void coroutine_fn mirror_wait_on_conflicts(MirrorOp *self, MirrorBlockJob *s, uint64_t offset, uint64_t bytes) { uint64_t self_start_chunk = offset / s->granularity; uint64_t self_end_chunk = DIV_ROUND_UP(offset + bytes, s->granularity); uint64_t self_nb_chunks = self_end_chunk - self_start_chunk; while (find_next_bit(s->in_flight_bitmap, self_end_chunk, self_start_chunk) < self_end_chunk && s->ret >= 0) { MirrorOp *op; QTAILQ_FOREACH(op, &s->ops_in_flight, next) { uint64_t op_start_chunk = op->offset / s->granularity; uint64_t op_nb_chunks = DIV_ROUND_UP(op->offset + op->bytes, s->granularity) - op_start_chunk; if (op == self) { continue; } if (ranges_overlap(self_start_chunk, self_nb_chunks, op_start_chunk, op_nb_chunks)) { if (self) { /* * If the operation is already (indirectly) waiting for us, * or will wait for us as soon as it wakes up, then just go * on (instead of producing a deadlock in the former case). */ if (op->waiting_for_op) { continue; } self->waiting_for_op = op; } qemu_co_queue_wait(&op->waiting_requests, NULL); if (self) { self->waiting_for_op = NULL; } break; } } } } static void coroutine_fn mirror_iteration_done(MirrorOp *op, int ret) { MirrorBlockJob *s = op->s; struct iovec *iov; int64_t chunk_num; int i, nb_chunks; trace_mirror_iteration_done(s, op->offset, op->bytes, ret); s->in_flight--; s->bytes_in_flight -= op->bytes; iov = op->qiov.iov; for (i = 0; i < op->qiov.niov; i++) { MirrorBuffer *buf = (MirrorBuffer *) iov[i].iov_base; QSIMPLEQ_INSERT_TAIL(&s->buf_free, buf, next); s->buf_free_count++; } chunk_num = op->offset / s->granularity; nb_chunks = DIV_ROUND_UP(op->bytes, s->granularity); bitmap_clear(s->in_flight_bitmap, chunk_num, nb_chunks); QTAILQ_REMOVE(&s->ops_in_flight, op, next); if (ret >= 0) { if (s->cow_bitmap) { bitmap_set(s->cow_bitmap, chunk_num, nb_chunks); } if (!s->initial_zeroing_ongoing) { job_progress_update(&s->common.job, op->bytes); } } qemu_iovec_destroy(&op->qiov); qemu_co_queue_restart_all(&op->waiting_requests); g_free(op); } static void coroutine_fn mirror_write_complete(MirrorOp *op, int ret) { MirrorBlockJob *s = op->s; if (ret < 0) { BlockErrorAction action; bdrv_set_dirty_bitmap(s->dirty_bitmap, op->offset, op->bytes); action = mirror_error_action(s, false, -ret); if (action == BLOCK_ERROR_ACTION_REPORT && s->ret >= 0) { s->ret = ret; } } mirror_iteration_done(op, ret); } static void coroutine_fn mirror_read_complete(MirrorOp *op, int ret) { MirrorBlockJob *s = op->s; if (ret < 0) { BlockErrorAction action; bdrv_set_dirty_bitmap(s->dirty_bitmap, op->offset, op->bytes); action = mirror_error_action(s, true, -ret); if (action == BLOCK_ERROR_ACTION_REPORT && s->ret >= 0) { s->ret = ret; } mirror_iteration_done(op, ret); return; } ret = blk_co_pwritev(s->target, op->offset, op->qiov.size, &op->qiov, 0); mirror_write_complete(op, ret); } /* Clip bytes relative to offset to not exceed end-of-file */ static inline int64_t mirror_clip_bytes(MirrorBlockJob *s, int64_t offset, int64_t bytes) { return MIN(bytes, s->bdev_length - offset); } /* Round offset and/or bytes to target cluster if COW is needed, and * return the offset of the adjusted tail against original. */ static int coroutine_fn mirror_cow_align(MirrorBlockJob *s, int64_t *offset, uint64_t *bytes) { bool need_cow; int ret = 0; int64_t align_offset = *offset; int64_t align_bytes = *bytes; int max_bytes = s->granularity * s->max_iov; need_cow = !test_bit(*offset / s->granularity, s->cow_bitmap); need_cow |= !test_bit((*offset + *bytes - 1) / s->granularity, s->cow_bitmap); if (need_cow) { bdrv_round_to_subclusters(blk_bs(s->target), *offset, *bytes, &align_offset, &align_bytes); } if (align_bytes > max_bytes) { align_bytes = max_bytes; if (need_cow) { align_bytes = QEMU_ALIGN_DOWN(align_bytes, s->target_cluster_size); } } /* Clipping may result in align_bytes unaligned to chunk boundary, but * that doesn't matter because it's already the end of source image. */ align_bytes = mirror_clip_bytes(s, align_offset, align_bytes); ret = align_offset + align_bytes - (*offset + *bytes); *offset = align_offset; *bytes = align_bytes; assert(ret >= 0); return ret; } static inline void coroutine_fn mirror_wait_for_free_in_flight_slot(MirrorBlockJob *s) { MirrorOp *op; QTAILQ_FOREACH(op, &s->ops_in_flight, next) { /* * Do not wait on pseudo ops, because it may in turn wait on * some other operation to start, which may in fact be the * caller of this function. Since there is only one pseudo op * at any given time, we will always find some real operation * to wait on. * Also, do not wait on active operations, because they do not * use up in-flight slots. */ if (!op->is_pseudo_op && op->is_in_flight && !op->is_active_write) { qemu_co_queue_wait(&op->waiting_requests, NULL); return; } } abort(); } /* Perform a mirror copy operation. * * *op->bytes_handled is set to the number of bytes copied after and * including offset, excluding any bytes copied prior to offset due * to alignment. This will be op->bytes if no alignment is necessary, * or (new_end - op->offset) if the tail is rounded up or down due to * alignment or buffer limit. */ static void coroutine_fn mirror_co_read(void *opaque) { MirrorOp *op = opaque; MirrorBlockJob *s = op->s; int nb_chunks; uint64_t ret; uint64_t max_bytes; max_bytes = s->granularity * s->max_iov; /* We can only handle as much as buf_size at a time. */ op->bytes = MIN(s->buf_size, MIN(max_bytes, op->bytes)); assert(op->bytes); assert(op->bytes < BDRV_REQUEST_MAX_BYTES); *op->bytes_handled = op->bytes; if (s->cow_bitmap) { *op->bytes_handled += mirror_cow_align(s, &op->offset, &op->bytes); } /* Cannot exceed BDRV_REQUEST_MAX_BYTES + INT_MAX */ assert(*op->bytes_handled <= UINT_MAX); assert(op->bytes <= s->buf_size); /* The offset is granularity-aligned because: * 1) Caller passes in aligned values; * 2) mirror_cow_align is used only when target cluster is larger. */ assert(QEMU_IS_ALIGNED(op->offset, s->granularity)); /* The range is sector-aligned, since bdrv_getlength() rounds up. */ assert(QEMU_IS_ALIGNED(op->bytes, BDRV_SECTOR_SIZE)); nb_chunks = DIV_ROUND_UP(op->bytes, s->granularity); while (s->buf_free_count < nb_chunks) { trace_mirror_yield_in_flight(s, op->offset, s->in_flight); mirror_wait_for_free_in_flight_slot(s); } /* Now make a QEMUIOVector taking enough granularity-sized chunks * from s->buf_free. */ qemu_iovec_init(&op->qiov, nb_chunks); while (nb_chunks-- > 0) { MirrorBuffer *buf = QSIMPLEQ_FIRST(&s->buf_free); size_t remaining = op->bytes - op->qiov.size; QSIMPLEQ_REMOVE_HEAD(&s->buf_free, next); s->buf_free_count--; qemu_iovec_add(&op->qiov, buf, MIN(s->granularity, remaining)); } /* Copy the dirty cluster. */ s->in_flight++; s->bytes_in_flight += op->bytes; op->is_in_flight = true; trace_mirror_one_iteration(s, op->offset, op->bytes); WITH_GRAPH_RDLOCK_GUARD() { ret = bdrv_co_preadv(s->mirror_top_bs->backing, op->offset, op->bytes, &op->qiov, 0); } mirror_read_complete(op, ret); } static void coroutine_fn mirror_co_zero(void *opaque) { MirrorOp *op = opaque; int ret; op->s->in_flight++; op->s->bytes_in_flight += op->bytes; *op->bytes_handled = op->bytes; op->is_in_flight = true; ret = blk_co_pwrite_zeroes(op->s->target, op->offset, op->bytes, op->s->unmap ? BDRV_REQ_MAY_UNMAP : 0); mirror_write_complete(op, ret); } static void coroutine_fn mirror_co_discard(void *opaque) { MirrorOp *op = opaque; int ret; op->s->in_flight++; op->s->bytes_in_flight += op->bytes; *op->bytes_handled = op->bytes; op->is_in_flight = true; ret = blk_co_pdiscard(op->s->target, op->offset, op->bytes); mirror_write_complete(op, ret); } static unsigned mirror_perform(MirrorBlockJob *s, int64_t offset, unsigned bytes, MirrorMethod mirror_method) { MirrorOp *op; Coroutine *co; int64_t bytes_handled = -1; op = g_new(MirrorOp, 1); *op = (MirrorOp){ .s = s, .offset = offset, .bytes = bytes, .bytes_handled = &bytes_handled, }; qemu_co_queue_init(&op->waiting_requests); switch (mirror_method) { case MIRROR_METHOD_COPY: co = qemu_coroutine_create(mirror_co_read, op); break; case MIRROR_METHOD_ZERO: co = qemu_coroutine_create(mirror_co_zero, op); break; case MIRROR_METHOD_DISCARD: co = qemu_coroutine_create(mirror_co_discard, op); break; default: abort(); } op->co = co; QTAILQ_INSERT_TAIL(&s->ops_in_flight, op, next); qemu_coroutine_enter(co); /* At this point, ownership of op has been moved to the coroutine * and the object may already be freed */ /* Assert that this value has been set */ assert(bytes_handled >= 0); /* Same assertion as in mirror_co_read() (and for mirror_co_read() * and mirror_co_discard(), bytes_handled == op->bytes, which * is the @bytes parameter given to this function) */ assert(bytes_handled <= UINT_MAX); return bytes_handled; } static void coroutine_fn mirror_iteration(MirrorBlockJob *s) { BlockDriverState *source = s->mirror_top_bs->backing->bs; MirrorOp *pseudo_op; int64_t offset; /* At least the first dirty chunk is mirrored in one iteration. */ int nb_chunks = 1; bool write_zeroes_ok = bdrv_can_write_zeroes_with_unmap(blk_bs(s->target)); int max_io_bytes = MAX(s->buf_size / MAX_IN_FLIGHT, MAX_IO_BYTES); bdrv_dirty_bitmap_lock(s->dirty_bitmap); offset = bdrv_dirty_iter_next(s->dbi); if (offset < 0) { bdrv_set_dirty_iter(s->dbi, 0); offset = bdrv_dirty_iter_next(s->dbi); trace_mirror_restart_iter(s, bdrv_get_dirty_count(s->dirty_bitmap)); assert(offset >= 0); } bdrv_dirty_bitmap_unlock(s->dirty_bitmap); /* * Wait for concurrent requests to @offset. The next loop will limit the * copied area based on in_flight_bitmap so we only copy an area that does * not overlap with concurrent in-flight requests. Still, we would like to * copy something, so wait until there are at least no more requests to the * very beginning of the area. */ mirror_wait_on_conflicts(NULL, s, offset, 1); job_pause_point(&s->common.job); /* Find the number of consecutive dirty chunks following the first dirty * one, and wait for in flight requests in them. */ bdrv_dirty_bitmap_lock(s->dirty_bitmap); while (nb_chunks * s->granularity < s->buf_size) { int64_t next_dirty; int64_t next_offset = offset + nb_chunks * s->granularity; int64_t next_chunk = next_offset / s->granularity; if (next_offset >= s->bdev_length || !bdrv_dirty_bitmap_get_locked(s->dirty_bitmap, next_offset)) { break; } if (test_bit(next_chunk, s->in_flight_bitmap)) { break; } next_dirty = bdrv_dirty_iter_next(s->dbi); if (next_dirty > next_offset || next_dirty < 0) { /* The bitmap iterator's cache is stale, refresh it */ bdrv_set_dirty_iter(s->dbi, next_offset); next_dirty = bdrv_dirty_iter_next(s->dbi); } assert(next_dirty == next_offset); nb_chunks++; } /* Clear dirty bits before querying the block status, because * calling bdrv_block_status_above could yield - if some blocks are * marked dirty in this window, we need to know. */ bdrv_reset_dirty_bitmap_locked(s->dirty_bitmap, offset, nb_chunks * s->granularity); bdrv_dirty_bitmap_unlock(s->dirty_bitmap); /* Before claiming an area in the in-flight bitmap, we have to * create a MirrorOp for it so that conflicting requests can wait * for it. mirror_perform() will create the real MirrorOps later, * for now we just create a pseudo operation that will wake up all * conflicting requests once all real operations have been * launched. */ pseudo_op = g_new(MirrorOp, 1); *pseudo_op = (MirrorOp){ .offset = offset, .bytes = nb_chunks * s->granularity, .is_pseudo_op = true, }; qemu_co_queue_init(&pseudo_op->waiting_requests); QTAILQ_INSERT_TAIL(&s->ops_in_flight, pseudo_op, next); bitmap_set(s->in_flight_bitmap, offset / s->granularity, nb_chunks); while (nb_chunks > 0 && offset < s->bdev_length) { int ret; int64_t io_bytes; int64_t io_bytes_acct; MirrorMethod mirror_method = MIRROR_METHOD_COPY; assert(!(offset % s->granularity)); WITH_GRAPH_RDLOCK_GUARD() { ret = bdrv_co_block_status_above(source, NULL, offset, nb_chunks * s->granularity, &io_bytes, NULL, NULL); } if (ret < 0) { io_bytes = MIN(nb_chunks * s->granularity, max_io_bytes); } else if (ret & BDRV_BLOCK_DATA) { io_bytes = MIN(io_bytes, max_io_bytes); } io_bytes -= io_bytes % s->granularity; if (io_bytes < s->granularity) { io_bytes = s->granularity; } else if (ret >= 0 && !(ret & BDRV_BLOCK_DATA)) { int64_t target_offset; int64_t target_bytes; WITH_GRAPH_RDLOCK_GUARD() { bdrv_round_to_subclusters(blk_bs(s->target), offset, io_bytes, &target_offset, &target_bytes); } if (target_offset == offset && target_bytes == io_bytes) { mirror_method = ret & BDRV_BLOCK_ZERO ? MIRROR_METHOD_ZERO : MIRROR_METHOD_DISCARD; } } while (s->in_flight >= MAX_IN_FLIGHT) { trace_mirror_yield_in_flight(s, offset, s->in_flight); mirror_wait_for_free_in_flight_slot(s); } if (s->ret < 0) { ret = 0; goto fail; } io_bytes = mirror_clip_bytes(s, offset, io_bytes); io_bytes = mirror_perform(s, offset, io_bytes, mirror_method); if (mirror_method != MIRROR_METHOD_COPY && write_zeroes_ok) { io_bytes_acct = 0; } else { io_bytes_acct = io_bytes; } assert(io_bytes); offset += io_bytes; nb_chunks -= DIV_ROUND_UP(io_bytes, s->granularity); block_job_ratelimit_processed_bytes(&s->common, io_bytes_acct); } fail: QTAILQ_REMOVE(&s->ops_in_flight, pseudo_op, next); qemu_co_queue_restart_all(&pseudo_op->waiting_requests); g_free(pseudo_op); } static void mirror_free_init(MirrorBlockJob *s) { int granularity = s->granularity; size_t buf_size = s->buf_size; uint8_t *buf = s->buf; assert(s->buf_free_count == 0); QSIMPLEQ_INIT(&s->buf_free); while (buf_size != 0) { MirrorBuffer *cur = (MirrorBuffer *)buf; QSIMPLEQ_INSERT_TAIL(&s->buf_free, cur, next); s->buf_free_count++; buf_size -= granularity; buf += granularity; } } /* This is also used for the .pause callback. There is no matching * mirror_resume() because mirror_run() will begin iterating again * when the job is resumed. */ static void coroutine_fn mirror_wait_for_all_io(MirrorBlockJob *s) { while (s->in_flight > 0) { mirror_wait_for_free_in_flight_slot(s); } } /** * mirror_exit_common: handle both abort() and prepare() cases. * for .prepare, returns 0 on success and -errno on failure. * for .abort cases, denoted by abort = true, MUST return 0. */ static int mirror_exit_common(Job *job) { MirrorBlockJob *s = container_of(job, MirrorBlockJob, common.job); BlockJob *bjob = &s->common; MirrorBDSOpaque *bs_opaque; AioContext *replace_aio_context = NULL; BlockDriverState *src; BlockDriverState *target_bs; BlockDriverState *mirror_top_bs; Error *local_err = NULL; bool abort = job->ret < 0; int ret = 0; GLOBAL_STATE_CODE(); if (s->prepared) { return 0; } s->prepared = true; aio_context_acquire(qemu_get_aio_context()); bdrv_graph_rdlock_main_loop(); mirror_top_bs = s->mirror_top_bs; bs_opaque = mirror_top_bs->opaque; src = mirror_top_bs->backing->bs; target_bs = blk_bs(s->target); if (bdrv_chain_contains(src, target_bs)) { bdrv_unfreeze_backing_chain(mirror_top_bs, target_bs); } bdrv_release_dirty_bitmap(s->dirty_bitmap); /* Make sure that the source BDS doesn't go away during bdrv_replace_node, * before we can call bdrv_drained_end */ bdrv_ref(src); bdrv_ref(mirror_top_bs); bdrv_ref(target_bs); bdrv_graph_rdunlock_main_loop(); /* * Remove target parent that still uses BLK_PERM_WRITE/RESIZE before * inserting target_bs at s->to_replace, where we might not be able to get * these permissions. */ blk_unref(s->target); s->target = NULL; /* We don't access the source any more. Dropping any WRITE/RESIZE is * required before it could become a backing file of target_bs. Not having * these permissions any more means that we can't allow any new requests on * mirror_top_bs from now on, so keep it drained. */ bdrv_drained_begin(mirror_top_bs); bs_opaque->stop = true; bdrv_graph_rdlock_main_loop(); bdrv_child_refresh_perms(mirror_top_bs, mirror_top_bs->backing, &error_abort); if (!abort && s->backing_mode == MIRROR_SOURCE_BACKING_CHAIN) { BlockDriverState *backing = s->is_none_mode ? src : s->base; BlockDriverState *unfiltered_target = bdrv_skip_filters(target_bs); if (bdrv_cow_bs(unfiltered_target) != backing) { bdrv_set_backing_hd(unfiltered_target, backing, &local_err); if (local_err) { error_report_err(local_err); local_err = NULL; ret = -EPERM; } } } else if (!abort && s->backing_mode == MIRROR_OPEN_BACKING_CHAIN) { assert(!bdrv_backing_chain_next(target_bs)); ret = bdrv_open_backing_file(bdrv_skip_filters(target_bs), NULL, "backing", &local_err); if (ret < 0) { error_report_err(local_err); local_err = NULL; } } bdrv_graph_rdunlock_main_loop(); if (s->to_replace) { replace_aio_context = bdrv_get_aio_context(s->to_replace); aio_context_acquire(replace_aio_context); } if (s->should_complete && !abort) { BlockDriverState *to_replace = s->to_replace ?: src; bool ro = bdrv_is_read_only(to_replace); if (ro != bdrv_is_read_only(target_bs)) { bdrv_reopen_set_read_only(target_bs, ro, NULL); } /* The mirror job has no requests in flight any more, but we need to * drain potential other users of the BDS before changing the graph. */ assert(s->in_drain); bdrv_drained_begin(target_bs); /* * Cannot use check_to_replace_node() here, because that would * check for an op blocker on @to_replace, and we have our own * there. * * TODO Pull out the writer lock from bdrv_replace_node() to here */ bdrv_graph_rdlock_main_loop(); if (bdrv_recurse_can_replace(src, to_replace)) { bdrv_replace_node(to_replace, target_bs, &local_err); } else { error_setg(&local_err, "Can no longer replace '%s' by '%s', " "because it can no longer be guaranteed that doing so " "would not lead to an abrupt change of visible data", to_replace->node_name, target_bs->node_name); } bdrv_graph_rdunlock_main_loop(); bdrv_drained_end(target_bs); if (local_err) { error_report_err(local_err); ret = -EPERM; } } if (s->to_replace) { bdrv_op_unblock_all(s->to_replace, s->replace_blocker); error_free(s->replace_blocker); bdrv_unref(s->to_replace); } if (replace_aio_context) { aio_context_release(replace_aio_context); } g_free(s->replaces); bdrv_unref(target_bs); /* * Remove the mirror filter driver from the graph. Before this, get rid of * the blockers on the intermediate nodes so that the resulting state is * valid. */ block_job_remove_all_bdrv(bjob); bdrv_replace_node(mirror_top_bs, mirror_top_bs->backing->bs, &error_abort); bs_opaque->job = NULL; bdrv_drained_end(src); bdrv_drained_end(mirror_top_bs); s->in_drain = false; bdrv_unref(mirror_top_bs); bdrv_unref(src); aio_context_release(qemu_get_aio_context()); return ret; } static int mirror_prepare(Job *job) { return mirror_exit_common(job); } static void mirror_abort(Job *job) { int ret = mirror_exit_common(job); assert(ret == 0); } static void coroutine_fn mirror_throttle(MirrorBlockJob *s) { int64_t now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); if (now - s->last_pause_ns > BLOCK_JOB_SLICE_TIME) { s->last_pause_ns = now; job_sleep_ns(&s->common.job, 0); } else { job_pause_point(&s->common.job); } } static int coroutine_fn mirror_dirty_init(MirrorBlockJob *s) { int64_t offset; BlockDriverState *bs = s->mirror_top_bs->backing->bs; BlockDriverState *target_bs = blk_bs(s->target); int ret; int64_t count; if (s->zero_target) { if (!bdrv_can_write_zeroes_with_unmap(target_bs)) { bdrv_set_dirty_bitmap(s->dirty_bitmap, 0, s->bdev_length); return 0; } s->initial_zeroing_ongoing = true; for (offset = 0; offset < s->bdev_length; ) { int bytes = MIN(s->bdev_length - offset, QEMU_ALIGN_DOWN(INT_MAX, s->granularity)); mirror_throttle(s); if (job_is_cancelled(&s->common.job)) { s->initial_zeroing_ongoing = false; return 0; } if (s->in_flight >= MAX_IN_FLIGHT) { trace_mirror_yield(s, UINT64_MAX, s->buf_free_count, s->in_flight); mirror_wait_for_free_in_flight_slot(s); continue; } mirror_perform(s, offset, bytes, MIRROR_METHOD_ZERO); offset += bytes; } mirror_wait_for_all_io(s); s->initial_zeroing_ongoing = false; } /* First part, loop on the sectors and initialize the dirty bitmap. */ for (offset = 0; offset < s->bdev_length; ) { /* Just to make sure we are not exceeding int limit. */ int bytes = MIN(s->bdev_length - offset, QEMU_ALIGN_DOWN(INT_MAX, s->granularity)); mirror_throttle(s); if (job_is_cancelled(&s->common.job)) { return 0; } WITH_GRAPH_RDLOCK_GUARD() { ret = bdrv_co_is_allocated_above(bs, s->base_overlay, true, offset, bytes, &count); } if (ret < 0) { return ret; } assert(count); if (ret > 0) { bdrv_set_dirty_bitmap(s->dirty_bitmap, offset, count); } offset += count; } return 0; } /* Called when going out of the streaming phase to flush the bulk of the * data to the medium, or just before completing. */ static int coroutine_fn mirror_flush(MirrorBlockJob *s) { int ret = blk_co_flush(s->target); if (ret < 0) { if (mirror_error_action(s, false, -ret) == BLOCK_ERROR_ACTION_REPORT) { s->ret = ret; } } return ret; } static int coroutine_fn mirror_run(Job *job, Error **errp) { MirrorBlockJob *s = container_of(job, MirrorBlockJob, common.job); BlockDriverState *bs = s->mirror_top_bs->backing->bs; MirrorBDSOpaque *mirror_top_opaque = s->mirror_top_bs->opaque; BlockDriverState *target_bs = blk_bs(s->target); bool need_drain = true; BlockDeviceIoStatus iostatus; int64_t length; int64_t target_length; BlockDriverInfo bdi; char backing_filename[2]; /* we only need 2 characters because we are only checking for a NULL string */ int ret = 0; if (job_is_cancelled(&s->common.job)) { goto immediate_exit; } bdrv_graph_co_rdlock(); s->bdev_length = bdrv_co_getlength(bs); bdrv_graph_co_rdunlock(); if (s->bdev_length < 0) { ret = s->bdev_length; goto immediate_exit; } target_length = blk_co_getlength(s->target); if (target_length < 0) { ret = target_length; goto immediate_exit; } /* Active commit must resize the base image if its size differs from the * active layer. */ if (s->base == blk_bs(s->target)) { if (s->bdev_length > target_length) { ret = blk_co_truncate(s->target, s->bdev_length, false, PREALLOC_MODE_OFF, 0, NULL); if (ret < 0) { goto immediate_exit; } } } else if (s->bdev_length != target_length) { error_setg(errp, "Source and target image have different sizes"); ret = -EINVAL; goto immediate_exit; } if (s->bdev_length == 0) { /* Transition to the READY state and wait for complete. */ job_transition_to_ready(&s->common.job); qatomic_set(&s->actively_synced, true); while (!job_cancel_requested(&s->common.job) && !s->should_complete) { job_yield(&s->common.job); } goto immediate_exit; } length = DIV_ROUND_UP(s->bdev_length, s->granularity); s->in_flight_bitmap = bitmap_new(length); /* If we have no backing file yet in the destination, we cannot let * the destination do COW. Instead, we copy sectors around the * dirty data if needed. We need a bitmap to do that. */ bdrv_get_backing_filename(target_bs, backing_filename, sizeof(backing_filename)); bdrv_graph_co_rdlock(); if (!bdrv_co_get_info(target_bs, &bdi) && bdi.cluster_size) { s->target_cluster_size = bdi.cluster_size; } else { s->target_cluster_size = BDRV_SECTOR_SIZE; } if (backing_filename[0] && !bdrv_backing_chain_next(target_bs) && s->granularity < s->target_cluster_size) { s->buf_size = MAX(s->buf_size, s->target_cluster_size); s->cow_bitmap = bitmap_new(length); } s->max_iov = MIN(bs->bl.max_iov, target_bs->bl.max_iov); bdrv_graph_co_rdunlock(); s->buf = qemu_try_blockalign(bs, s->buf_size); if (s->buf == NULL) { ret = -ENOMEM; goto immediate_exit; } mirror_free_init(s); s->last_pause_ns = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); if (!s->is_none_mode) { ret = mirror_dirty_init(s); if (ret < 0 || job_is_cancelled(&s->common.job)) { goto immediate_exit; } } /* * Only now the job is fully initialised and mirror_top_bs should start * accessing it. */ mirror_top_opaque->job = s; assert(!s->dbi); s->dbi = bdrv_dirty_iter_new(s->dirty_bitmap); for (;;) { int64_t cnt, delta; bool should_complete; if (s->ret < 0) { ret = s->ret; goto immediate_exit; } job_pause_point(&s->common.job); if (job_is_cancelled(&s->common.job)) { ret = 0; goto immediate_exit; } cnt = bdrv_get_dirty_count(s->dirty_bitmap); /* cnt is the number of dirty bytes remaining and s->bytes_in_flight is * the number of bytes currently being processed; together those are * the current remaining operation length */ job_progress_set_remaining(&s->common.job, s->bytes_in_flight + cnt + s->active_write_bytes_in_flight); /* Note that even when no rate limit is applied we need to yield * periodically with no pending I/O so that bdrv_drain_all() returns. * We do so every BLKOCK_JOB_SLICE_TIME nanoseconds, or when there is * an error, or when the source is clean, whichever comes first. */ delta = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - s->last_pause_ns; WITH_JOB_LOCK_GUARD() { iostatus = s->common.iostatus; } if (delta < BLOCK_JOB_SLICE_TIME && iostatus == BLOCK_DEVICE_IO_STATUS_OK) { if (s->in_flight >= MAX_IN_FLIGHT || s->buf_free_count == 0 || (cnt == 0 && s->in_flight > 0)) { trace_mirror_yield(s, cnt, s->buf_free_count, s->in_flight); mirror_wait_for_free_in_flight_slot(s); continue; } else if (cnt != 0) { mirror_iteration(s); } } should_complete = false; if (s->in_flight == 0 && cnt == 0) { trace_mirror_before_flush(s); if (!job_is_ready(&s->common.job)) { if (mirror_flush(s) < 0) { /* Go check s->ret. */ continue; } /* We're out of the streaming phase. From now on, if the job * is cancelled we will actually complete all pending I/O and * report completion. This way, block-job-cancel will leave * the target in a consistent state. */ job_transition_to_ready(&s->common.job); } if (qatomic_read(&s->copy_mode) != MIRROR_COPY_MODE_BACKGROUND) { qatomic_set(&s->actively_synced, true); } should_complete = s->should_complete || job_cancel_requested(&s->common.job); cnt = bdrv_get_dirty_count(s->dirty_bitmap); } if (cnt == 0 && should_complete) { /* The dirty bitmap is not updated while operations are pending. * If we're about to exit, wait for pending operations before * calling bdrv_get_dirty_count(bs), or we may exit while the * source has dirty data to copy! * * Note that I/O can be submitted by the guest while * mirror_populate runs, so pause it now. Before deciding * whether to switch to target check one last time if I/O has * come in the meanwhile, and if not flush the data to disk. */ trace_mirror_before_drain(s, cnt); s->in_drain = true; bdrv_drained_begin(bs); /* Must be zero because we are drained */ assert(s->in_active_write_counter == 0); cnt = bdrv_get_dirty_count(s->dirty_bitmap); if (cnt > 0 || mirror_flush(s) < 0) { bdrv_drained_end(bs); s->in_drain = false; continue; } /* The two disks are in sync. Exit and report successful * completion. */ assert(QLIST_EMPTY(&bs->tracked_requests)); need_drain = false; break; } if (job_is_ready(&s->common.job) && !should_complete) { if (s->in_flight == 0 && cnt == 0) { trace_mirror_before_sleep(s, cnt, job_is_ready(&s->common.job), BLOCK_JOB_SLICE_TIME); job_sleep_ns(&s->common.job, BLOCK_JOB_SLICE_TIME); } } else { block_job_ratelimit_sleep(&s->common); } s->last_pause_ns = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); } immediate_exit: if (s->in_flight > 0) { /* We get here only if something went wrong. Either the job failed, * or it was cancelled prematurely so that we do not guarantee that * the target is a copy of the source. */ assert(ret < 0 || job_is_cancelled(&s->common.job)); assert(need_drain); mirror_wait_for_all_io(s); } assert(s->in_flight == 0); qemu_vfree(s->buf); g_free(s->cow_bitmap); g_free(s->in_flight_bitmap); bdrv_dirty_iter_free(s->dbi); if (need_drain) { s->in_drain = true; bdrv_drained_begin(bs); } return ret; } static void mirror_complete(Job *job, Error **errp) { MirrorBlockJob *s = container_of(job, MirrorBlockJob, common.job); if (!job_is_ready(job)) { error_setg(errp, "The active block job '%s' cannot be completed", job->id); return; } /* block all operations on to_replace bs */ if (s->replaces) { AioContext *replace_aio_context; s->to_replace = bdrv_find_node(s->replaces); if (!s->to_replace) { error_setg(errp, "Node name '%s' not found", s->replaces); return; } replace_aio_context = bdrv_get_aio_context(s->to_replace); aio_context_acquire(replace_aio_context); /* TODO Translate this into child freeze system. */ error_setg(&s->replace_blocker, "block device is in use by block-job-complete"); bdrv_op_block_all(s->to_replace, s->replace_blocker); bdrv_ref(s->to_replace); aio_context_release(replace_aio_context); } s->should_complete = true; /* If the job is paused, it will be re-entered when it is resumed */ WITH_JOB_LOCK_GUARD() { if (!job->paused) { job_enter_cond_locked(job, NULL); } } } static void coroutine_fn mirror_pause(Job *job) { MirrorBlockJob *s = container_of(job, MirrorBlockJob, common.job); mirror_wait_for_all_io(s); } static bool mirror_drained_poll(BlockJob *job) { MirrorBlockJob *s = container_of(job, MirrorBlockJob, common); /* If the job isn't paused nor cancelled, we can't be sure that it won't * issue more requests. We make an exception if we've reached this point * from one of our own drain sections, to avoid a deadlock waiting for * ourselves. */ WITH_JOB_LOCK_GUARD() { if (!s->common.job.paused && !job_is_cancelled_locked(&job->job) && !s->in_drain) { return true; } } return !!s->in_flight; } static bool mirror_cancel(Job *job, bool force) { MirrorBlockJob *s = container_of(job, MirrorBlockJob, common.job); BlockDriverState *target = blk_bs(s->target); /* * Before the job is READY, we treat any cancellation like a * force-cancellation. */ force = force || !job_is_ready(job); if (force) { bdrv_cancel_in_flight(target); } return force; } static bool commit_active_cancel(Job *job, bool force) { /* Same as above in mirror_cancel() */ return force || !job_is_ready(job); } static void mirror_change(BlockJob *job, BlockJobChangeOptions *opts, Error **errp) { MirrorBlockJob *s = container_of(job, MirrorBlockJob, common); BlockJobChangeOptionsMirror *change_opts = &opts->u.mirror; MirrorCopyMode current; /* * The implementation relies on the fact that copy_mode is only written * under the BQL. Otherwise, further synchronization would be required. */ GLOBAL_STATE_CODE(); if (qatomic_read(&s->copy_mode) == change_opts->copy_mode) { return; } if (change_opts->copy_mode != MIRROR_COPY_MODE_WRITE_BLOCKING) { error_setg(errp, "Change to copy mode '%s' is not implemented", MirrorCopyMode_str(change_opts->copy_mode)); return; } current = qatomic_cmpxchg(&s->copy_mode, MIRROR_COPY_MODE_BACKGROUND, change_opts->copy_mode); if (current != MIRROR_COPY_MODE_BACKGROUND) { error_setg(errp, "Expected current copy mode '%s', got '%s'", MirrorCopyMode_str(MIRROR_COPY_MODE_BACKGROUND), MirrorCopyMode_str(current)); } } static void mirror_query(BlockJob *job, BlockJobInfo *info) { MirrorBlockJob *s = container_of(job, MirrorBlockJob, common); info->u.mirror = (BlockJobInfoMirror) { .actively_synced = qatomic_read(&s->actively_synced), }; } static const BlockJobDriver mirror_job_driver = { .job_driver = { .instance_size = sizeof(MirrorBlockJob), .job_type = JOB_TYPE_MIRROR, .free = block_job_free, .user_resume = block_job_user_resume, .run = mirror_run, .prepare = mirror_prepare, .abort = mirror_abort, .pause = mirror_pause, .complete = mirror_complete, .cancel = mirror_cancel, }, .drained_poll = mirror_drained_poll, .change = mirror_change, .query = mirror_query, }; static const BlockJobDriver commit_active_job_driver = { .job_driver = { .instance_size = sizeof(MirrorBlockJob), .job_type = JOB_TYPE_COMMIT, .free = block_job_free, .user_resume = block_job_user_resume, .run = mirror_run, .prepare = mirror_prepare, .abort = mirror_abort, .pause = mirror_pause, .complete = mirror_complete, .cancel = commit_active_cancel, }, .drained_poll = mirror_drained_poll, }; static void coroutine_fn do_sync_target_write(MirrorBlockJob *job, MirrorMethod method, uint64_t offset, uint64_t bytes, QEMUIOVector *qiov, int flags) { int ret; size_t qiov_offset = 0; int64_t bitmap_offset, bitmap_end; if (!QEMU_IS_ALIGNED(offset, job->granularity) && bdrv_dirty_bitmap_get(job->dirty_bitmap, offset)) { /* * Dirty unaligned padding: ignore it. * * Reasoning: * 1. If we copy it, we can't reset corresponding bit in * dirty_bitmap as there may be some "dirty" bytes still not * copied. * 2. It's already dirty, so skipping it we don't diverge mirror * progress. * * Note, that because of this, guest write may have no contribution * into mirror converge, but that's not bad, as we have background * process of mirroring. If under some bad circumstances (high guest * IO load) background process starve, we will not converge anyway, * even if each write will contribute, as guest is not guaranteed to * rewrite the whole disk. */ qiov_offset = QEMU_ALIGN_UP(offset, job->granularity) - offset; if (bytes <= qiov_offset) { /* nothing to do after shrink */ return; } offset += qiov_offset; bytes -= qiov_offset; } if (!QEMU_IS_ALIGNED(offset + bytes, job->granularity) && bdrv_dirty_bitmap_get(job->dirty_bitmap, offset + bytes - 1)) { uint64_t tail = (offset + bytes) % job->granularity; if (bytes <= tail) { /* nothing to do after shrink */ return; } bytes -= tail; } /* * Tails are either clean or shrunk, so for bitmap resetting * we safely align the range down. */ bitmap_offset = QEMU_ALIGN_UP(offset, job->granularity); bitmap_end = QEMU_ALIGN_DOWN(offset + bytes, job->granularity); if (bitmap_offset < bitmap_end) { bdrv_reset_dirty_bitmap(job->dirty_bitmap, bitmap_offset, bitmap_end - bitmap_offset); } job_progress_increase_remaining(&job->common.job, bytes); job->active_write_bytes_in_flight += bytes; switch (method) { case MIRROR_METHOD_COPY: ret = blk_co_pwritev_part(job->target, offset, bytes, qiov, qiov_offset, flags); break; case MIRROR_METHOD_ZERO: assert(!qiov); ret = blk_co_pwrite_zeroes(job->target, offset, bytes, flags); break; case MIRROR_METHOD_DISCARD: assert(!qiov); ret = blk_co_pdiscard(job->target, offset, bytes); break; default: abort(); } job->active_write_bytes_in_flight -= bytes; if (ret >= 0) { job_progress_update(&job->common.job, bytes); } else { BlockErrorAction action; /* * We failed, so we should mark dirty the whole area, aligned up. * Note that we don't care about shrunk tails if any: they were dirty * at function start, and they must be still dirty, as we've locked * the region for in-flight op. */ bitmap_offset = QEMU_ALIGN_DOWN(offset, job->granularity); bitmap_end = QEMU_ALIGN_UP(offset + bytes, job->granularity); bdrv_set_dirty_bitmap(job->dirty_bitmap, bitmap_offset, bitmap_end - bitmap_offset); qatomic_set(&job->actively_synced, false); action = mirror_error_action(job, false, -ret); if (action == BLOCK_ERROR_ACTION_REPORT) { if (!job->ret) { job->ret = ret; } } } } static MirrorOp *coroutine_fn active_write_prepare(MirrorBlockJob *s, uint64_t offset, uint64_t bytes) { MirrorOp *op; uint64_t start_chunk = offset / s->granularity; uint64_t end_chunk = DIV_ROUND_UP(offset + bytes, s->granularity); op = g_new(MirrorOp, 1); *op = (MirrorOp){ .s = s, .offset = offset, .bytes = bytes, .is_active_write = true, .is_in_flight = true, .co = qemu_coroutine_self(), }; qemu_co_queue_init(&op->waiting_requests); QTAILQ_INSERT_TAIL(&s->ops_in_flight, op, next); s->in_active_write_counter++; /* * Wait for concurrent requests affecting the area. If there are already * running requests that are copying off now-to-be stale data in the area, * we must wait for them to finish before we begin writing fresh data to the * target so that the write operations appear in the correct order. * Note that background requests (see mirror_iteration()) in contrast only * wait for conflicting requests at the start of the dirty area, and then * (based on the in_flight_bitmap) truncate the area to copy so it will not * conflict with any requests beyond that. For active writes, however, we * cannot truncate that area. The request from our parent must be blocked * until the area is copied in full. Therefore, we must wait for the whole * area to become free of concurrent requests. */ mirror_wait_on_conflicts(op, s, offset, bytes); bitmap_set(s->in_flight_bitmap, start_chunk, end_chunk - start_chunk); return op; } static void coroutine_fn GRAPH_RDLOCK active_write_settle(MirrorOp *op) { uint64_t start_chunk = op->offset / op->s->granularity; uint64_t end_chunk = DIV_ROUND_UP(op->offset + op->bytes, op->s->granularity); if (!--op->s->in_active_write_counter && qatomic_read(&op->s->actively_synced)) { BdrvChild *source = op->s->mirror_top_bs->backing; if (QLIST_FIRST(&source->bs->parents) == source && QLIST_NEXT(source, next_parent) == NULL) { /* Assert that we are back in sync once all active write * operations are settled. * Note that we can only assert this if the mirror node * is the source node's only parent. */ assert(!bdrv_get_dirty_count(op->s->dirty_bitmap)); } } bitmap_clear(op->s->in_flight_bitmap, start_chunk, end_chunk - start_chunk); QTAILQ_REMOVE(&op->s->ops_in_flight, op, next); qemu_co_queue_restart_all(&op->waiting_requests); g_free(op); } static int coroutine_fn GRAPH_RDLOCK bdrv_mirror_top_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes, QEMUIOVector *qiov, BdrvRequestFlags flags) { return bdrv_co_preadv(bs->backing, offset, bytes, qiov, flags); } static bool should_copy_to_target(MirrorBDSOpaque *s) { return s->job && s->job->ret >= 0 && !job_is_cancelled(&s->job->common.job) && qatomic_read(&s->job->copy_mode) == MIRROR_COPY_MODE_WRITE_BLOCKING; } static int coroutine_fn GRAPH_RDLOCK bdrv_mirror_top_do_write(BlockDriverState *bs, MirrorMethod method, bool copy_to_target, uint64_t offset, uint64_t bytes, QEMUIOVector *qiov, int flags) { MirrorOp *op = NULL; MirrorBDSOpaque *s = bs->opaque; int ret = 0; if (copy_to_target) { op = active_write_prepare(s->job, offset, bytes); } switch (method) { case MIRROR_METHOD_COPY: ret = bdrv_co_pwritev(bs->backing, offset, bytes, qiov, flags); break; case MIRROR_METHOD_ZERO: ret = bdrv_co_pwrite_zeroes(bs->backing, offset, bytes, flags); break; case MIRROR_METHOD_DISCARD: ret = bdrv_co_pdiscard(bs->backing, offset, bytes); break; default: abort(); } if (!copy_to_target && s->job && s->job->dirty_bitmap) { qatomic_set(&s->job->actively_synced, false); bdrv_set_dirty_bitmap(s->job->dirty_bitmap, offset, bytes); } if (ret < 0) { goto out; } if (copy_to_target) { do_sync_target_write(s->job, method, offset, bytes, qiov, flags); } out: if (copy_to_target) { active_write_settle(op); } return ret; } static int coroutine_fn GRAPH_RDLOCK bdrv_mirror_top_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes, QEMUIOVector *qiov, BdrvRequestFlags flags) { QEMUIOVector bounce_qiov; void *bounce_buf; int ret = 0; bool copy_to_target = should_copy_to_target(bs->opaque); if (copy_to_target) { /* The guest might concurrently modify the data to write; but * the data on source and destination must match, so we have * to use a bounce buffer if we are going to write to the * target now. */ bounce_buf = qemu_blockalign(bs, bytes); iov_to_buf_full(qiov->iov, qiov->niov, 0, bounce_buf, bytes); qemu_iovec_init(&bounce_qiov, 1); qemu_iovec_add(&bounce_qiov, bounce_buf, bytes); qiov = &bounce_qiov; flags &= ~BDRV_REQ_REGISTERED_BUF; } ret = bdrv_mirror_top_do_write(bs, MIRROR_METHOD_COPY, copy_to_target, offset, bytes, qiov, flags); if (copy_to_target) { qemu_iovec_destroy(&bounce_qiov); qemu_vfree(bounce_buf); } return ret; } static int coroutine_fn GRAPH_RDLOCK bdrv_mirror_top_flush(BlockDriverState *bs) { if (bs->backing == NULL) { /* we can be here after failed bdrv_append in mirror_start_job */ return 0; } return bdrv_co_flush(bs->backing->bs); } static int coroutine_fn GRAPH_RDLOCK bdrv_mirror_top_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes, BdrvRequestFlags flags) { bool copy_to_target = should_copy_to_target(bs->opaque); return bdrv_mirror_top_do_write(bs, MIRROR_METHOD_ZERO, copy_to_target, offset, bytes, NULL, flags); } static int coroutine_fn GRAPH_RDLOCK bdrv_mirror_top_pdiscard(BlockDriverState *bs, int64_t offset, int64_t bytes) { bool copy_to_target = should_copy_to_target(bs->opaque); return bdrv_mirror_top_do_write(bs, MIRROR_METHOD_DISCARD, copy_to_target, offset, bytes, NULL, 0); } static void bdrv_mirror_top_refresh_filename(BlockDriverState *bs) { if (bs->backing == NULL) { /* we can be here after failed bdrv_attach_child in * bdrv_set_backing_hd */ return; } pstrcpy(bs->exact_filename, sizeof(bs->exact_filename), bs->backing->bs->filename); } static void bdrv_mirror_top_child_perm(BlockDriverState *bs, BdrvChild *c, BdrvChildRole role, BlockReopenQueue *reopen_queue, uint64_t perm, uint64_t shared, uint64_t *nperm, uint64_t *nshared) { MirrorBDSOpaque *s = bs->opaque; if (s->stop) { /* * If the job is to be stopped, we do not need to forward * anything to the real image. */ *nperm = 0; *nshared = BLK_PERM_ALL; return; } bdrv_default_perms(bs, c, role, reopen_queue, perm, shared, nperm, nshared); if (s->is_commit) { /* * For commit jobs, we cannot take CONSISTENT_READ, because * that permission is unshared for everything above the base * node (except for filters on the base node). * We also have to force-share the WRITE permission, or * otherwise we would block ourselves at the base node (if * writes are blocked for a node, they are also blocked for * its backing file). * (We could also share RESIZE, because it may be needed for * the target if its size is less than the top node's; but * bdrv_default_perms_for_cow() automatically shares RESIZE * for backing nodes if WRITE is shared, so there is no need * to do it here.) */ *nperm &= ~BLK_PERM_CONSISTENT_READ; *nshared |= BLK_PERM_WRITE; } } /* Dummy node that provides consistent read to its users without requiring it * from its backing file and that allows writes on the backing file chain. */ static BlockDriver bdrv_mirror_top = { .format_name = "mirror_top", .bdrv_co_preadv = bdrv_mirror_top_preadv, .bdrv_co_pwritev = bdrv_mirror_top_pwritev, .bdrv_co_pwrite_zeroes = bdrv_mirror_top_pwrite_zeroes, .bdrv_co_pdiscard = bdrv_mirror_top_pdiscard, .bdrv_co_flush = bdrv_mirror_top_flush, .bdrv_refresh_filename = bdrv_mirror_top_refresh_filename, .bdrv_child_perm = bdrv_mirror_top_child_perm, .is_filter = true, .filtered_child_is_backing = true, }; static BlockJob *mirror_start_job( const char *job_id, BlockDriverState *bs, int creation_flags, BlockDriverState *target, const char *replaces, int64_t speed, uint32_t granularity, int64_t buf_size, BlockMirrorBackingMode backing_mode, bool zero_target, BlockdevOnError on_source_error, BlockdevOnError on_target_error, bool unmap, BlockCompletionFunc *cb, void *opaque, const BlockJobDriver *driver, bool is_none_mode, BlockDriverState *base, bool auto_complete, const char *filter_node_name, bool is_mirror, MirrorCopyMode copy_mode, Error **errp) { MirrorBlockJob *s; MirrorBDSOpaque *bs_opaque; BlockDriverState *mirror_top_bs; bool target_is_backing; uint64_t target_perms, target_shared_perms; int ret; GLOBAL_STATE_CODE(); if (granularity == 0) { granularity = bdrv_get_default_bitmap_granularity(target); } assert(is_power_of_2(granularity)); if (buf_size < 0) { error_setg(errp, "Invalid parameter 'buf-size'"); return NULL; } if (buf_size == 0) { buf_size = DEFAULT_MIRROR_BUF_SIZE; } bdrv_graph_rdlock_main_loop(); if (bdrv_skip_filters(bs) == bdrv_skip_filters(target)) { error_setg(errp, "Can't mirror node into itself"); bdrv_graph_rdunlock_main_loop(); return NULL; } target_is_backing = bdrv_chain_contains(bs, target); bdrv_graph_rdunlock_main_loop(); /* In the case of active commit, add dummy driver to provide consistent * reads on the top, while disabling it in the intermediate nodes, and make * the backing chain writable. */ mirror_top_bs = bdrv_new_open_driver(&bdrv_mirror_top, filter_node_name, BDRV_O_RDWR, errp); if (mirror_top_bs == NULL) { return NULL; } if (!filter_node_name) { mirror_top_bs->implicit = true; } /* So that we can always drop this node */ mirror_top_bs->never_freeze = true; mirror_top_bs->total_sectors = bs->total_sectors; mirror_top_bs->supported_write_flags = BDRV_REQ_WRITE_UNCHANGED; mirror_top_bs->supported_zero_flags = BDRV_REQ_WRITE_UNCHANGED | BDRV_REQ_NO_FALLBACK; bs_opaque = g_new0(MirrorBDSOpaque, 1); mirror_top_bs->opaque = bs_opaque; bs_opaque->is_commit = target_is_backing; bdrv_drained_begin(bs); ret = bdrv_append(mirror_top_bs, bs, errp); bdrv_drained_end(bs); if (ret < 0) { bdrv_unref(mirror_top_bs); return NULL; } /* Make sure that the source is not resized while the job is running */ s = block_job_create(job_id, driver, NULL, mirror_top_bs, BLK_PERM_CONSISTENT_READ, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE, speed, creation_flags, cb, opaque, errp); if (!s) { goto fail; } /* The block job now has a reference to this node */ bdrv_unref(mirror_top_bs); s->mirror_top_bs = mirror_top_bs; /* No resize for the target either; while the mirror is still running, a * consistent read isn't necessarily possible. We could possibly allow * writes and graph modifications, though it would likely defeat the * purpose of a mirror, so leave them blocked for now. * * In the case of active commit, things look a bit different, though, * because the target is an already populated backing file in active use. * We can allow anything except resize there.*/ target_perms = BLK_PERM_WRITE; target_shared_perms = BLK_PERM_WRITE_UNCHANGED; if (target_is_backing) { int64_t bs_size, target_size; bs_size = bdrv_getlength(bs); if (bs_size < 0) { error_setg_errno(errp, -bs_size, "Could not inquire top image size"); goto fail; } target_size = bdrv_getlength(target); if (target_size < 0) { error_setg_errno(errp, -target_size, "Could not inquire base image size"); goto fail; } if (target_size < bs_size) { target_perms |= BLK_PERM_RESIZE; } target_shared_perms |= BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE; } else { bdrv_graph_rdlock_main_loop(); if (bdrv_chain_contains(bs, bdrv_skip_filters(target))) { /* * We may want to allow this in the future, but it would * require taking some extra care. */ error_setg(errp, "Cannot mirror to a filter on top of a node in " "the source's backing chain"); bdrv_graph_rdunlock_main_loop(); goto fail; } bdrv_graph_rdunlock_main_loop(); } s->target = blk_new(s->common.job.aio_context, target_perms, target_shared_perms); ret = blk_insert_bs(s->target, target, errp); if (ret < 0) { goto fail; } if (is_mirror) { /* XXX: Mirror target could be a NBD server of target QEMU in the case * of non-shared block migration. To allow migration completion, we * have to allow "inactivate" of the target BB. When that happens, we * know the job is drained, and the vcpus are stopped, so no write * operation will be performed. Block layer already has assertions to * ensure that. */ blk_set_force_allow_inactivate(s->target); } blk_set_allow_aio_context_change(s->target, true); blk_set_disable_request_queuing(s->target, true); bdrv_graph_rdlock_main_loop(); s->replaces = g_strdup(replaces); s->on_source_error = on_source_error; s->on_target_error = on_target_error; s->is_none_mode = is_none_mode; s->backing_mode = backing_mode; s->zero_target = zero_target; qatomic_set(&s->copy_mode, copy_mode); s->base = base; s->base_overlay = bdrv_find_overlay(bs, base); s->granularity = granularity; s->buf_size = ROUND_UP(buf_size, granularity); s->unmap = unmap; if (auto_complete) { s->should_complete = true; } bdrv_graph_rdunlock_main_loop(); s->dirty_bitmap = bdrv_create_dirty_bitmap(s->mirror_top_bs, granularity, NULL, errp); if (!s->dirty_bitmap) { goto fail; } /* * The dirty bitmap is set by bdrv_mirror_top_do_write() when not in active * mode. */ bdrv_disable_dirty_bitmap(s->dirty_bitmap); bdrv_graph_wrlock(bs); ret = block_job_add_bdrv(&s->common, "source", bs, 0, BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE | BLK_PERM_CONSISTENT_READ, errp); if (ret < 0) { bdrv_graph_wrunlock(); goto fail; } /* Required permissions are already taken with blk_new() */ block_job_add_bdrv(&s->common, "target", target, 0, BLK_PERM_ALL, &error_abort); /* In commit_active_start() all intermediate nodes disappear, so * any jobs in them must be blocked */ if (target_is_backing) { BlockDriverState *iter, *filtered_target; uint64_t iter_shared_perms; /* * The topmost node with * bdrv_skip_filters(filtered_target) == bdrv_skip_filters(target) */ filtered_target = bdrv_cow_bs(bdrv_find_overlay(bs, target)); assert(bdrv_skip_filters(filtered_target) == bdrv_skip_filters(target)); /* * XXX BLK_PERM_WRITE needs to be allowed so we don't block * ourselves at s->base (if writes are blocked for a node, they are * also blocked for its backing file). The other options would be a * second filter driver above s->base (== target). */ iter_shared_perms = BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE; for (iter = bdrv_filter_or_cow_bs(bs); iter != target; iter = bdrv_filter_or_cow_bs(iter)) { if (iter == filtered_target) { /* * From here on, all nodes are filters on the base. * This allows us to share BLK_PERM_CONSISTENT_READ. */ iter_shared_perms |= BLK_PERM_CONSISTENT_READ; } ret = block_job_add_bdrv(&s->common, "intermediate node", iter, 0, iter_shared_perms, errp); if (ret < 0) { bdrv_graph_wrunlock(); goto fail; } } if (bdrv_freeze_backing_chain(mirror_top_bs, target, errp) < 0) { bdrv_graph_wrunlock(); goto fail; } } bdrv_graph_wrunlock(); QTAILQ_INIT(&s->ops_in_flight); trace_mirror_start(bs, s, opaque); job_start(&s->common.job); return &s->common; fail: if (s) { /* Make sure this BDS does not go away until we have completed the graph * changes below */ bdrv_ref(mirror_top_bs); g_free(s->replaces); blk_unref(s->target); bs_opaque->job = NULL; if (s->dirty_bitmap) { bdrv_release_dirty_bitmap(s->dirty_bitmap); } job_early_fail(&s->common.job); } bs_opaque->stop = true; bdrv_graph_rdlock_main_loop(); bdrv_child_refresh_perms(mirror_top_bs, mirror_top_bs->backing, &error_abort); bdrv_graph_rdunlock_main_loop(); bdrv_replace_node(mirror_top_bs, mirror_top_bs->backing->bs, &error_abort); bdrv_unref(mirror_top_bs); return NULL; } void mirror_start(const char *job_id, BlockDriverState *bs, BlockDriverState *target, const char *replaces, int creation_flags, int64_t speed, uint32_t granularity, int64_t buf_size, MirrorSyncMode mode, BlockMirrorBackingMode backing_mode, bool zero_target, BlockdevOnError on_source_error, BlockdevOnError on_target_error, bool unmap, const char *filter_node_name, MirrorCopyMode copy_mode, Error **errp) { bool is_none_mode; BlockDriverState *base; GLOBAL_STATE_CODE(); if ((mode == MIRROR_SYNC_MODE_INCREMENTAL) || (mode == MIRROR_SYNC_MODE_BITMAP)) { error_setg(errp, "Sync mode '%s' not supported", MirrorSyncMode_str(mode)); return; } bdrv_graph_rdlock_main_loop(); is_none_mode = mode == MIRROR_SYNC_MODE_NONE; base = mode == MIRROR_SYNC_MODE_TOP ? bdrv_backing_chain_next(bs) : NULL; bdrv_graph_rdunlock_main_loop(); mirror_start_job(job_id, bs, creation_flags, target, replaces, speed, granularity, buf_size, backing_mode, zero_target, on_source_error, on_target_error, unmap, NULL, NULL, &mirror_job_driver, is_none_mode, base, false, filter_node_name, true, copy_mode, errp); } BlockJob *commit_active_start(const char *job_id, BlockDriverState *bs, BlockDriverState *base, int creation_flags, int64_t speed, BlockdevOnError on_error, const char *filter_node_name, BlockCompletionFunc *cb, void *opaque, bool auto_complete, Error **errp) { bool base_read_only; BlockJob *job; GLOBAL_STATE_CODE(); base_read_only = bdrv_is_read_only(base); if (base_read_only) { if (bdrv_reopen_set_read_only(base, false, errp) < 0) { return NULL; } } job = mirror_start_job( job_id, bs, creation_flags, base, NULL, speed, 0, 0, MIRROR_LEAVE_BACKING_CHAIN, false, on_error, on_error, true, cb, opaque, &commit_active_job_driver, false, base, auto_complete, filter_node_name, false, MIRROR_COPY_MODE_BACKGROUND, errp); if (!job) { goto error_restore_flags; } return job; error_restore_flags: /* ignore error and errp for bdrv_reopen, because we want to propagate * the original error */ if (base_read_only) { bdrv_reopen_set_read_only(base, true, NULL); } return NULL; }