/* * QEMU PowerPC pSeries Logical Partition capabilities handling * * Copyright (c) 2017 David Gibson, Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "qapi/visitor.h" #include "sysemu/hw_accel.h" #include "exec/ram_addr.h" #include "target/ppc/cpu.h" #include "target/ppc/mmu-hash64.h" #include "cpu-models.h" #include "kvm_ppc.h" #include "migration/vmstate.h" #include "sysemu/tcg.h" #include "hw/ppc/spapr.h" typedef struct SpaprCapPossible { int num; /* size of vals array below */ const char *help; /* help text for vals */ /* * Note: * - because of the way compatibility is determined vals MUST be ordered * such that later options are a superset of all preceding options. * - the order of vals must be preserved, that is their index is important, * however vals may be added to the end of the list so long as the above * point is observed */ const char *vals[]; } SpaprCapPossible; typedef struct SpaprCapabilityInfo { const char *name; const char *description; int index; /* Getter and Setter Function Pointers */ ObjectPropertyAccessor *get; ObjectPropertyAccessor *set; const char *type; /* Possible values if this is a custom string type */ SpaprCapPossible *possible; /* Make sure the virtual hardware can support this capability */ void (*apply)(SpaprMachineState *spapr, uint8_t val, Error **errp); void (*cpu_apply)(SpaprMachineState *spapr, PowerPCCPU *cpu, uint8_t val, Error **errp); bool (*migrate_needed)(void *opaque); } SpaprCapabilityInfo; static void spapr_cap_get_bool(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { SpaprCapabilityInfo *cap = opaque; SpaprMachineState *spapr = SPAPR_MACHINE(obj); bool value = spapr_get_cap(spapr, cap->index) == SPAPR_CAP_ON; visit_type_bool(v, name, &value, errp); } static void spapr_cap_set_bool(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { SpaprCapabilityInfo *cap = opaque; SpaprMachineState *spapr = SPAPR_MACHINE(obj); bool value; if (!visit_type_bool(v, name, &value, errp)) { return; } spapr->cmd_line_caps[cap->index] = true; spapr->eff.caps[cap->index] = value ? SPAPR_CAP_ON : SPAPR_CAP_OFF; } static void spapr_cap_get_string(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { SpaprCapabilityInfo *cap = opaque; SpaprMachineState *spapr = SPAPR_MACHINE(obj); g_autofree char *val = NULL; uint8_t value = spapr_get_cap(spapr, cap->index); if (value >= cap->possible->num) { error_setg(errp, "Invalid value (%d) for cap-%s", value, cap->name); return; } val = g_strdup(cap->possible->vals[value]); visit_type_str(v, name, &val, errp); } static void spapr_cap_set_string(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { SpaprCapabilityInfo *cap = opaque; SpaprMachineState *spapr = SPAPR_MACHINE(obj); uint8_t i; g_autofree char *val = NULL; if (!visit_type_str(v, name, &val, errp)) { return; } if (!strcmp(val, "?")) { error_setg(errp, "%s", cap->possible->help); return; } for (i = 0; i < cap->possible->num; i++) { if (!strcasecmp(val, cap->possible->vals[i])) { spapr->cmd_line_caps[cap->index] = true; spapr->eff.caps[cap->index] = i; return; } } error_setg(errp, "Invalid capability mode \"%s\" for cap-%s", val, cap->name); } static void spapr_cap_get_pagesize(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { SpaprCapabilityInfo *cap = opaque; SpaprMachineState *spapr = SPAPR_MACHINE(obj); uint8_t val = spapr_get_cap(spapr, cap->index); uint64_t pagesize = (1ULL << val); visit_type_size(v, name, &pagesize, errp); } static void spapr_cap_set_pagesize(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { SpaprCapabilityInfo *cap = opaque; SpaprMachineState *spapr = SPAPR_MACHINE(obj); uint64_t pagesize; uint8_t val; if (!visit_type_size(v, name, &pagesize, errp)) { return; } if (!is_power_of_2(pagesize)) { error_setg(errp, "cap-%s must be a power of 2", cap->name); return; } val = ctz64(pagesize); spapr->cmd_line_caps[cap->index] = true; spapr->eff.caps[cap->index] = val; } static void cap_htm_apply(SpaprMachineState *spapr, uint8_t val, Error **errp) { ERRP_GUARD(); if (!val) { /* TODO: We don't support disabling htm yet */ return; } if (tcg_enabled()) { error_setg(errp, "No Transactional Memory support in TCG"); error_append_hint(errp, "Try appending -machine cap-htm=off\n"); } else if (kvm_enabled() && !kvmppc_has_cap_htm()) { error_setg(errp, "KVM implementation does not support Transactional Memory"); error_append_hint(errp, "Try appending -machine cap-htm=off\n"); } } static void cap_vsx_apply(SpaprMachineState *spapr, uint8_t val, Error **errp) { ERRP_GUARD(); CPUPPCState *env = cpu_env(first_cpu); if (!val) { /* TODO: We don't support disabling vsx yet */ return; } /* Allowable CPUs in spapr_cpu_core.c should already have gotten * rid of anything that doesn't do VMX */ g_assert(env->insns_flags & PPC_ALTIVEC); if (!(env->insns_flags2 & PPC2_VSX)) { error_setg(errp, "VSX support not available"); error_append_hint(errp, "Try appending -machine cap-vsx=off\n"); } } static void cap_dfp_apply(SpaprMachineState *spapr, uint8_t val, Error **errp) { ERRP_GUARD(); if (!val) { /* TODO: We don't support disabling dfp yet */ return; } if (!(cpu_env(first_cpu)->insns_flags2 & PPC2_DFP)) { error_setg(errp, "DFP support not available"); error_append_hint(errp, "Try appending -machine cap-dfp=off\n"); } } SpaprCapPossible cap_cfpc_possible = { .num = 3, .vals = {"broken", "workaround", "fixed"}, .help = "broken - no protection, workaround - workaround available," " fixed - fixed in hardware", }; static void cap_safe_cache_apply(SpaprMachineState *spapr, uint8_t val, Error **errp) { ERRP_GUARD(); uint8_t kvm_val = kvmppc_get_cap_safe_cache(); if (tcg_enabled() && val) { /* TCG only supports broken, allow other values and print a warning */ warn_report("TCG doesn't support requested feature, cap-cfpc=%s", cap_cfpc_possible.vals[val]); } else if (kvm_enabled() && (val > kvm_val)) { error_setg(errp, "Requested safe cache capability level not supported by KVM"); error_append_hint(errp, "Try appending -machine cap-cfpc=%s\n", cap_cfpc_possible.vals[kvm_val]); } } SpaprCapPossible cap_sbbc_possible = { .num = 3, .vals = {"broken", "workaround", "fixed"}, .help = "broken - no protection, workaround - workaround available," " fixed - fixed in hardware", }; static void cap_safe_bounds_check_apply(SpaprMachineState *spapr, uint8_t val, Error **errp) { ERRP_GUARD(); uint8_t kvm_val = kvmppc_get_cap_safe_bounds_check(); if (tcg_enabled() && val) { /* TCG only supports broken, allow other values and print a warning */ warn_report("TCG doesn't support requested feature, cap-sbbc=%s", cap_sbbc_possible.vals[val]); } else if (kvm_enabled() && (val > kvm_val)) { error_setg(errp, "Requested safe bounds check capability level not supported by KVM"); error_append_hint(errp, "Try appending -machine cap-sbbc=%s\n", cap_sbbc_possible.vals[kvm_val]); } } SpaprCapPossible cap_ibs_possible = { .num = 5, /* Note workaround only maintained for compatibility */ .vals = {"broken", "workaround", "fixed-ibs", "fixed-ccd", "fixed-na"}, .help = "broken - no protection, workaround - count cache flush" ", fixed-ibs - indirect branch serialisation," " fixed-ccd - cache count disabled," " fixed-na - fixed in hardware (no longer applicable)", }; static void cap_safe_indirect_branch_apply(SpaprMachineState *spapr, uint8_t val, Error **errp) { ERRP_GUARD(); uint8_t kvm_val = kvmppc_get_cap_safe_indirect_branch(); if (tcg_enabled() && val) { /* TCG only supports broken, allow other values and print a warning */ warn_report("TCG doesn't support requested feature, cap-ibs=%s", cap_ibs_possible.vals[val]); } else if (kvm_enabled() && (val > kvm_val)) { error_setg(errp, "Requested safe indirect branch capability level not supported by KVM"); error_append_hint(errp, "Try appending -machine cap-ibs=%s\n", cap_ibs_possible.vals[kvm_val]); } } #define VALUE_DESC_TRISTATE " (broken, workaround, fixed)" bool spapr_check_pagesize(SpaprMachineState *spapr, hwaddr pagesize, Error **errp) { hwaddr maxpagesize = (1ULL << spapr->eff.caps[SPAPR_CAP_HPT_MAXPAGESIZE]); if (!kvmppc_hpt_needs_host_contiguous_pages()) { return true; } if (maxpagesize > pagesize) { error_setg(errp, "Can't support %"HWADDR_PRIu" kiB guest pages with %" HWADDR_PRIu" kiB host pages with this KVM implementation", maxpagesize >> 10, pagesize >> 10); return false; } return true; } static void cap_hpt_maxpagesize_apply(SpaprMachineState *spapr, uint8_t val, Error **errp) { if (val < 12) { error_setg(errp, "Require at least 4kiB hpt-max-page-size"); return; } else if (val < 16) { warn_report("Many guests require at least 64kiB hpt-max-page-size"); } spapr_check_pagesize(spapr, qemu_minrampagesize(), errp); } static bool cap_hpt_maxpagesize_migrate_needed(void *opaque) { return !SPAPR_MACHINE_GET_CLASS(opaque)->pre_4_1_migration; } static bool spapr_pagesize_cb(void *opaque, uint32_t seg_pshift, uint32_t pshift) { unsigned maxshift = *((unsigned *)opaque); assert(pshift >= seg_pshift); /* Don't allow the guest to use pages bigger than the configured * maximum size */ if (pshift > maxshift) { return false; } /* For whatever reason, KVM doesn't allow multiple pagesizes * within a segment, *except* for the case of 16M pages in a 4k or * 64k segment. Always exclude other cases, so that TCG and KVM * guests see a consistent environment */ if ((pshift != seg_pshift) && (pshift != 24)) { return false; } return true; } static void ppc_hash64_filter_pagesizes(PowerPCCPU *cpu, bool (*cb)(void *, uint32_t, uint32_t), void *opaque) { PPCHash64Options *opts = cpu->hash64_opts; int i; int n = 0; bool ci_largepage = false; assert(opts); n = 0; for (i = 0; i < ARRAY_SIZE(opts->sps); i++) { PPCHash64SegmentPageSizes *sps = &opts->sps[i]; int j; int m = 0; assert(n <= i); if (!sps->page_shift) { break; } for (j = 0; j < ARRAY_SIZE(sps->enc); j++) { PPCHash64PageSize *ps = &sps->enc[j]; assert(m <= j); if (!ps->page_shift) { break; } if (cb(opaque, sps->page_shift, ps->page_shift)) { if (ps->page_shift >= 16) { ci_largepage = true; } sps->enc[m++] = *ps; } } /* Clear rest of the row */ for (j = m; j < ARRAY_SIZE(sps->enc); j++) { memset(&sps->enc[j], 0, sizeof(sps->enc[j])); } if (m) { n++; } } /* Clear the rest of the table */ for (i = n; i < ARRAY_SIZE(opts->sps); i++) { memset(&opts->sps[i], 0, sizeof(opts->sps[i])); } if (!ci_largepage) { opts->flags &= ~PPC_HASH64_CI_LARGEPAGE; } } static void cap_hpt_maxpagesize_cpu_apply(SpaprMachineState *spapr, PowerPCCPU *cpu, uint8_t val, Error **errp) { unsigned maxshift = val; ppc_hash64_filter_pagesizes(cpu, spapr_pagesize_cb, &maxshift); } static void cap_nested_kvm_hv_apply(SpaprMachineState *spapr, uint8_t val, Error **errp) { ERRP_GUARD(); PowerPCCPU *cpu = POWERPC_CPU(first_cpu); CPUPPCState *env = &cpu->env; if (!val) { /* capability disabled by default */ return; } if (!(env->insns_flags2 & PPC2_ISA300)) { error_setg(errp, "Nested-HV only supported on POWER9 and later"); error_append_hint(errp, "Try appending -machine cap-nested-hv=off\n"); return; } if (kvm_enabled()) { if (!ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, spapr->max_compat_pvr)) { error_setg(errp, "Nested-HV only supported on POWER9 and later"); error_append_hint(errp, "Try appending -machine max-cpu-compat=power9\n"); return; } if (!kvmppc_has_cap_nested_kvm_hv()) { error_setg(errp, "KVM implementation does not support Nested-HV"); error_append_hint(errp, "Try appending -machine cap-nested-hv=off\n"); } else if (kvmppc_set_cap_nested_kvm_hv(val) < 0) { error_setg(errp, "Error enabling cap-nested-hv with KVM"); error_append_hint(errp, "Try appending -machine cap-nested-hv=off\n"); } } else if (tcg_enabled()) { MachineState *ms = MACHINE(spapr); unsigned int smp_threads = ms->smp.threads; /* * Nested-HV vCPU env state to L2, so SMT-shared SPR updates, for * example, do not necessarily update the correct SPR value on sibling * threads that are in a different guest/host context. */ if (smp_threads > 1) { error_setg(errp, "TCG does not support nested-HV with SMT"); error_append_hint(errp, "Try appending -machine cap-nested-hv=off " "or use threads=1 with -smp\n"); } } } static void cap_large_decr_apply(SpaprMachineState *spapr, uint8_t val, Error **errp) { ERRP_GUARD(); PowerPCCPU *cpu = POWERPC_CPU(first_cpu); PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); if (!val) { return; /* Disabled by default */ } if (tcg_enabled()) { if (!ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, spapr->max_compat_pvr)) { error_setg(errp, "Large decrementer only supported on POWER9"); error_append_hint(errp, "Try -cpu POWER9\n"); return; } } else if (kvm_enabled()) { int kvm_nr_bits = kvmppc_get_cap_large_decr(); if (!kvm_nr_bits) { error_setg(errp, "No large decrementer support"); error_append_hint(errp, "Try appending -machine cap-large-decr=off\n"); } else if (pcc->lrg_decr_bits != kvm_nr_bits) { error_setg(errp, "KVM large decrementer size (%d) differs to model (%d)", kvm_nr_bits, pcc->lrg_decr_bits); error_append_hint(errp, "Try appending -machine cap-large-decr=off\n"); } } } static void cap_large_decr_cpu_apply(SpaprMachineState *spapr, PowerPCCPU *cpu, uint8_t val, Error **errp) { ERRP_GUARD(); CPUPPCState *env = &cpu->env; target_ulong lpcr = env->spr[SPR_LPCR]; if (kvm_enabled()) { if (kvmppc_enable_cap_large_decr(cpu, val)) { error_setg(errp, "No large decrementer support"); error_append_hint(errp, "Try appending -machine cap-large-decr=off\n"); } } if (val) { lpcr |= LPCR_LD; } else { lpcr &= ~LPCR_LD; } ppc_store_lpcr(cpu, lpcr); } static void cap_ccf_assist_apply(SpaprMachineState *spapr, uint8_t val, Error **errp) { ERRP_GUARD(); uint8_t kvm_val = kvmppc_get_cap_count_cache_flush_assist(); if (tcg_enabled() && val) { /* TCG doesn't implement anything here, but allow with a warning */ warn_report("TCG doesn't support requested feature, cap-ccf-assist=on"); } else if (kvm_enabled() && (val > kvm_val)) { uint8_t kvm_ibs = kvmppc_get_cap_safe_indirect_branch(); if (kvm_ibs == SPAPR_CAP_FIXED_CCD) { /* * If we don't have CCF assist on the host, the assist * instruction is a harmless no-op. It won't correctly * implement the cache count flush *but* if we have * count-cache-disabled in the host, that flush is * unnecessary. So, specifically allow this case. This * allows us to have better performance on POWER9 DD2.3, * while still working on POWER9 DD2.2 and POWER8 host * cpus. */ return; } error_setg(errp, "Requested count cache flush assist capability level not supported by KVM"); error_append_hint(errp, "Try appending -machine cap-ccf-assist=off\n"); } } static void cap_fwnmi_apply(SpaprMachineState *spapr, uint8_t val, Error **errp) { ERRP_GUARD(); if (!val) { return; /* Disabled by default */ } if (kvm_enabled()) { if (!kvmppc_get_fwnmi()) { error_setg(errp, "Firmware Assisted Non-Maskable Interrupts(FWNMI) not supported by KVM."); error_append_hint(errp, "Try appending -machine cap-fwnmi=off\n"); } } } static void cap_rpt_invalidate_apply(SpaprMachineState *spapr, uint8_t val, Error **errp) { ERRP_GUARD(); if (!val) { /* capability disabled by default */ return; } if (tcg_enabled()) { error_setg(errp, "No H_RPT_INVALIDATE support in TCG"); error_append_hint(errp, "Try appending -machine cap-rpt-invalidate=off\n"); } else if (kvm_enabled()) { if (!kvmppc_has_cap_mmu_radix()) { error_setg(errp, "H_RPT_INVALIDATE only supported on Radix"); return; } if (!kvmppc_has_cap_rpt_invalidate()) { error_setg(errp, "KVM implementation does not support H_RPT_INVALIDATE"); error_append_hint(errp, "Try appending -machine cap-rpt-invalidate=off\n"); } else { kvmppc_enable_h_rpt_invalidate(); } } } static void cap_ail_mode_3_apply(SpaprMachineState *spapr, uint8_t val, Error **errp) { ERRP_GUARD(); PowerPCCPU *cpu = POWERPC_CPU(first_cpu); PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); if (!val) { return; } if (tcg_enabled()) { /* AIL-3 is only supported on POWER8 and above CPUs. */ if (!(pcc->insns_flags2 & PPC2_ISA207S)) { error_setg(errp, "TCG only supports cap-ail-mode-3 on POWER8 and later CPUs"); error_append_hint(errp, "Try appending -machine cap-ail-mode-3=off\n"); return; } } else if (kvm_enabled()) { if (!kvmppc_supports_ail_3()) { error_setg(errp, "KVM implementation does not support cap-ail-mode-3"); error_append_hint(errp, "Try appending -machine cap-ail-mode-3=off\n"); return; } } } SpaprCapabilityInfo capability_table[SPAPR_CAP_NUM] = { [SPAPR_CAP_HTM] = { .name = "htm", .description = "Allow Hardware Transactional Memory (HTM)", .index = SPAPR_CAP_HTM, .get = spapr_cap_get_bool, .set = spapr_cap_set_bool, .type = "bool", .apply = cap_htm_apply, }, [SPAPR_CAP_VSX] = { .name = "vsx", .description = "Allow Vector Scalar Extensions (VSX)", .index = SPAPR_CAP_VSX, .get = spapr_cap_get_bool, .set = spapr_cap_set_bool, .type = "bool", .apply = cap_vsx_apply, }, [SPAPR_CAP_DFP] = { .name = "dfp", .description = "Allow Decimal Floating Point (DFP)", .index = SPAPR_CAP_DFP, .get = spapr_cap_get_bool, .set = spapr_cap_set_bool, .type = "bool", .apply = cap_dfp_apply, }, [SPAPR_CAP_CFPC] = { .name = "cfpc", .description = "Cache Flush on Privilege Change" VALUE_DESC_TRISTATE, .index = SPAPR_CAP_CFPC, .get = spapr_cap_get_string, .set = spapr_cap_set_string, .type = "string", .possible = &cap_cfpc_possible, .apply = cap_safe_cache_apply, }, [SPAPR_CAP_SBBC] = { .name = "sbbc", .description = "Speculation Barrier Bounds Checking" VALUE_DESC_TRISTATE, .index = SPAPR_CAP_SBBC, .get = spapr_cap_get_string, .set = spapr_cap_set_string, .type = "string", .possible = &cap_sbbc_possible, .apply = cap_safe_bounds_check_apply, }, [SPAPR_CAP_IBS] = { .name = "ibs", .description = "Indirect Branch Speculation (broken, workaround, fixed-ibs," "fixed-ccd, fixed-na)", .index = SPAPR_CAP_IBS, .get = spapr_cap_get_string, .set = spapr_cap_set_string, .type = "string", .possible = &cap_ibs_possible, .apply = cap_safe_indirect_branch_apply, }, [SPAPR_CAP_HPT_MAXPAGESIZE] = { .name = "hpt-max-page-size", .description = "Maximum page size for Hash Page Table guests", .index = SPAPR_CAP_HPT_MAXPAGESIZE, .get = spapr_cap_get_pagesize, .set = spapr_cap_set_pagesize, .type = "int", .apply = cap_hpt_maxpagesize_apply, .cpu_apply = cap_hpt_maxpagesize_cpu_apply, .migrate_needed = cap_hpt_maxpagesize_migrate_needed, }, [SPAPR_CAP_NESTED_KVM_HV] = { .name = "nested-hv", .description = "Allow Nested KVM-HV", .index = SPAPR_CAP_NESTED_KVM_HV, .get = spapr_cap_get_bool, .set = spapr_cap_set_bool, .type = "bool", .apply = cap_nested_kvm_hv_apply, }, [SPAPR_CAP_LARGE_DECREMENTER] = { .name = "large-decr", .description = "Allow Large Decrementer", .index = SPAPR_CAP_LARGE_DECREMENTER, .get = spapr_cap_get_bool, .set = spapr_cap_set_bool, .type = "bool", .apply = cap_large_decr_apply, .cpu_apply = cap_large_decr_cpu_apply, }, [SPAPR_CAP_CCF_ASSIST] = { .name = "ccf-assist", .description = "Count Cache Flush Assist via HW Instruction", .index = SPAPR_CAP_CCF_ASSIST, .get = spapr_cap_get_bool, .set = spapr_cap_set_bool, .type = "bool", .apply = cap_ccf_assist_apply, }, [SPAPR_CAP_FWNMI] = { .name = "fwnmi", .description = "Implements PAPR FWNMI option", .index = SPAPR_CAP_FWNMI, .get = spapr_cap_get_bool, .set = spapr_cap_set_bool, .type = "bool", .apply = cap_fwnmi_apply, }, [SPAPR_CAP_RPT_INVALIDATE] = { .name = "rpt-invalidate", .description = "Allow H_RPT_INVALIDATE", .index = SPAPR_CAP_RPT_INVALIDATE, .get = spapr_cap_get_bool, .set = spapr_cap_set_bool, .type = "bool", .apply = cap_rpt_invalidate_apply, }, [SPAPR_CAP_AIL_MODE_3] = { .name = "ail-mode-3", .description = "Alternate Interrupt Location (AIL) mode 3 support", .index = SPAPR_CAP_AIL_MODE_3, .get = spapr_cap_get_bool, .set = spapr_cap_set_bool, .type = "bool", .apply = cap_ail_mode_3_apply, }, }; static SpaprCapabilities default_caps_with_cpu(SpaprMachineState *spapr, const char *cputype) { SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); SpaprCapabilities caps; caps = smc->default_caps; if (!ppc_type_check_compat(cputype, CPU_POWERPC_LOGICAL_3_00, 0, spapr->max_compat_pvr)) { caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; } if (!ppc_type_check_compat(cputype, CPU_POWERPC_LOGICAL_2_07, 0, spapr->max_compat_pvr)) { caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_OFF; } if (!ppc_type_check_compat(cputype, CPU_POWERPC_LOGICAL_2_06_PLUS, 0, spapr->max_compat_pvr)) { caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; } if (!ppc_type_check_compat(cputype, CPU_POWERPC_LOGICAL_2_06, 0, spapr->max_compat_pvr)) { caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_OFF; caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_OFF; caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; } /* This is for pseries-2.12 and older */ if (smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] == 0) { uint8_t mps; if (kvmppc_hpt_needs_host_contiguous_pages()) { mps = ctz64(qemu_minrampagesize()); } else { mps = 34; /* allow everything up to 16GiB, i.e. everything */ } caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = mps; } return caps; } int spapr_caps_pre_load(void *opaque) { SpaprMachineState *spapr = opaque; /* Set to default so we can tell if this came in with the migration */ spapr->mig = spapr->def; return 0; } int spapr_caps_pre_save(void *opaque) { SpaprMachineState *spapr = opaque; spapr->mig = spapr->eff; return 0; } /* This has to be called from the top-level spapr post_load, not the * caps specific one. Otherwise it wouldn't be called when the source * caps are all defaults, which could still conflict with overridden * caps on the destination */ int spapr_caps_post_migration(SpaprMachineState *spapr) { int i; bool ok = true; SpaprCapabilities dstcaps = spapr->eff; SpaprCapabilities srccaps; srccaps = default_caps_with_cpu(spapr, MACHINE(spapr)->cpu_type); for (i = 0; i < SPAPR_CAP_NUM; i++) { /* If not default value then assume came in with the migration */ if (spapr->mig.caps[i] != spapr->def.caps[i]) { srccaps.caps[i] = spapr->mig.caps[i]; } } for (i = 0; i < SPAPR_CAP_NUM; i++) { SpaprCapabilityInfo *info = &capability_table[i]; if (srccaps.caps[i] > dstcaps.caps[i]) { error_report("cap-%s higher level (%d) in incoming stream than on destination (%d)", info->name, srccaps.caps[i], dstcaps.caps[i]); ok = false; } if (srccaps.caps[i] < dstcaps.caps[i]) { warn_report("cap-%s lower level (%d) in incoming stream than on destination (%d)", info->name, srccaps.caps[i], dstcaps.caps[i]); } } return ok ? 0 : -EINVAL; } /* Used to generate the migration field and needed function for a spapr cap */ #define SPAPR_CAP_MIG_STATE(sname, cap) \ static bool spapr_cap_##sname##_needed(void *opaque) \ { \ SpaprMachineState *spapr = opaque; \ bool (*needed)(void *opaque) = \ capability_table[cap].migrate_needed; \ \ return needed ? needed(opaque) : true && \ spapr->cmd_line_caps[cap] && \ (spapr->eff.caps[cap] != \ spapr->def.caps[cap]); \ } \ \ const VMStateDescription vmstate_spapr_cap_##sname = { \ .name = "spapr/cap/" #sname, \ .version_id = 1, \ .minimum_version_id = 1, \ .needed = spapr_cap_##sname##_needed, \ .fields = (const VMStateField[]) { \ VMSTATE_UINT8(mig.caps[cap], \ SpaprMachineState), \ VMSTATE_END_OF_LIST() \ }, \ } SPAPR_CAP_MIG_STATE(htm, SPAPR_CAP_HTM); SPAPR_CAP_MIG_STATE(vsx, SPAPR_CAP_VSX); SPAPR_CAP_MIG_STATE(dfp, SPAPR_CAP_DFP); SPAPR_CAP_MIG_STATE(cfpc, SPAPR_CAP_CFPC); SPAPR_CAP_MIG_STATE(sbbc, SPAPR_CAP_SBBC); SPAPR_CAP_MIG_STATE(ibs, SPAPR_CAP_IBS); SPAPR_CAP_MIG_STATE(hpt_maxpagesize, SPAPR_CAP_HPT_MAXPAGESIZE); SPAPR_CAP_MIG_STATE(nested_kvm_hv, SPAPR_CAP_NESTED_KVM_HV); SPAPR_CAP_MIG_STATE(large_decr, SPAPR_CAP_LARGE_DECREMENTER); SPAPR_CAP_MIG_STATE(ccf_assist, SPAPR_CAP_CCF_ASSIST); SPAPR_CAP_MIG_STATE(fwnmi, SPAPR_CAP_FWNMI); SPAPR_CAP_MIG_STATE(rpt_invalidate, SPAPR_CAP_RPT_INVALIDATE); void spapr_caps_init(SpaprMachineState *spapr) { SpaprCapabilities default_caps; int i; /* Compute the actual set of caps we should run with */ default_caps = default_caps_with_cpu(spapr, MACHINE(spapr)->cpu_type); for (i = 0; i < SPAPR_CAP_NUM; i++) { /* Store the defaults */ spapr->def.caps[i] = default_caps.caps[i]; /* If not set on the command line then apply the default value */ if (!spapr->cmd_line_caps[i]) { spapr->eff.caps[i] = default_caps.caps[i]; } } } void spapr_caps_apply(SpaprMachineState *spapr) { int i; for (i = 0; i < SPAPR_CAP_NUM; i++) { SpaprCapabilityInfo *info = &capability_table[i]; /* * If the apply function can't set the desired level and thinks it's * fatal, it should cause that. */ info->apply(spapr, spapr->eff.caps[i], &error_fatal); } } void spapr_caps_cpu_apply(SpaprMachineState *spapr, PowerPCCPU *cpu) { int i; for (i = 0; i < SPAPR_CAP_NUM; i++) { SpaprCapabilityInfo *info = &capability_table[i]; /* * If the apply function can't set the desired level and thinks it's * fatal, it should cause that. */ if (info->cpu_apply) { info->cpu_apply(spapr, cpu, spapr->eff.caps[i], &error_fatal); } } } void spapr_caps_add_properties(SpaprMachineClass *smc) { ObjectClass *klass = OBJECT_CLASS(smc); int i; for (i = 0; i < ARRAY_SIZE(capability_table); i++) { SpaprCapabilityInfo *cap = &capability_table[i]; g_autofree char *name = g_strdup_printf("cap-%s", cap->name); g_autofree char *desc = g_strdup_printf("%s", cap->description); object_class_property_add(klass, name, cap->type, cap->get, cap->set, NULL, cap); object_class_property_set_description(klass, name, desc); } }