/* * x86 SMM helpers * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "qemu/main-loop.h" #include "cpu.h" #include "exec/helper-proto.h" #include "exec/log.h" /* SMM support */ #if defined(CONFIG_USER_ONLY) void do_smm_enter(X86CPU *cpu) { } void helper_rsm(CPUX86State *env) { } #else #ifdef TARGET_X86_64 #define SMM_REVISION_ID 0x00020064 #else #define SMM_REVISION_ID 0x00020000 #endif void do_smm_enter(X86CPU *cpu) { CPUX86State *env = &cpu->env; CPUState *cs = CPU(cpu); target_ulong sm_state; SegmentCache *dt; int i, offset; qemu_log_mask(CPU_LOG_INT, "SMM: enter\n"); log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP); env->msr_smi_count++; env->hflags |= HF_SMM_MASK; if (env->hflags2 & HF2_NMI_MASK) { env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; } else { env->hflags2 |= HF2_NMI_MASK; } sm_state = env->smbase + 0x8000; #ifdef TARGET_X86_64 for (i = 0; i < 6; i++) { dt = &env->segs[i]; offset = 0x7e00 + i * 16; x86_stw_phys(cs, sm_state + offset, dt->selector); x86_stw_phys(cs, sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff); x86_stl_phys(cs, sm_state + offset + 4, dt->limit); x86_stq_phys(cs, sm_state + offset + 8, dt->base); } x86_stq_phys(cs, sm_state + 0x7e68, env->gdt.base); x86_stl_phys(cs, sm_state + 0x7e64, env->gdt.limit); x86_stw_phys(cs, sm_state + 0x7e70, env->ldt.selector); x86_stq_phys(cs, sm_state + 0x7e78, env->ldt.base); x86_stl_phys(cs, sm_state + 0x7e74, env->ldt.limit); x86_stw_phys(cs, sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff); x86_stq_phys(cs, sm_state + 0x7e88, env->idt.base); x86_stl_phys(cs, sm_state + 0x7e84, env->idt.limit); x86_stw_phys(cs, sm_state + 0x7e90, env->tr.selector); x86_stq_phys(cs, sm_state + 0x7e98, env->tr.base); x86_stl_phys(cs, sm_state + 0x7e94, env->tr.limit); x86_stw_phys(cs, sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff); /* ??? Vol 1, 16.5.6 Intel MPX and SMM says that IA32_BNDCFGS is saved at offset 7ED0. Vol 3, 34.4.1.1, Table 32-2, has 7EA0-7ED7 as "reserved". What's this, and what's really supposed to happen? */ x86_stq_phys(cs, sm_state + 0x7ed0, env->efer); x86_stq_phys(cs, sm_state + 0x7ff8, env->regs[R_EAX]); x86_stq_phys(cs, sm_state + 0x7ff0, env->regs[R_ECX]); x86_stq_phys(cs, sm_state + 0x7fe8, env->regs[R_EDX]); x86_stq_phys(cs, sm_state + 0x7fe0, env->regs[R_EBX]); x86_stq_phys(cs, sm_state + 0x7fd8, env->regs[R_ESP]); x86_stq_phys(cs, sm_state + 0x7fd0, env->regs[R_EBP]); x86_stq_phys(cs, sm_state + 0x7fc8, env->regs[R_ESI]); x86_stq_phys(cs, sm_state + 0x7fc0, env->regs[R_EDI]); for (i = 8; i < 16; i++) { x86_stq_phys(cs, sm_state + 0x7ff8 - i * 8, env->regs[i]); } x86_stq_phys(cs, sm_state + 0x7f78, env->eip); x86_stl_phys(cs, sm_state + 0x7f70, cpu_compute_eflags(env)); x86_stl_phys(cs, sm_state + 0x7f68, env->dr[6]); x86_stl_phys(cs, sm_state + 0x7f60, env->dr[7]); x86_stl_phys(cs, sm_state + 0x7f48, env->cr[4]); x86_stq_phys(cs, sm_state + 0x7f50, env->cr[3]); x86_stl_phys(cs, sm_state + 0x7f58, env->cr[0]); x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID); x86_stl_phys(cs, sm_state + 0x7f00, env->smbase); #else x86_stl_phys(cs, sm_state + 0x7ffc, env->cr[0]); x86_stl_phys(cs, sm_state + 0x7ff8, env->cr[3]); x86_stl_phys(cs, sm_state + 0x7ff4, cpu_compute_eflags(env)); x86_stl_phys(cs, sm_state + 0x7ff0, env->eip); x86_stl_phys(cs, sm_state + 0x7fec, env->regs[R_EDI]); x86_stl_phys(cs, sm_state + 0x7fe8, env->regs[R_ESI]); x86_stl_phys(cs, sm_state + 0x7fe4, env->regs[R_EBP]); x86_stl_phys(cs, sm_state + 0x7fe0, env->regs[R_ESP]); x86_stl_phys(cs, sm_state + 0x7fdc, env->regs[R_EBX]); x86_stl_phys(cs, sm_state + 0x7fd8, env->regs[R_EDX]); x86_stl_phys(cs, sm_state + 0x7fd4, env->regs[R_ECX]); x86_stl_phys(cs, sm_state + 0x7fd0, env->regs[R_EAX]); x86_stl_phys(cs, sm_state + 0x7fcc, env->dr[6]); x86_stl_phys(cs, sm_state + 0x7fc8, env->dr[7]); x86_stl_phys(cs, sm_state + 0x7fc4, env->tr.selector); x86_stl_phys(cs, sm_state + 0x7f64, env->tr.base); x86_stl_phys(cs, sm_state + 0x7f60, env->tr.limit); x86_stl_phys(cs, sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff); x86_stl_phys(cs, sm_state + 0x7fc0, env->ldt.selector); x86_stl_phys(cs, sm_state + 0x7f80, env->ldt.base); x86_stl_phys(cs, sm_state + 0x7f7c, env->ldt.limit); x86_stl_phys(cs, sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff); x86_stl_phys(cs, sm_state + 0x7f74, env->gdt.base); x86_stl_phys(cs, sm_state + 0x7f70, env->gdt.limit); x86_stl_phys(cs, sm_state + 0x7f58, env->idt.base); x86_stl_phys(cs, sm_state + 0x7f54, env->idt.limit); for (i = 0; i < 6; i++) { dt = &env->segs[i]; if (i < 3) { offset = 0x7f84 + i * 12; } else { offset = 0x7f2c + (i - 3) * 12; } x86_stl_phys(cs, sm_state + 0x7fa8 + i * 4, dt->selector); x86_stl_phys(cs, sm_state + offset + 8, dt->base); x86_stl_phys(cs, sm_state + offset + 4, dt->limit); x86_stl_phys(cs, sm_state + offset, (dt->flags >> 8) & 0xf0ff); } x86_stl_phys(cs, sm_state + 0x7f14, env->cr[4]); x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID); x86_stl_phys(cs, sm_state + 0x7ef8, env->smbase); #endif /* init SMM cpu state */ #ifdef TARGET_X86_64 cpu_load_efer(env, 0); #endif cpu_load_eflags(env, 0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK)); env->eip = 0x00008000; cpu_x86_update_cr0(env, env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK | CR0_PG_MASK)); cpu_x86_update_cr4(env, 0); env->dr[7] = 0x00000400; cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase, 0xffffffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_G_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_G_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_G_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_G_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_G_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_G_MASK | DESC_A_MASK); } void helper_rsm(CPUX86State *env) { X86CPU *cpu = env_archcpu(env); CPUState *cs = env_cpu(env); target_ulong sm_state; int i, offset; uint32_t val; sm_state = env->smbase + 0x8000; #ifdef TARGET_X86_64 cpu_load_efer(env, x86_ldq_phys(cs, sm_state + 0x7ed0)); env->gdt.base = x86_ldq_phys(cs, sm_state + 0x7e68); env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7e64); env->ldt.selector = x86_lduw_phys(cs, sm_state + 0x7e70); env->ldt.base = x86_ldq_phys(cs, sm_state + 0x7e78); env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7e74); env->ldt.flags = (x86_lduw_phys(cs, sm_state + 0x7e72) & 0xf0ff) << 8; env->idt.base = x86_ldq_phys(cs, sm_state + 0x7e88); env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7e84); env->tr.selector = x86_lduw_phys(cs, sm_state + 0x7e90); env->tr.base = x86_ldq_phys(cs, sm_state + 0x7e98); env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7e94); env->tr.flags = (x86_lduw_phys(cs, sm_state + 0x7e92) & 0xf0ff) << 8; env->regs[R_EAX] = x86_ldq_phys(cs, sm_state + 0x7ff8); env->regs[R_ECX] = x86_ldq_phys(cs, sm_state + 0x7ff0); env->regs[R_EDX] = x86_ldq_phys(cs, sm_state + 0x7fe8); env->regs[R_EBX] = x86_ldq_phys(cs, sm_state + 0x7fe0); env->regs[R_ESP] = x86_ldq_phys(cs, sm_state + 0x7fd8); env->regs[R_EBP] = x86_ldq_phys(cs, sm_state + 0x7fd0); env->regs[R_ESI] = x86_ldq_phys(cs, sm_state + 0x7fc8); env->regs[R_EDI] = x86_ldq_phys(cs, sm_state + 0x7fc0); for (i = 8; i < 16; i++) { env->regs[i] = x86_ldq_phys(cs, sm_state + 0x7ff8 - i * 8); } env->eip = x86_ldq_phys(cs, sm_state + 0x7f78); cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7f70), ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK)); env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7f68); env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7f60); cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f48)); cpu_x86_update_cr3(env, x86_ldq_phys(cs, sm_state + 0x7f50)); cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7f58)); for (i = 0; i < 6; i++) { offset = 0x7e00 + i * 16; cpu_x86_load_seg_cache(env, i, x86_lduw_phys(cs, sm_state + offset), x86_ldq_phys(cs, sm_state + offset + 8), x86_ldl_phys(cs, sm_state + offset + 4), (x86_lduw_phys(cs, sm_state + offset + 2) & 0xf0ff) << 8); } val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */ if (val & 0x20000) { env->smbase = x86_ldl_phys(cs, sm_state + 0x7f00); } #else cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7ffc)); cpu_x86_update_cr3(env, x86_ldl_phys(cs, sm_state + 0x7ff8)); cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7ff4), ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK)); env->eip = x86_ldl_phys(cs, sm_state + 0x7ff0); env->regs[R_EDI] = x86_ldl_phys(cs, sm_state + 0x7fec); env->regs[R_ESI] = x86_ldl_phys(cs, sm_state + 0x7fe8); env->regs[R_EBP] = x86_ldl_phys(cs, sm_state + 0x7fe4); env->regs[R_ESP] = x86_ldl_phys(cs, sm_state + 0x7fe0); env->regs[R_EBX] = x86_ldl_phys(cs, sm_state + 0x7fdc); env->regs[R_EDX] = x86_ldl_phys(cs, sm_state + 0x7fd8); env->regs[R_ECX] = x86_ldl_phys(cs, sm_state + 0x7fd4); env->regs[R_EAX] = x86_ldl_phys(cs, sm_state + 0x7fd0); env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7fcc); env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7fc8); env->tr.selector = x86_ldl_phys(cs, sm_state + 0x7fc4) & 0xffff; env->tr.base = x86_ldl_phys(cs, sm_state + 0x7f64); env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7f60); env->tr.flags = (x86_ldl_phys(cs, sm_state + 0x7f5c) & 0xf0ff) << 8; env->ldt.selector = x86_ldl_phys(cs, sm_state + 0x7fc0) & 0xffff; env->ldt.base = x86_ldl_phys(cs, sm_state + 0x7f80); env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7f7c); env->ldt.flags = (x86_ldl_phys(cs, sm_state + 0x7f78) & 0xf0ff) << 8; env->gdt.base = x86_ldl_phys(cs, sm_state + 0x7f74); env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7f70); env->idt.base = x86_ldl_phys(cs, sm_state + 0x7f58); env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7f54); for (i = 0; i < 6; i++) { if (i < 3) { offset = 0x7f84 + i * 12; } else { offset = 0x7f2c + (i - 3) * 12; } cpu_x86_load_seg_cache(env, i, x86_ldl_phys(cs, sm_state + 0x7fa8 + i * 4) & 0xffff, x86_ldl_phys(cs, sm_state + offset + 8), x86_ldl_phys(cs, sm_state + offset + 4), (x86_ldl_phys(cs, sm_state + offset) & 0xf0ff) << 8); } cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f14)); val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */ if (val & 0x20000) { env->smbase = x86_ldl_phys(cs, sm_state + 0x7ef8); } #endif if ((env->hflags2 & HF2_SMM_INSIDE_NMI_MASK) == 0) { env->hflags2 &= ~HF2_NMI_MASK; } env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; env->hflags &= ~HF_SMM_MASK; qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n"); log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP); } #endif /* !CONFIG_USER_ONLY */