/* * defines common to all virtual CPUs * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #ifndef CPU_ALL_H #define CPU_ALL_H #include "exec/cpu-common.h" #include "exec/memory.h" #include "exec/tswap.h" #include "hw/core/cpu.h" /* some important defines: * * HOST_BIG_ENDIAN : whether the host cpu is big endian and * otherwise little endian. * * TARGET_BIG_ENDIAN : same for the target cpu */ #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN #define BSWAP_NEEDED #endif #if TARGET_LONG_SIZE == 4 #define tswapl(s) tswap32(s) #define bswaptls(s) bswap32s(s) #else #define tswapl(s) tswap64(s) #define bswaptls(s) bswap64s(s) #endif /* Target-endianness CPU memory access functions. These fit into the * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h. */ #if TARGET_BIG_ENDIAN #define lduw_p(p) lduw_be_p(p) #define ldsw_p(p) ldsw_be_p(p) #define ldl_p(p) ldl_be_p(p) #define ldq_p(p) ldq_be_p(p) #define stw_p(p, v) stw_be_p(p, v) #define stl_p(p, v) stl_be_p(p, v) #define stq_p(p, v) stq_be_p(p, v) #define ldn_p(p, sz) ldn_be_p(p, sz) #define stn_p(p, sz, v) stn_be_p(p, sz, v) #else #define lduw_p(p) lduw_le_p(p) #define ldsw_p(p) ldsw_le_p(p) #define ldl_p(p) ldl_le_p(p) #define ldq_p(p) ldq_le_p(p) #define stw_p(p, v) stw_le_p(p, v) #define stl_p(p, v) stl_le_p(p, v) #define stq_p(p, v) stq_le_p(p, v) #define ldn_p(p, sz) ldn_le_p(p, sz) #define stn_p(p, sz, v) stn_le_p(p, sz, v) #endif /* MMU memory access macros */ #if defined(CONFIG_USER_ONLY) #include "exec/user/abitypes.h" #include "exec/user/guest-base.h" extern bool have_guest_base; /* * If non-zero, the guest virtual address space is a contiguous subset * of the host virtual address space, i.e. '-R reserved_va' is in effect * either from the command-line or by default. The value is the last * byte of the guest address space e.g. UINT32_MAX. * * If zero, the host and guest virtual address spaces are intermingled. */ extern unsigned long reserved_va; /* * Limit the guest addresses as best we can. * * When not using -R reserved_va, we cannot really limit the guest * to less address space than the host. For 32-bit guests, this * acts as a sanity check that we're not giving the guest an address * that it cannot even represent. For 64-bit guests... the address * might not be what the real kernel would give, but it is at least * representable in the guest. * * TODO: Improve address allocation to avoid this problem, and to * avoid setting bits at the top of guest addresses that might need * to be used for tags. */ #define GUEST_ADDR_MAX_ \ ((MIN_CONST(TARGET_VIRT_ADDR_SPACE_BITS, TARGET_ABI_BITS) <= 32) ? \ UINT32_MAX : ~0ul) #define GUEST_ADDR_MAX (reserved_va ? : GUEST_ADDR_MAX_) #else #include "exec/hwaddr.h" #define SUFFIX #define ARG1 as #define ARG1_DECL AddressSpace *as #define TARGET_ENDIANNESS #include "exec/memory_ldst.h.inc" #define SUFFIX _cached_slow #define ARG1 cache #define ARG1_DECL MemoryRegionCache *cache #define TARGET_ENDIANNESS #include "exec/memory_ldst.h.inc" static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) { address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); } #define SUFFIX #define ARG1 as #define ARG1_DECL AddressSpace *as #define TARGET_ENDIANNESS #include "exec/memory_ldst_phys.h.inc" /* Inline fast path for direct RAM access. */ #define ENDIANNESS #include "exec/memory_ldst_cached.h.inc" #define SUFFIX _cached #define ARG1 cache #define ARG1_DECL MemoryRegionCache *cache #define TARGET_ENDIANNESS #include "exec/memory_ldst_phys.h.inc" #endif /* page related stuff */ #ifdef TARGET_PAGE_BITS_VARY # include "exec/page-vary.h" extern const TargetPageBits target_page; #ifdef CONFIG_DEBUG_TCG #define TARGET_PAGE_BITS ({ assert(target_page.decided); target_page.bits; }) #define TARGET_PAGE_MASK ({ assert(target_page.decided); \ (target_long)target_page.mask; }) #else #define TARGET_PAGE_BITS target_page.bits #define TARGET_PAGE_MASK ((target_long)target_page.mask) #endif #define TARGET_PAGE_SIZE (-(int)TARGET_PAGE_MASK) #else #define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) #define TARGET_PAGE_MASK ((target_long)-1 << TARGET_PAGE_BITS) #endif #define TARGET_PAGE_ALIGN(addr) ROUND_UP((addr), TARGET_PAGE_SIZE) #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) /* FIXME: Code that sets/uses this is broken and needs to go away. */ #define PAGE_RESERVED 0x0100 #endif /* * For linux-user, indicates that the page is mapped with the same semantics * in both guest and host. */ #define PAGE_PASSTHROUGH 0x0800 #if defined(CONFIG_USER_ONLY) void page_dump(FILE *f); typedef int (*walk_memory_regions_fn)(void *, target_ulong, target_ulong, unsigned long); int walk_memory_regions(void *, walk_memory_regions_fn); int page_get_flags(target_ulong address); void page_set_flags(target_ulong start, target_ulong last, int flags); void page_reset_target_data(target_ulong start, target_ulong last); /** * page_check_range * @start: first byte of range * @len: length of range * @flags: flags required for each page * * Return true if every page in [@start, @start+@len) has @flags set. * Return false if any page is unmapped. Thus testing flags == 0 is * equivalent to testing for flags == PAGE_VALID. */ bool page_check_range(target_ulong start, target_ulong last, int flags); /** * page_check_range_empty: * @start: first byte of range * @last: last byte of range * Context: holding mmap lock * * Return true if the entire range [@start, @last] is unmapped. * The memory lock must be held so that the caller will can ensure * the result stays true until a new mapping can be installed. */ bool page_check_range_empty(target_ulong start, target_ulong last); /** * page_find_range_empty * @min: first byte of search range * @max: last byte of search range * @len: size of the hole required * @align: alignment of the hole required (power of 2) * * If there is a range [x, x+@len) within [@min, @max] such that * x % @align == 0, then return x. Otherwise return -1. * The memory lock must be held, as the caller will want to ensure * the returned range stays empty until a new mapping can be installed. */ target_ulong page_find_range_empty(target_ulong min, target_ulong max, target_ulong len, target_ulong align); /** * page_get_target_data(address) * @address: guest virtual address * * Return TARGET_PAGE_DATA_SIZE bytes of out-of-band data to associate * with the guest page at @address, allocating it if necessary. The * caller should already have verified that the address is valid. * * The memory will be freed when the guest page is deallocated, * e.g. with the munmap system call. */ void *page_get_target_data(target_ulong address) __attribute__((returns_nonnull)); #endif CPUArchState *cpu_copy(CPUArchState *env); /* Flags for use in ENV->INTERRUPT_PENDING. The numbers assigned here are non-sequential in order to preserve binary compatibility with the vmstate dump. Bit 0 (0x0001) was previously used for CPU_INTERRUPT_EXIT, and is cleared when loading the vmstate dump. */ /* External hardware interrupt pending. This is typically used for interrupts from devices. */ #define CPU_INTERRUPT_HARD 0x0002 /* Exit the current TB. This is typically used when some system-level device makes some change to the memory mapping. E.g. the a20 line change. */ #define CPU_INTERRUPT_EXITTB 0x0004 /* Halt the CPU. */ #define CPU_INTERRUPT_HALT 0x0020 /* Debug event pending. */ #define CPU_INTERRUPT_DEBUG 0x0080 /* Reset signal. */ #define CPU_INTERRUPT_RESET 0x0400 /* Several target-specific external hardware interrupts. Each target/cpu.h should define proper names based on these defines. */ #define CPU_INTERRUPT_TGT_EXT_0 0x0008 #define CPU_INTERRUPT_TGT_EXT_1 0x0010 #define CPU_INTERRUPT_TGT_EXT_2 0x0040 #define CPU_INTERRUPT_TGT_EXT_3 0x0200 #define CPU_INTERRUPT_TGT_EXT_4 0x1000 /* Several target-specific internal interrupts. These differ from the preceding target-specific interrupts in that they are intended to originate from within the cpu itself, typically in response to some instruction being executed. These, therefore, are not masked while single-stepping within the debugger. */ #define CPU_INTERRUPT_TGT_INT_0 0x0100 #define CPU_INTERRUPT_TGT_INT_1 0x0800 #define CPU_INTERRUPT_TGT_INT_2 0x2000 /* First unused bit: 0x4000. */ /* The set of all bits that should be masked when single-stepping. */ #define CPU_INTERRUPT_SSTEP_MASK \ (CPU_INTERRUPT_HARD \ | CPU_INTERRUPT_TGT_EXT_0 \ | CPU_INTERRUPT_TGT_EXT_1 \ | CPU_INTERRUPT_TGT_EXT_2 \ | CPU_INTERRUPT_TGT_EXT_3 \ | CPU_INTERRUPT_TGT_EXT_4) #ifdef CONFIG_USER_ONLY /* * Allow some level of source compatibility with softmmu. We do not * support any of the more exotic features, so only invalid pages may * be signaled by probe_access_flags(). */ #define TLB_INVALID_MASK (1 << (TARGET_PAGE_BITS_MIN - 1)) #define TLB_MMIO (1 << (TARGET_PAGE_BITS_MIN - 2)) #define TLB_WATCHPOINT 0 static inline int cpu_mmu_index(CPUState *cs, bool ifetch) { return MMU_USER_IDX; } #else /* * Flags stored in the low bits of the TLB virtual address. * These are defined so that fast path ram access is all zeros. * The flags all must be between TARGET_PAGE_BITS and * maximum address alignment bit. * * Use TARGET_PAGE_BITS_MIN so that these bits are constant * when TARGET_PAGE_BITS_VARY is in effect. * * The count, if not the placement of these bits is known * to tcg/tcg-op-ldst.c, check_max_alignment(). */ /* Zero if TLB entry is valid. */ #define TLB_INVALID_MASK (1 << (TARGET_PAGE_BITS_MIN - 1)) /* Set if TLB entry references a clean RAM page. The iotlb entry will contain the page physical address. */ #define TLB_NOTDIRTY (1 << (TARGET_PAGE_BITS_MIN - 2)) /* Set if TLB entry is an IO callback. */ #define TLB_MMIO (1 << (TARGET_PAGE_BITS_MIN - 3)) /* Set if TLB entry writes ignored. */ #define TLB_DISCARD_WRITE (1 << (TARGET_PAGE_BITS_MIN - 4)) /* Set if the slow path must be used; more flags in CPUTLBEntryFull. */ #define TLB_FORCE_SLOW (1 << (TARGET_PAGE_BITS_MIN - 5)) /* * Use this mask to check interception with an alignment mask * in a TCG backend. */ #define TLB_FLAGS_MASK \ (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO \ | TLB_FORCE_SLOW | TLB_DISCARD_WRITE) /* * Flags stored in CPUTLBEntryFull.slow_flags[x]. * TLB_FORCE_SLOW must be set in CPUTLBEntry.addr_idx[x]. */ /* Set if TLB entry requires byte swap. */ #define TLB_BSWAP (1 << 0) /* Set if TLB entry contains a watchpoint. */ #define TLB_WATCHPOINT (1 << 1) /* Set if TLB entry requires aligned accesses. */ #define TLB_CHECK_ALIGNED (1 << 2) #define TLB_SLOW_FLAGS_MASK (TLB_BSWAP | TLB_WATCHPOINT | TLB_CHECK_ALIGNED) /* The two sets of flags must not overlap. */ QEMU_BUILD_BUG_ON(TLB_FLAGS_MASK & TLB_SLOW_FLAGS_MASK); /** * tlb_hit_page: return true if page aligned @addr is a hit against the * TLB entry @tlb_addr * * @addr: virtual address to test (must be page aligned) * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) */ static inline bool tlb_hit_page(uint64_t tlb_addr, vaddr addr) { return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK)); } /** * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr * * @addr: virtual address to test (need not be page aligned) * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) */ static inline bool tlb_hit(uint64_t tlb_addr, vaddr addr) { return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK); } #endif /* !CONFIG_USER_ONLY */ /* Validate correct placement of CPUArchState. */ #include "cpu.h" QEMU_BUILD_BUG_ON(offsetof(ArchCPU, parent_obj) != 0); QEMU_BUILD_BUG_ON(offsetof(ArchCPU, env) != sizeof(CPUState)); #endif /* CPU_ALL_H */