/* * PowerPC implementation of KVM hooks * * Copyright IBM Corp. 2007 * * Authors: * Jerone Young * Christian Ehrhardt * Hollis Blanchard * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include #include #include #include #include "qemu-common.h" #include "qemu-timer.h" #include "sysemu.h" #include "kvm.h" #include "kvm_ppc.h" #include "cpu.h" #include "device_tree.h" //#define DEBUG_KVM #ifdef DEBUG_KVM #define dprintf(fmt, ...) \ do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) #else #define dprintf(fmt, ...) \ do { } while (0) #endif const KVMCapabilityInfo kvm_arch_required_capabilities[] = { KVM_CAP_LAST_INFO }; static int cap_interrupt_unset = false; static int cap_interrupt_level = false; /* XXX We have a race condition where we actually have a level triggered * interrupt, but the infrastructure can't expose that yet, so the guest * takes but ignores it, goes to sleep and never gets notified that there's * still an interrupt pending. * * As a quick workaround, let's just wake up again 20 ms after we injected * an interrupt. That way we can assure that we're always reinjecting * interrupts in case the guest swallowed them. */ static QEMUTimer *idle_timer; static void kvm_kick_env(void *env) { qemu_cpu_kick(env); } int kvm_arch_init(KVMState *s) { #ifdef KVM_CAP_PPC_UNSET_IRQ cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ); #endif #ifdef KVM_CAP_PPC_IRQ_LEVEL cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL); #endif if (!cap_interrupt_level) { fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the " "VM to stall at times!\n"); } return 0; } int kvm_arch_init_vcpu(CPUState *cenv) { int ret = 0; struct kvm_sregs sregs; sregs.pvr = cenv->spr[SPR_PVR]; ret = kvm_vcpu_ioctl(cenv, KVM_SET_SREGS, &sregs); idle_timer = qemu_new_timer_ns(vm_clock, kvm_kick_env, cenv); return ret; } void kvm_arch_reset_vcpu(CPUState *env) { } int kvm_arch_put_registers(CPUState *env, int level) { struct kvm_regs regs; int ret; int i; ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); if (ret < 0) return ret; regs.ctr = env->ctr; regs.lr = env->lr; regs.xer = env->xer; regs.msr = env->msr; regs.pc = env->nip; regs.srr0 = env->spr[SPR_SRR0]; regs.srr1 = env->spr[SPR_SRR1]; regs.sprg0 = env->spr[SPR_SPRG0]; regs.sprg1 = env->spr[SPR_SPRG1]; regs.sprg2 = env->spr[SPR_SPRG2]; regs.sprg3 = env->spr[SPR_SPRG3]; regs.sprg4 = env->spr[SPR_SPRG4]; regs.sprg5 = env->spr[SPR_SPRG5]; regs.sprg6 = env->spr[SPR_SPRG6]; regs.sprg7 = env->spr[SPR_SPRG7]; for (i = 0;i < 32; i++) regs.gpr[i] = env->gpr[i]; ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); if (ret < 0) return ret; return ret; } int kvm_arch_get_registers(CPUState *env) { struct kvm_regs regs; struct kvm_sregs sregs; int i, ret; ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); if (ret < 0) return ret; ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); if (ret < 0) return ret; env->ctr = regs.ctr; env->lr = regs.lr; env->xer = regs.xer; env->msr = regs.msr; env->nip = regs.pc; env->spr[SPR_SRR0] = regs.srr0; env->spr[SPR_SRR1] = regs.srr1; env->spr[SPR_SPRG0] = regs.sprg0; env->spr[SPR_SPRG1] = regs.sprg1; env->spr[SPR_SPRG2] = regs.sprg2; env->spr[SPR_SPRG3] = regs.sprg3; env->spr[SPR_SPRG4] = regs.sprg4; env->spr[SPR_SPRG5] = regs.sprg5; env->spr[SPR_SPRG6] = regs.sprg6; env->spr[SPR_SPRG7] = regs.sprg7; for (i = 0;i < 32; i++) env->gpr[i] = regs.gpr[i]; #ifdef KVM_CAP_PPC_SEGSTATE if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_SEGSTATE)) { env->sdr1 = sregs.u.s.sdr1; /* Sync SLB */ #ifdef TARGET_PPC64 for (i = 0; i < 64; i++) { ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe, sregs.u.s.ppc64.slb[i].slbv); } #endif /* Sync SRs */ for (i = 0; i < 16; i++) { env->sr[i] = sregs.u.s.ppc32.sr[i]; } /* Sync BATs */ for (i = 0; i < 8; i++) { env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff; env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32; env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff; env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32; } } #endif return 0; } int kvmppc_set_interrupt(CPUState *env, int irq, int level) { unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; if (irq != PPC_INTERRUPT_EXT) { return 0; } if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) { return 0; } kvm_vcpu_ioctl(env, KVM_INTERRUPT, &virq); return 0; } #if defined(TARGET_PPCEMB) #define PPC_INPUT_INT PPC40x_INPUT_INT #elif defined(TARGET_PPC64) #define PPC_INPUT_INT PPC970_INPUT_INT #else #define PPC_INPUT_INT PPC6xx_INPUT_INT #endif int kvm_arch_pre_run(CPUState *env, struct kvm_run *run) { int r; unsigned irq; /* PowerPC Qemu tracks the various core input pins (interrupt, critical * interrupt, reset, etc) in PPC-specific env->irq_input_state. */ if (!cap_interrupt_level && run->ready_for_interrupt_injection && (env->interrupt_request & CPU_INTERRUPT_HARD) && (env->irq_input_state & (1<cpu_index, irq); /* Always wake up soon in case the interrupt was level based */ qemu_mod_timer(idle_timer, qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() / 50)); } /* We don't know if there are more interrupts pending after this. However, * the guest will return to userspace in the course of handling this one * anyways, so we will get a chance to deliver the rest. */ return 0; } void kvm_arch_post_run(CPUState *env, struct kvm_run *run) { } void kvm_arch_process_irqchip_events(CPUState *env) { } static int kvmppc_handle_halt(CPUState *env) { if (!(env->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) { env->halted = 1; env->exception_index = EXCP_HLT; } return 1; } /* map dcr access to existing qemu dcr emulation */ static int kvmppc_handle_dcr_read(CPUState *env, uint32_t dcrn, uint32_t *data) { if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn); return 1; } static int kvmppc_handle_dcr_write(CPUState *env, uint32_t dcrn, uint32_t data) { if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn); return 1; } int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run) { int ret = 0; switch (run->exit_reason) { case KVM_EXIT_DCR: if (run->dcr.is_write) { dprintf("handle dcr write\n"); ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data); } else { dprintf("handle dcr read\n"); ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data); } break; case KVM_EXIT_HLT: dprintf("handle halt\n"); ret = kvmppc_handle_halt(env); break; default: fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); ret = -1; break; } return ret; } static int read_cpuinfo(const char *field, char *value, int len) { FILE *f; int ret = -1; int field_len = strlen(field); char line[512]; f = fopen("/proc/cpuinfo", "r"); if (!f) { return -1; } do { if(!fgets(line, sizeof(line), f)) { break; } if (!strncmp(line, field, field_len)) { strncpy(value, line, len); ret = 0; break; } } while(*line); fclose(f); return ret; } uint32_t kvmppc_get_tbfreq(void) { char line[512]; char *ns; uint32_t retval = get_ticks_per_sec(); if (read_cpuinfo("timebase", line, sizeof(line))) { return retval; } if (!(ns = strchr(line, ':'))) { return retval; } ns++; retval = atoi(ns); return retval; } int kvmppc_get_hypercall(CPUState *env, uint8_t *buf, int buf_len) { uint32_t *hc = (uint32_t*)buf; #ifdef KVM_CAP_PPC_GET_PVINFO struct kvm_ppc_pvinfo pvinfo; if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO) && !kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_PVINFO, &pvinfo)) { memcpy(buf, pvinfo.hcall, buf_len); return 0; } #endif /* * Fallback to always fail hypercalls: * * li r3, -1 * nop * nop * nop */ hc[0] = 0x3860ffff; hc[1] = 0x60000000; hc[2] = 0x60000000; hc[3] = 0x60000000; return 0; } bool kvm_arch_stop_on_emulation_error(CPUState *env) { return true; } int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr) { return 1; } int kvm_arch_on_sigbus(int code, void *addr) { return 1; }