/* * i386 micro operations (included several times to generate * different operand sizes) * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #define DATA_BITS (1 << (3 + SHIFT)) #define SHIFT_MASK (DATA_BITS - 1) #define SIGN_MASK (((target_ulong)1) << (DATA_BITS - 1)) #if DATA_BITS <= 32 #define SHIFT1_MASK 0x1f #else #define SHIFT1_MASK 0x3f #endif #if DATA_BITS == 8 #define SUFFIX b #define DATA_TYPE uint8_t #define DATA_STYPE int8_t #define DATA_MASK 0xff #elif DATA_BITS == 16 #define SUFFIX w #define DATA_TYPE uint16_t #define DATA_STYPE int16_t #define DATA_MASK 0xffff #elif DATA_BITS == 32 #define SUFFIX l #define DATA_TYPE uint32_t #define DATA_STYPE int32_t #define DATA_MASK 0xffffffff #elif DATA_BITS == 64 #define SUFFIX q #define DATA_TYPE uint64_t #define DATA_STYPE int64_t #define DATA_MASK 0xffffffffffffffffULL #else #error unhandled operand size #endif /* dynamic flags computation */ static int glue(compute_all_add, SUFFIX)(void) { int cf, pf, af, zf, sf, of; target_long src1, src2; src1 = CC_SRC; src2 = CC_DST - CC_SRC; cf = (DATA_TYPE)CC_DST < (DATA_TYPE)src1; pf = parity_table[(uint8_t)CC_DST]; af = (CC_DST ^ src1 ^ src2) & 0x10; zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; of = lshift((src1 ^ src2 ^ -1) & (src1 ^ CC_DST), 12 - DATA_BITS) & CC_O; return cf | pf | af | zf | sf | of; } static int glue(compute_c_add, SUFFIX)(void) { int cf; target_long src1; src1 = CC_SRC; cf = (DATA_TYPE)CC_DST < (DATA_TYPE)src1; return cf; } static int glue(compute_all_adc, SUFFIX)(void) { int cf, pf, af, zf, sf, of; target_long src1, src2; src1 = CC_SRC; src2 = CC_DST - CC_SRC - 1; cf = (DATA_TYPE)CC_DST <= (DATA_TYPE)src1; pf = parity_table[(uint8_t)CC_DST]; af = (CC_DST ^ src1 ^ src2) & 0x10; zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; of = lshift((src1 ^ src2 ^ -1) & (src1 ^ CC_DST), 12 - DATA_BITS) & CC_O; return cf | pf | af | zf | sf | of; } static int glue(compute_c_adc, SUFFIX)(void) { int cf; target_long src1; src1 = CC_SRC; cf = (DATA_TYPE)CC_DST <= (DATA_TYPE)src1; return cf; } static int glue(compute_all_sub, SUFFIX)(void) { int cf, pf, af, zf, sf, of; target_long src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; cf = (DATA_TYPE)src1 < (DATA_TYPE)src2; pf = parity_table[(uint8_t)CC_DST]; af = (CC_DST ^ src1 ^ src2) & 0x10; zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; of = lshift((src1 ^ src2) & (src1 ^ CC_DST), 12 - DATA_BITS) & CC_O; return cf | pf | af | zf | sf | of; } static int glue(compute_c_sub, SUFFIX)(void) { int cf; target_long src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; cf = (DATA_TYPE)src1 < (DATA_TYPE)src2; return cf; } static int glue(compute_all_sbb, SUFFIX)(void) { int cf, pf, af, zf, sf, of; target_long src1, src2; src1 = CC_DST + CC_SRC + 1; src2 = CC_SRC; cf = (DATA_TYPE)src1 <= (DATA_TYPE)src2; pf = parity_table[(uint8_t)CC_DST]; af = (CC_DST ^ src1 ^ src2) & 0x10; zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; of = lshift((src1 ^ src2) & (src1 ^ CC_DST), 12 - DATA_BITS) & CC_O; return cf | pf | af | zf | sf | of; } static int glue(compute_c_sbb, SUFFIX)(void) { int cf; target_long src1, src2; src1 = CC_DST + CC_SRC + 1; src2 = CC_SRC; cf = (DATA_TYPE)src1 <= (DATA_TYPE)src2; return cf; } static int glue(compute_all_logic, SUFFIX)(void) { int cf, pf, af, zf, sf, of; cf = 0; pf = parity_table[(uint8_t)CC_DST]; af = 0; zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; of = 0; return cf | pf | af | zf | sf | of; } static int glue(compute_c_logic, SUFFIX)(void) { return 0; } static int glue(compute_all_inc, SUFFIX)(void) { int cf, pf, af, zf, sf, of; target_long src1, src2; src1 = CC_DST - 1; src2 = 1; cf = CC_SRC; pf = parity_table[(uint8_t)CC_DST]; af = (CC_DST ^ src1 ^ src2) & 0x10; zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; of = ((CC_DST & DATA_MASK) == SIGN_MASK) << 11; return cf | pf | af | zf | sf | of; } #if DATA_BITS == 32 static int glue(compute_c_inc, SUFFIX)(void) { return CC_SRC; } #endif static int glue(compute_all_dec, SUFFIX)(void) { int cf, pf, af, zf, sf, of; target_long src1, src2; src1 = CC_DST + 1; src2 = 1; cf = CC_SRC; pf = parity_table[(uint8_t)CC_DST]; af = (CC_DST ^ src1 ^ src2) & 0x10; zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; of = ((CC_DST & DATA_MASK) == ((target_ulong)SIGN_MASK - 1)) << 11; return cf | pf | af | zf | sf | of; } static int glue(compute_all_shl, SUFFIX)(void) { int cf, pf, af, zf, sf, of; cf = (CC_SRC >> (DATA_BITS - 1)) & CC_C; pf = parity_table[(uint8_t)CC_DST]; af = 0; /* undefined */ zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; /* of is defined if shift count == 1 */ of = lshift(CC_SRC ^ CC_DST, 12 - DATA_BITS) & CC_O; return cf | pf | af | zf | sf | of; } static int glue(compute_c_shl, SUFFIX)(void) { return (CC_SRC >> (DATA_BITS - 1)) & CC_C; } #if DATA_BITS == 32 static int glue(compute_c_sar, SUFFIX)(void) { return CC_SRC & 1; } #endif static int glue(compute_all_sar, SUFFIX)(void) { int cf, pf, af, zf, sf, of; cf = CC_SRC & 1; pf = parity_table[(uint8_t)CC_DST]; af = 0; /* undefined */ zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; /* of is defined if shift count == 1 */ of = lshift(CC_SRC ^ CC_DST, 12 - DATA_BITS) & CC_O; return cf | pf | af | zf | sf | of; } #if DATA_BITS == 32 static int glue(compute_c_mul, SUFFIX)(void) { int cf; cf = (CC_SRC != 0); return cf; } #endif /* NOTE: we compute the flags like the P4. On olders CPUs, only OF and CF are modified and it is slower to do that. */ static int glue(compute_all_mul, SUFFIX)(void) { int cf, pf, af, zf, sf, of; cf = (CC_SRC != 0); pf = parity_table[(uint8_t)CC_DST]; af = 0; /* undefined */ zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; of = cf << 11; return cf | pf | af | zf | sf | of; } /* various optimized jumps cases */ void OPPROTO glue(op_jb_sub, SUFFIX)(void) { target_long src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; if ((DATA_TYPE)src1 < (DATA_TYPE)src2) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO glue(op_jz_sub, SUFFIX)(void) { if ((DATA_TYPE)CC_DST == 0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO glue(op_jnz_sub, SUFFIX)(void) { if ((DATA_TYPE)CC_DST != 0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO glue(op_jbe_sub, SUFFIX)(void) { target_long src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; if ((DATA_TYPE)src1 <= (DATA_TYPE)src2) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO glue(op_js_sub, SUFFIX)(void) { if (CC_DST & SIGN_MASK) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO glue(op_jl_sub, SUFFIX)(void) { target_long src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; if ((DATA_STYPE)src1 < (DATA_STYPE)src2) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO glue(op_jle_sub, SUFFIX)(void) { target_long src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; if ((DATA_STYPE)src1 <= (DATA_STYPE)src2) GOTO_LABEL_PARAM(1); FORCE_RET(); } /* oldies */ #if DATA_BITS >= 16 void OPPROTO glue(op_loopnz, SUFFIX)(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); if ((DATA_TYPE)ECX != 0 && !(eflags & CC_Z)) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO glue(op_loopz, SUFFIX)(void) { int eflags; eflags = cc_table[CC_OP].compute_all(); if ((DATA_TYPE)ECX != 0 && (eflags & CC_Z)) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO glue(op_jz_ecx, SUFFIX)(void) { if ((DATA_TYPE)ECX == 0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO glue(op_jnz_ecx, SUFFIX)(void) { if ((DATA_TYPE)ECX != 0) GOTO_LABEL_PARAM(1); FORCE_RET(); } #endif /* various optimized set cases */ void OPPROTO glue(op_setb_T0_sub, SUFFIX)(void) { target_long src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; T0 = ((DATA_TYPE)src1 < (DATA_TYPE)src2); } void OPPROTO glue(op_setz_T0_sub, SUFFIX)(void) { T0 = ((DATA_TYPE)CC_DST == 0); } void OPPROTO glue(op_setbe_T0_sub, SUFFIX)(void) { target_long src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; T0 = ((DATA_TYPE)src1 <= (DATA_TYPE)src2); } void OPPROTO glue(op_sets_T0_sub, SUFFIX)(void) { T0 = lshift(CC_DST, -(DATA_BITS - 1)) & 1; } void OPPROTO glue(op_setl_T0_sub, SUFFIX)(void) { target_long src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; T0 = ((DATA_STYPE)src1 < (DATA_STYPE)src2); } void OPPROTO glue(op_setle_T0_sub, SUFFIX)(void) { target_long src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; T0 = ((DATA_STYPE)src1 <= (DATA_STYPE)src2); } /* shifts */ void OPPROTO glue(glue(op_shl, SUFFIX), _T0_T1)(void) { int count; count = T1 & SHIFT1_MASK; T0 = T0 << count; FORCE_RET(); } void OPPROTO glue(glue(op_shr, SUFFIX), _T0_T1)(void) { int count; count = T1 & SHIFT1_MASK; T0 &= DATA_MASK; T0 = T0 >> count; FORCE_RET(); } void OPPROTO glue(glue(op_sar, SUFFIX), _T0_T1)(void) { int count; target_long src; count = T1 & SHIFT1_MASK; src = (DATA_STYPE)T0; T0 = src >> count; FORCE_RET(); } #undef MEM_WRITE #include "ops_template_mem.h" #define MEM_WRITE 0 #include "ops_template_mem.h" #if !defined(CONFIG_USER_ONLY) #define MEM_WRITE 1 #include "ops_template_mem.h" #define MEM_WRITE 2 #include "ops_template_mem.h" #endif /* bit operations */ #if DATA_BITS >= 16 void OPPROTO glue(glue(op_bt, SUFFIX), _T0_T1_cc)(void) { int count; count = T1 & SHIFT_MASK; CC_SRC = T0 >> count; } void OPPROTO glue(glue(op_bts, SUFFIX), _T0_T1_cc)(void) { int count; count = T1 & SHIFT_MASK; T1 = T0 >> count; T0 |= (((target_long)1) << count); } void OPPROTO glue(glue(op_btr, SUFFIX), _T0_T1_cc)(void) { int count; count = T1 & SHIFT_MASK; T1 = T0 >> count; T0 &= ~(((target_long)1) << count); } void OPPROTO glue(glue(op_btc, SUFFIX), _T0_T1_cc)(void) { int count; count = T1 & SHIFT_MASK; T1 = T0 >> count; T0 ^= (((target_long)1) << count); } void OPPROTO glue(glue(op_add_bit, SUFFIX), _A0_T1)(void) { A0 += ((DATA_STYPE)T1 >> (3 + SHIFT)) << SHIFT; } void OPPROTO glue(glue(op_bsf, SUFFIX), _T0_cc)(void) { int count; target_long res; res = T0 & DATA_MASK; if (res != 0) { count = 0; while ((res & 1) == 0) { count++; res >>= 1; } T1 = count; CC_DST = 1; /* ZF = 0 */ } else { CC_DST = 0; /* ZF = 1 */ } FORCE_RET(); } void OPPROTO glue(glue(op_bsr, SUFFIX), _T0_cc)(void) { int count; target_long res; res = T0 & DATA_MASK; if (res != 0) { count = DATA_BITS - 1; while ((res & SIGN_MASK) == 0) { count--; res <<= 1; } T1 = count; CC_DST = 1; /* ZF = 0 */ } else { CC_DST = 0; /* ZF = 1 */ } FORCE_RET(); } #endif #if DATA_BITS == 32 void OPPROTO op_update_bt_cc(void) { CC_SRC = T1; } #endif /* string operations */ void OPPROTO glue(op_movl_T0_Dshift, SUFFIX)(void) { T0 = DF << SHIFT; } /* port I/O */ #if DATA_BITS <= 32 void OPPROTO glue(glue(op_out, SUFFIX), _T0_T1)(void) { glue(cpu_out, SUFFIX)(env, T0, T1 & DATA_MASK); } void OPPROTO glue(glue(op_in, SUFFIX), _T0_T1)(void) { T1 = glue(cpu_in, SUFFIX)(env, T0); } void OPPROTO glue(glue(op_in, SUFFIX), _DX_T0)(void) { T0 = glue(cpu_in, SUFFIX)(env, EDX & 0xffff); } void OPPROTO glue(glue(op_out, SUFFIX), _DX_T0)(void) { glue(cpu_out, SUFFIX)(env, EDX & 0xffff, T0); } void OPPROTO glue(glue(op_check_io, SUFFIX), _T0)(void) { glue(glue(check_io, SUFFIX), _T0)(); } void OPPROTO glue(glue(op_check_io, SUFFIX), _DX)(void) { glue(glue(check_io, SUFFIX), _DX)(); } #endif #undef DATA_BITS #undef SHIFT_MASK #undef SHIFT1_MASK #undef SIGN_MASK #undef DATA_TYPE #undef DATA_STYPE #undef DATA_MASK #undef SUFFIX