/* * SiFive Platform DMA emulation * * Copyright (c) 2020 Wind River Systems, Inc. * * Author: * Bin Meng * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu/bitops.h" #include "qemu/log.h" #include "qapi/error.h" #include "hw/irq.h" #include "hw/qdev-properties.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "sysemu/dma.h" #include "hw/dma/sifive_pdma.h" #define DMA_CONTROL 0x000 #define CONTROL_CLAIM BIT(0) #define CONTROL_RUN BIT(1) #define CONTROL_DONE_IE BIT(14) #define CONTROL_ERR_IE BIT(15) #define CONTROL_DONE BIT(30) #define CONTROL_ERR BIT(31) #define DMA_NEXT_CONFIG 0x004 #define CONFIG_REPEAT BIT(2) #define CONFIG_ORDER BIT(3) #define CONFIG_WRSZ_SHIFT 24 #define CONFIG_RDSZ_SHIFT 28 #define CONFIG_SZ_MASK 0xf #define DMA_NEXT_BYTES 0x008 #define DMA_NEXT_DST 0x010 #define DMA_NEXT_SRC 0x018 #define DMA_EXEC_CONFIG 0x104 #define DMA_EXEC_BYTES 0x108 #define DMA_EXEC_DST 0x110 #define DMA_EXEC_SRC 0x118 /* * FU540/FU740 docs are incorrect with NextConfig.wsize/rsize reset values. * The reset values tested on Unleashed/Unmatched boards are 6 instead of 0. */ #define CONFIG_WRSZ_DEFAULT 6 #define CONFIG_RDSZ_DEFAULT 6 enum dma_chan_state { DMA_CHAN_STATE_IDLE, DMA_CHAN_STATE_STARTED, DMA_CHAN_STATE_ERROR, DMA_CHAN_STATE_DONE }; static void sifive_pdma_run(SiFivePDMAState *s, int ch) { uint64_t bytes = s->chan[ch].next_bytes; uint64_t dst = s->chan[ch].next_dst; uint64_t src = s->chan[ch].next_src; uint32_t config = s->chan[ch].next_config; int wsize, rsize, size, remainder; uint8_t buf[64]; int n; /* do nothing if bytes to transfer is zero */ if (!bytes) { goto done; } /* * The manual does not describe how the hardware behaviors when * config.wsize and config.rsize are given different values. * A common case is memory to memory DMA, and in this case they * are normally the same. Abort if this expectation fails. */ wsize = (config >> CONFIG_WRSZ_SHIFT) & CONFIG_SZ_MASK; rsize = (config >> CONFIG_RDSZ_SHIFT) & CONFIG_SZ_MASK; if (wsize != rsize) { goto error; } /* * Calculate the transaction size * * size field is base 2 logarithm of DMA transaction size, * but there is an upper limit of 64 bytes per transaction. */ size = wsize; if (size > 6) { size = 6; } size = 1 << size; remainder = bytes % size; /* indicate a DMA transfer is started */ s->chan[ch].state = DMA_CHAN_STATE_STARTED; s->chan[ch].control &= ~CONTROL_DONE; s->chan[ch].control &= ~CONTROL_ERR; /* load the next_ registers into their exec_ counterparts */ s->chan[ch].exec_config = config; s->chan[ch].exec_bytes = bytes; s->chan[ch].exec_dst = dst; s->chan[ch].exec_src = src; for (n = 0; n < bytes / size; n++) { cpu_physical_memory_read(s->chan[ch].exec_src, buf, size); cpu_physical_memory_write(s->chan[ch].exec_dst, buf, size); s->chan[ch].exec_src += size; s->chan[ch].exec_dst += size; s->chan[ch].exec_bytes -= size; } if (remainder) { cpu_physical_memory_read(s->chan[ch].exec_src, buf, remainder); cpu_physical_memory_write(s->chan[ch].exec_dst, buf, remainder); s->chan[ch].exec_src += remainder; s->chan[ch].exec_dst += remainder; s->chan[ch].exec_bytes -= remainder; } /* reload exec_ registers if repeat is required */ if (s->chan[ch].next_config & CONFIG_REPEAT) { s->chan[ch].exec_bytes = bytes; s->chan[ch].exec_dst = dst; s->chan[ch].exec_src = src; } done: /* indicate a DMA transfer is done */ s->chan[ch].state = DMA_CHAN_STATE_DONE; s->chan[ch].control &= ~CONTROL_RUN; s->chan[ch].control |= CONTROL_DONE; return; error: s->chan[ch].state = DMA_CHAN_STATE_ERROR; s->chan[ch].control |= CONTROL_ERR; return; } static inline void sifive_pdma_update_irq(SiFivePDMAState *s, int ch) { bool done_ie, err_ie; done_ie = !!(s->chan[ch].control & CONTROL_DONE_IE); err_ie = !!(s->chan[ch].control & CONTROL_ERR_IE); if (done_ie && (s->chan[ch].control & CONTROL_DONE)) { qemu_irq_raise(s->irq[ch * 2]); } else { qemu_irq_lower(s->irq[ch * 2]); } if (err_ie && (s->chan[ch].control & CONTROL_ERR)) { qemu_irq_raise(s->irq[ch * 2 + 1]); } else { qemu_irq_lower(s->irq[ch * 2 + 1]); } s->chan[ch].state = DMA_CHAN_STATE_IDLE; } static uint64_t sifive_pdma_readq(SiFivePDMAState *s, int ch, hwaddr offset) { uint64_t val = 0; offset &= 0xfff; switch (offset) { case DMA_NEXT_BYTES: val = s->chan[ch].next_bytes; break; case DMA_NEXT_DST: val = s->chan[ch].next_dst; break; case DMA_NEXT_SRC: val = s->chan[ch].next_src; break; case DMA_EXEC_BYTES: val = s->chan[ch].exec_bytes; break; case DMA_EXEC_DST: val = s->chan[ch].exec_dst; break; case DMA_EXEC_SRC: val = s->chan[ch].exec_src; break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected 64-bit access to 0x%" HWADDR_PRIX "\n", __func__, offset); break; } return val; } static uint32_t sifive_pdma_readl(SiFivePDMAState *s, int ch, hwaddr offset) { uint32_t val = 0; offset &= 0xfff; switch (offset) { case DMA_CONTROL: val = s->chan[ch].control; break; case DMA_NEXT_CONFIG: val = s->chan[ch].next_config; break; case DMA_NEXT_BYTES: val = extract64(s->chan[ch].next_bytes, 0, 32); break; case DMA_NEXT_BYTES + 4: val = extract64(s->chan[ch].next_bytes, 32, 32); break; case DMA_NEXT_DST: val = extract64(s->chan[ch].next_dst, 0, 32); break; case DMA_NEXT_DST + 4: val = extract64(s->chan[ch].next_dst, 32, 32); break; case DMA_NEXT_SRC: val = extract64(s->chan[ch].next_src, 0, 32); break; case DMA_NEXT_SRC + 4: val = extract64(s->chan[ch].next_src, 32, 32); break; case DMA_EXEC_CONFIG: val = s->chan[ch].exec_config; break; case DMA_EXEC_BYTES: val = extract64(s->chan[ch].exec_bytes, 0, 32); break; case DMA_EXEC_BYTES + 4: val = extract64(s->chan[ch].exec_bytes, 32, 32); break; case DMA_EXEC_DST: val = extract64(s->chan[ch].exec_dst, 0, 32); break; case DMA_EXEC_DST + 4: val = extract64(s->chan[ch].exec_dst, 32, 32); break; case DMA_EXEC_SRC: val = extract64(s->chan[ch].exec_src, 0, 32); break; case DMA_EXEC_SRC + 4: val = extract64(s->chan[ch].exec_src, 32, 32); break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected 32-bit access to 0x%" HWADDR_PRIX "\n", __func__, offset); break; } return val; } static uint64_t sifive_pdma_read(void *opaque, hwaddr offset, unsigned size) { SiFivePDMAState *s = opaque; int ch = SIFIVE_PDMA_CHAN_NO(offset); uint64_t val = 0; if (ch >= SIFIVE_PDMA_CHANS) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid channel no %d\n", __func__, ch); return 0; } switch (size) { case 8: val = sifive_pdma_readq(s, ch, offset); break; case 4: val = sifive_pdma_readl(s, ch, offset); break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid read size %u to PDMA\n", __func__, size); return 0; } return val; } static void sifive_pdma_writeq(SiFivePDMAState *s, int ch, hwaddr offset, uint64_t value) { offset &= 0xfff; switch (offset) { case DMA_NEXT_BYTES: s->chan[ch].next_bytes = value; break; case DMA_NEXT_DST: s->chan[ch].next_dst = value; break; case DMA_NEXT_SRC: s->chan[ch].next_src = value; break; case DMA_EXEC_BYTES: case DMA_EXEC_DST: case DMA_EXEC_SRC: /* these are read-only registers */ break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected 64-bit access to 0x%" HWADDR_PRIX "\n", __func__, offset); break; } } static void sifive_pdma_writel(SiFivePDMAState *s, int ch, hwaddr offset, uint32_t value) { bool claimed, run; offset &= 0xfff; switch (offset) { case DMA_CONTROL: claimed = !!(s->chan[ch].control & CONTROL_CLAIM); run = !!(s->chan[ch].control & CONTROL_RUN); if (!claimed && (value & CONTROL_CLAIM)) { /* reset Next* registers */ s->chan[ch].next_config = (CONFIG_RDSZ_DEFAULT << CONFIG_RDSZ_SHIFT) | (CONFIG_WRSZ_DEFAULT << CONFIG_WRSZ_SHIFT); s->chan[ch].next_bytes = 0; s->chan[ch].next_dst = 0; s->chan[ch].next_src = 0; } /* claim bit can only be cleared when run is low */ if (run && !(value & CONTROL_CLAIM)) { value |= CONTROL_CLAIM; } s->chan[ch].control = value; /* * If channel was not claimed before run bit is set, * or if the channel is disclaimed when run was low, * DMA won't run. */ if (!claimed || (!run && !(value & CONTROL_CLAIM))) { s->chan[ch].control &= ~CONTROL_RUN; return; } if (value & CONTROL_RUN) { sifive_pdma_run(s, ch); } sifive_pdma_update_irq(s, ch); break; case DMA_NEXT_CONFIG: s->chan[ch].next_config = value; break; case DMA_NEXT_BYTES: s->chan[ch].next_bytes = deposit64(s->chan[ch].next_bytes, 0, 32, value); break; case DMA_NEXT_BYTES + 4: s->chan[ch].next_bytes = deposit64(s->chan[ch].next_bytes, 32, 32, value); break; case DMA_NEXT_DST: s->chan[ch].next_dst = deposit64(s->chan[ch].next_dst, 0, 32, value); break; case DMA_NEXT_DST + 4: s->chan[ch].next_dst = deposit64(s->chan[ch].next_dst, 32, 32, value); break; case DMA_NEXT_SRC: s->chan[ch].next_src = deposit64(s->chan[ch].next_src, 0, 32, value); break; case DMA_NEXT_SRC + 4: s->chan[ch].next_src = deposit64(s->chan[ch].next_src, 32, 32, value); break; case DMA_EXEC_CONFIG: case DMA_EXEC_BYTES: case DMA_EXEC_BYTES + 4: case DMA_EXEC_DST: case DMA_EXEC_DST + 4: case DMA_EXEC_SRC: case DMA_EXEC_SRC + 4: /* these are read-only registers */ break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected 32-bit access to 0x%" HWADDR_PRIX "\n", __func__, offset); break; } } static void sifive_pdma_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { SiFivePDMAState *s = opaque; int ch = SIFIVE_PDMA_CHAN_NO(offset); if (ch >= SIFIVE_PDMA_CHANS) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid channel no %d\n", __func__, ch); return; } switch (size) { case 8: sifive_pdma_writeq(s, ch, offset, value); break; case 4: sifive_pdma_writel(s, ch, offset, (uint32_t) value); break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid write size %u to PDMA\n", __func__, size); break; } } static const MemoryRegionOps sifive_pdma_ops = { .read = sifive_pdma_read, .write = sifive_pdma_write, .endianness = DEVICE_LITTLE_ENDIAN, /* there are 32-bit and 64-bit wide registers */ .impl = { .min_access_size = 4, .max_access_size = 8, } }; static void sifive_pdma_realize(DeviceState *dev, Error **errp) { SiFivePDMAState *s = SIFIVE_PDMA(dev); int i; memory_region_init_io(&s->iomem, OBJECT(dev), &sifive_pdma_ops, s, TYPE_SIFIVE_PDMA, SIFIVE_PDMA_REG_SIZE); sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem); for (i = 0; i < SIFIVE_PDMA_IRQS; i++) { sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]); } } static void sifive_pdma_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->desc = "SiFive Platform DMA controller"; dc->realize = sifive_pdma_realize; } static const TypeInfo sifive_pdma_info = { .name = TYPE_SIFIVE_PDMA, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(SiFivePDMAState), .class_init = sifive_pdma_class_init, }; static void sifive_pdma_register_types(void) { type_register_static(&sifive_pdma_info); } type_init(sifive_pdma_register_types)