/* * ARM translation: AArch32 VFP instructions * * Copyright (c) 2003 Fabrice Bellard * Copyright (c) 2005-2007 CodeSourcery * Copyright (c) 2007 OpenedHand, Ltd. * Copyright (c) 2019 Linaro, Ltd. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "tcg/tcg-op.h" #include "tcg/tcg-op-gvec.h" #include "exec/exec-all.h" #include "exec/gen-icount.h" #include "translate.h" #include "translate-a32.h" /* Include the generated VFP decoder */ #include "decode-vfp.c.inc" #include "decode-vfp-uncond.c.inc" static inline void vfp_load_reg64(TCGv_i64 var, int reg) { tcg_gen_ld_i64(var, cpu_env, vfp_reg_offset(true, reg)); } static inline void vfp_store_reg64(TCGv_i64 var, int reg) { tcg_gen_st_i64(var, cpu_env, vfp_reg_offset(true, reg)); } static inline void vfp_load_reg32(TCGv_i32 var, int reg) { tcg_gen_ld_i32(var, cpu_env, vfp_reg_offset(false, reg)); } static inline void vfp_store_reg32(TCGv_i32 var, int reg) { tcg_gen_st_i32(var, cpu_env, vfp_reg_offset(false, reg)); } /* * The imm8 encodes the sign bit, enough bits to represent an exponent in * the range 01....1xx to 10....0xx, and the most significant 4 bits of * the mantissa; see VFPExpandImm() in the v8 ARM ARM. */ uint64_t vfp_expand_imm(int size, uint8_t imm8) { uint64_t imm; switch (size) { case MO_64: imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) | (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) | extract32(imm8, 0, 6); imm <<= 48; break; case MO_32: imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) | (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) | (extract32(imm8, 0, 6) << 3); imm <<= 16; break; case MO_16: imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) | (extract32(imm8, 6, 1) ? 0x3000 : 0x4000) | (extract32(imm8, 0, 6) << 6); break; default: g_assert_not_reached(); } return imm; } /* * Return the offset of a 16-bit half of the specified VFP single-precision * register. If top is true, returns the top 16 bits; otherwise the bottom * 16 bits. */ static inline long vfp_f16_offset(unsigned reg, bool top) { long offs = vfp_reg_offset(false, reg); #if HOST_BIG_ENDIAN if (!top) { offs += 2; } #else if (top) { offs += 2; } #endif return offs; } /* * Generate code for M-profile lazy FP state preservation if needed; * this corresponds to the pseudocode PreserveFPState() function. */ static void gen_preserve_fp_state(DisasContext *s, bool skip_context_update) { if (s->v7m_lspact) { /* * Lazy state saving affects external memory and also the NVIC, * so we must mark it as an IO operation for icount (and cause * this to be the last insn in the TB). */ if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { s->base.is_jmp = DISAS_UPDATE_EXIT; gen_io_start(); } gen_helper_v7m_preserve_fp_state(cpu_env); /* * If the preserve_fp_state helper doesn't throw an exception * then it will clear LSPACT; we don't need to repeat this for * any further FP insns in this TB. */ s->v7m_lspact = false; /* * The helper might have zeroed VPR, so we do not know the * correct value for the MVE_NO_PRED TB flag any more. * If we're about to create a new fp context then that * will precisely determine the MVE_NO_PRED value (see * gen_update_fp_context()). Otherwise, we must: * - set s->mve_no_pred to false, so this instruction * is generated to use helper functions * - end the TB now, without chaining to the next TB */ if (skip_context_update || !s->v7m_new_fp_ctxt_needed) { s->mve_no_pred = false; s->base.is_jmp = DISAS_UPDATE_NOCHAIN; } } } /* * Generate code for M-profile FP context handling: update the * ownership of the FP context, and create a new context if * necessary. This corresponds to the parts of the pseudocode * ExecuteFPCheck() after the inital PreserveFPState() call. */ static void gen_update_fp_context(DisasContext *s) { /* Update ownership of FP context: set FPCCR.S to match current state */ if (s->v8m_fpccr_s_wrong) { TCGv_i32 tmp; tmp = load_cpu_field(v7m.fpccr[M_REG_S]); if (s->v8m_secure) { tcg_gen_ori_i32(tmp, tmp, R_V7M_FPCCR_S_MASK); } else { tcg_gen_andi_i32(tmp, tmp, ~R_V7M_FPCCR_S_MASK); } store_cpu_field(tmp, v7m.fpccr[M_REG_S]); /* Don't need to do this for any further FP insns in this TB */ s->v8m_fpccr_s_wrong = false; } if (s->v7m_new_fp_ctxt_needed) { /* * Create new FP context by updating CONTROL.FPCA, CONTROL.SFPA, * the FPSCR, and VPR. */ TCGv_i32 control, fpscr; uint32_t bits = R_V7M_CONTROL_FPCA_MASK; fpscr = load_cpu_field(v7m.fpdscr[s->v8m_secure]); gen_helper_vfp_set_fpscr(cpu_env, fpscr); tcg_temp_free_i32(fpscr); if (dc_isar_feature(aa32_mve, s)) { TCGv_i32 z32 = tcg_const_i32(0); store_cpu_field(z32, v7m.vpr); } /* * We just updated the FPSCR and VPR. Some of this state is cached * in the MVE_NO_PRED TB flag. We want to avoid having to end the * TB here, which means we need the new value of the MVE_NO_PRED * flag to be exactly known here and the same for all executions. * Luckily FPDSCR.LTPSIZE is always constant 4 and the VPR is * always set to 0, so the new MVE_NO_PRED flag is always 1 * if and only if we have MVE. * * (The other FPSCR state cached in TB flags is VECLEN and VECSTRIDE, * but those do not exist for M-profile, so are not relevant here.) */ s->mve_no_pred = dc_isar_feature(aa32_mve, s); if (s->v8m_secure) { bits |= R_V7M_CONTROL_SFPA_MASK; } control = load_cpu_field(v7m.control[M_REG_S]); tcg_gen_ori_i32(control, control, bits); store_cpu_field(control, v7m.control[M_REG_S]); /* Don't need to do this for any further FP insns in this TB */ s->v7m_new_fp_ctxt_needed = false; } } /* * Check that VFP access is enabled, A-profile specific version. * * If VFP is enabled, return true. If not, emit code to generate an * appropriate exception and return false. * The ignore_vfp_enabled argument specifies that we should ignore * whether VFP is enabled via FPEXC.EN: this should be true for FMXR/FMRX * accesses to FPSID, FPEXC, MVFR0, MVFR1, MVFR2, and false for all other insns. */ static bool vfp_access_check_a(DisasContext *s, bool ignore_vfp_enabled) { if (s->fp_excp_el) { gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false), s->fp_excp_el); return false; } if (!s->vfp_enabled && !ignore_vfp_enabled) { assert(!arm_dc_feature(s, ARM_FEATURE_M)); unallocated_encoding(s); return false; } return true; } /* * Check that VFP access is enabled, M-profile specific version. * * If VFP is enabled, do the necessary M-profile lazy-FP handling and then * return true. If not, emit code to generate an appropriate exception and * return false. * skip_context_update is true to skip the "update FP context" part of this. */ bool vfp_access_check_m(DisasContext *s, bool skip_context_update) { if (s->fp_excp_el) { /* * M-profile mostly catches the "FPU disabled" case early, in * disas_m_nocp(), but a few insns (eg LCTP, WLSTP, DLSTP) * which do coprocessor-checks are outside the large ranges of * the encoding space handled by the patterns in m-nocp.decode, * and for them we may need to raise NOCP here. */ gen_exception_insn(s, s->pc_curr, EXCP_NOCP, syn_uncategorized(), s->fp_excp_el); return false; } /* Handle M-profile lazy FP state mechanics */ /* Trigger lazy-state preservation if necessary */ gen_preserve_fp_state(s, skip_context_update); if (!skip_context_update) { /* Update ownership of FP context and create new FP context if needed */ gen_update_fp_context(s); } return true; } /* * The most usual kind of VFP access check, for everything except * FMXR/FMRX to the always-available special registers. */ bool vfp_access_check(DisasContext *s) { if (arm_dc_feature(s, ARM_FEATURE_M)) { return vfp_access_check_m(s, false); } else { return vfp_access_check_a(s, false); } } static bool trans_VSEL(DisasContext *s, arg_VSEL *a) { uint32_t rd, rn, rm; int sz = a->sz; if (!dc_isar_feature(aa32_vsel, s)) { return false; } if (sz == 3 && !dc_isar_feature(aa32_fpdp_v2, s)) { return false; } if (sz == 1 && !dc_isar_feature(aa32_fp16_arith, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist */ if (sz == 3 && !dc_isar_feature(aa32_simd_r32, s) && ((a->vm | a->vn | a->vd) & 0x10)) { return false; } rd = a->vd; rn = a->vn; rm = a->vm; if (!vfp_access_check(s)) { return true; } if (sz == 3) { TCGv_i64 frn, frm, dest; TCGv_i64 tmp, zero, zf, nf, vf; zero = tcg_const_i64(0); frn = tcg_temp_new_i64(); frm = tcg_temp_new_i64(); dest = tcg_temp_new_i64(); zf = tcg_temp_new_i64(); nf = tcg_temp_new_i64(); vf = tcg_temp_new_i64(); tcg_gen_extu_i32_i64(zf, cpu_ZF); tcg_gen_ext_i32_i64(nf, cpu_NF); tcg_gen_ext_i32_i64(vf, cpu_VF); vfp_load_reg64(frn, rn); vfp_load_reg64(frm, rm); switch (a->cc) { case 0: /* eq: Z */ tcg_gen_movcond_i64(TCG_COND_EQ, dest, zf, zero, frn, frm); break; case 1: /* vs: V */ tcg_gen_movcond_i64(TCG_COND_LT, dest, vf, zero, frn, frm); break; case 2: /* ge: N == V -> N ^ V == 0 */ tmp = tcg_temp_new_i64(); tcg_gen_xor_i64(tmp, vf, nf); tcg_gen_movcond_i64(TCG_COND_GE, dest, tmp, zero, frn, frm); tcg_temp_free_i64(tmp); break; case 3: /* gt: !Z && N == V */ tcg_gen_movcond_i64(TCG_COND_NE, dest, zf, zero, frn, frm); tmp = tcg_temp_new_i64(); tcg_gen_xor_i64(tmp, vf, nf); tcg_gen_movcond_i64(TCG_COND_GE, dest, tmp, zero, dest, frm); tcg_temp_free_i64(tmp); break; } vfp_store_reg64(dest, rd); tcg_temp_free_i64(frn); tcg_temp_free_i64(frm); tcg_temp_free_i64(dest); tcg_temp_free_i64(zf); tcg_temp_free_i64(nf); tcg_temp_free_i64(vf); tcg_temp_free_i64(zero); } else { TCGv_i32 frn, frm, dest; TCGv_i32 tmp, zero; zero = tcg_const_i32(0); frn = tcg_temp_new_i32(); frm = tcg_temp_new_i32(); dest = tcg_temp_new_i32(); vfp_load_reg32(frn, rn); vfp_load_reg32(frm, rm); switch (a->cc) { case 0: /* eq: Z */ tcg_gen_movcond_i32(TCG_COND_EQ, dest, cpu_ZF, zero, frn, frm); break; case 1: /* vs: V */ tcg_gen_movcond_i32(TCG_COND_LT, dest, cpu_VF, zero, frn, frm); break; case 2: /* ge: N == V -> N ^ V == 0 */ tmp = tcg_temp_new_i32(); tcg_gen_xor_i32(tmp, cpu_VF, cpu_NF); tcg_gen_movcond_i32(TCG_COND_GE, dest, tmp, zero, frn, frm); tcg_temp_free_i32(tmp); break; case 3: /* gt: !Z && N == V */ tcg_gen_movcond_i32(TCG_COND_NE, dest, cpu_ZF, zero, frn, frm); tmp = tcg_temp_new_i32(); tcg_gen_xor_i32(tmp, cpu_VF, cpu_NF); tcg_gen_movcond_i32(TCG_COND_GE, dest, tmp, zero, dest, frm); tcg_temp_free_i32(tmp); break; } /* For fp16 the top half is always zeroes */ if (sz == 1) { tcg_gen_andi_i32(dest, dest, 0xffff); } vfp_store_reg32(dest, rd); tcg_temp_free_i32(frn); tcg_temp_free_i32(frm); tcg_temp_free_i32(dest); tcg_temp_free_i32(zero); } return true; } /* * Table for converting the most common AArch32 encoding of * rounding mode to arm_fprounding order (which matches the * common AArch64 order); see ARM ARM pseudocode FPDecodeRM(). */ static const uint8_t fp_decode_rm[] = { FPROUNDING_TIEAWAY, FPROUNDING_TIEEVEN, FPROUNDING_POSINF, FPROUNDING_NEGINF, }; static bool trans_VRINT(DisasContext *s, arg_VRINT *a) { uint32_t rd, rm; int sz = a->sz; TCGv_ptr fpst; TCGv_i32 tcg_rmode; int rounding = fp_decode_rm[a->rm]; if (!dc_isar_feature(aa32_vrint, s)) { return false; } if (sz == 3 && !dc_isar_feature(aa32_fpdp_v2, s)) { return false; } if (sz == 1 && !dc_isar_feature(aa32_fp16_arith, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist */ if (sz == 3 && !dc_isar_feature(aa32_simd_r32, s) && ((a->vm | a->vd) & 0x10)) { return false; } rd = a->vd; rm = a->vm; if (!vfp_access_check(s)) { return true; } if (sz == 1) { fpst = fpstatus_ptr(FPST_FPCR_F16); } else { fpst = fpstatus_ptr(FPST_FPCR); } tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rounding)); gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); if (sz == 3) { TCGv_i64 tcg_op; TCGv_i64 tcg_res; tcg_op = tcg_temp_new_i64(); tcg_res = tcg_temp_new_i64(); vfp_load_reg64(tcg_op, rm); gen_helper_rintd(tcg_res, tcg_op, fpst); vfp_store_reg64(tcg_res, rd); tcg_temp_free_i64(tcg_op); tcg_temp_free_i64(tcg_res); } else { TCGv_i32 tcg_op; TCGv_i32 tcg_res; tcg_op = tcg_temp_new_i32(); tcg_res = tcg_temp_new_i32(); vfp_load_reg32(tcg_op, rm); if (sz == 1) { gen_helper_rinth(tcg_res, tcg_op, fpst); } else { gen_helper_rints(tcg_res, tcg_op, fpst); } vfp_store_reg32(tcg_res, rd); tcg_temp_free_i32(tcg_op); tcg_temp_free_i32(tcg_res); } gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); tcg_temp_free_i32(tcg_rmode); tcg_temp_free_ptr(fpst); return true; } static bool trans_VCVT(DisasContext *s, arg_VCVT *a) { uint32_t rd, rm; int sz = a->sz; TCGv_ptr fpst; TCGv_i32 tcg_rmode, tcg_shift; int rounding = fp_decode_rm[a->rm]; bool is_signed = a->op; if (!dc_isar_feature(aa32_vcvt_dr, s)) { return false; } if (sz == 3 && !dc_isar_feature(aa32_fpdp_v2, s)) { return false; } if (sz == 1 && !dc_isar_feature(aa32_fp16_arith, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist */ if (sz == 3 && !dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) { return false; } rd = a->vd; rm = a->vm; if (!vfp_access_check(s)) { return true; } if (sz == 1) { fpst = fpstatus_ptr(FPST_FPCR_F16); } else { fpst = fpstatus_ptr(FPST_FPCR); } tcg_shift = tcg_const_i32(0); tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rounding)); gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); if (sz == 3) { TCGv_i64 tcg_double, tcg_res; TCGv_i32 tcg_tmp; tcg_double = tcg_temp_new_i64(); tcg_res = tcg_temp_new_i64(); tcg_tmp = tcg_temp_new_i32(); vfp_load_reg64(tcg_double, rm); if (is_signed) { gen_helper_vfp_tosld(tcg_res, tcg_double, tcg_shift, fpst); } else { gen_helper_vfp_tould(tcg_res, tcg_double, tcg_shift, fpst); } tcg_gen_extrl_i64_i32(tcg_tmp, tcg_res); vfp_store_reg32(tcg_tmp, rd); tcg_temp_free_i32(tcg_tmp); tcg_temp_free_i64(tcg_res); tcg_temp_free_i64(tcg_double); } else { TCGv_i32 tcg_single, tcg_res; tcg_single = tcg_temp_new_i32(); tcg_res = tcg_temp_new_i32(); vfp_load_reg32(tcg_single, rm); if (sz == 1) { if (is_signed) { gen_helper_vfp_toslh(tcg_res, tcg_single, tcg_shift, fpst); } else { gen_helper_vfp_toulh(tcg_res, tcg_single, tcg_shift, fpst); } } else { if (is_signed) { gen_helper_vfp_tosls(tcg_res, tcg_single, tcg_shift, fpst); } else { gen_helper_vfp_touls(tcg_res, tcg_single, tcg_shift, fpst); } } vfp_store_reg32(tcg_res, rd); tcg_temp_free_i32(tcg_res); tcg_temp_free_i32(tcg_single); } gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); tcg_temp_free_i32(tcg_rmode); tcg_temp_free_i32(tcg_shift); tcg_temp_free_ptr(fpst); return true; } bool mve_skip_vmov(DisasContext *s, int vn, int index, int size) { /* * In a CPU with MVE, the VMOV (vector lane to general-purpose register) * and VMOV (general-purpose register to vector lane) insns are not * predicated, but they are subject to beatwise execution if they are * not in an IT block. * * Since our implementation always executes all 4 beats in one tick, * this means only that if PSR.ECI says we should not be executing * the beat corresponding to the lane of the vector register being * accessed then we should skip performing the move, and that we need * to do the usual check for bad ECI state and advance of ECI state. * * Note that if PSR.ECI is non-zero then we cannot be in an IT block. * * Return true if this VMOV scalar <-> gpreg should be skipped because * the MVE PSR.ECI state says we skip the beat where the store happens. */ /* Calculate the byte offset into Qn which we're going to access */ int ofs = (index << size) + ((vn & 1) * 8); if (!dc_isar_feature(aa32_mve, s)) { return false; } switch (s->eci) { case ECI_NONE: return false; case ECI_A0: return ofs < 4; case ECI_A0A1: return ofs < 8; case ECI_A0A1A2: case ECI_A0A1A2B0: return ofs < 12; default: g_assert_not_reached(); } } static bool trans_VMOV_to_gp(DisasContext *s, arg_VMOV_to_gp *a) { /* VMOV scalar to general purpose register */ TCGv_i32 tmp; /* * SIZE == MO_32 is a VFP instruction; otherwise NEON. MVE has * all sizes, whether the CPU has fp or not. */ if (!dc_isar_feature(aa32_mve, s)) { if (a->size == MO_32 ? !dc_isar_feature(aa32_fpsp_v2, s) : !arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } } /* UNDEF accesses to D16-D31 if they don't exist */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vn & 0x10)) { return false; } if (dc_isar_feature(aa32_mve, s)) { if (!mve_eci_check(s)) { return true; } } if (!vfp_access_check(s)) { return true; } if (!mve_skip_vmov(s, a->vn, a->index, a->size)) { tmp = tcg_temp_new_i32(); read_neon_element32(tmp, a->vn, a->index, a->size | (a->u ? 0 : MO_SIGN)); store_reg(s, a->rt, tmp); } if (dc_isar_feature(aa32_mve, s)) { mve_update_and_store_eci(s); } return true; } static bool trans_VMOV_from_gp(DisasContext *s, arg_VMOV_from_gp *a) { /* VMOV general purpose register to scalar */ TCGv_i32 tmp; /* * SIZE == MO_32 is a VFP instruction; otherwise NEON. MVE has * all sizes, whether the CPU has fp or not. */ if (!dc_isar_feature(aa32_mve, s)) { if (a->size == MO_32 ? !dc_isar_feature(aa32_fpsp_v2, s) : !arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } } /* UNDEF accesses to D16-D31 if they don't exist */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vn & 0x10)) { return false; } if (dc_isar_feature(aa32_mve, s)) { if (!mve_eci_check(s)) { return true; } } if (!vfp_access_check(s)) { return true; } if (!mve_skip_vmov(s, a->vn, a->index, a->size)) { tmp = load_reg(s, a->rt); write_neon_element32(tmp, a->vn, a->index, a->size); tcg_temp_free_i32(tmp); } if (dc_isar_feature(aa32_mve, s)) { mve_update_and_store_eci(s); } return true; } static bool trans_VDUP(DisasContext *s, arg_VDUP *a) { /* VDUP (general purpose register) */ TCGv_i32 tmp; int size, vec_size; if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vn & 0x10)) { return false; } if (a->b && a->e) { return false; } if (a->q && (a->vn & 1)) { return false; } vec_size = a->q ? 16 : 8; if (a->b) { size = 0; } else if (a->e) { size = 1; } else { size = 2; } if (!vfp_access_check(s)) { return true; } tmp = load_reg(s, a->rt); tcg_gen_gvec_dup_i32(size, neon_full_reg_offset(a->vn), vec_size, vec_size, tmp); tcg_temp_free_i32(tmp); return true; } static bool trans_VMSR_VMRS(DisasContext *s, arg_VMSR_VMRS *a) { TCGv_i32 tmp; bool ignore_vfp_enabled = false; if (arm_dc_feature(s, ARM_FEATURE_M)) { /* M profile version was already handled in m-nocp.decode */ return false; } if (!dc_isar_feature(aa32_fpsp_v2, s)) { return false; } switch (a->reg) { case ARM_VFP_FPSID: /* * VFPv2 allows access to FPSID from userspace; VFPv3 restricts * all ID registers to privileged access only. */ if (IS_USER(s) && dc_isar_feature(aa32_fpsp_v3, s)) { return false; } ignore_vfp_enabled = true; break; case ARM_VFP_MVFR0: case ARM_VFP_MVFR1: if (IS_USER(s) || !arm_dc_feature(s, ARM_FEATURE_MVFR)) { return false; } ignore_vfp_enabled = true; break; case ARM_VFP_MVFR2: if (IS_USER(s) || !arm_dc_feature(s, ARM_FEATURE_V8)) { return false; } ignore_vfp_enabled = true; break; case ARM_VFP_FPSCR: break; case ARM_VFP_FPEXC: if (IS_USER(s)) { return false; } ignore_vfp_enabled = true; break; case ARM_VFP_FPINST: case ARM_VFP_FPINST2: /* Not present in VFPv3 */ if (IS_USER(s) || dc_isar_feature(aa32_fpsp_v3, s)) { return false; } break; default: return false; } /* * Call vfp_access_check_a() directly, because we need to tell * it to ignore FPEXC.EN for some register accesses. */ if (!vfp_access_check_a(s, ignore_vfp_enabled)) { return true; } if (a->l) { /* VMRS, move VFP special register to gp register */ switch (a->reg) { case ARM_VFP_MVFR0: case ARM_VFP_MVFR1: case ARM_VFP_MVFR2: case ARM_VFP_FPSID: if (s->current_el == 1) { TCGv_i32 tcg_reg, tcg_rt; gen_set_condexec(s); gen_set_pc_im(s, s->pc_curr); tcg_reg = tcg_const_i32(a->reg); tcg_rt = tcg_const_i32(a->rt); gen_helper_check_hcr_el2_trap(cpu_env, tcg_rt, tcg_reg); tcg_temp_free_i32(tcg_reg); tcg_temp_free_i32(tcg_rt); } /* fall through */ case ARM_VFP_FPEXC: case ARM_VFP_FPINST: case ARM_VFP_FPINST2: tmp = load_cpu_field(vfp.xregs[a->reg]); break; case ARM_VFP_FPSCR: if (a->rt == 15) { tmp = load_cpu_field(vfp.xregs[ARM_VFP_FPSCR]); tcg_gen_andi_i32(tmp, tmp, FPCR_NZCV_MASK); } else { tmp = tcg_temp_new_i32(); gen_helper_vfp_get_fpscr(tmp, cpu_env); } break; default: g_assert_not_reached(); } if (a->rt == 15) { /* Set the 4 flag bits in the CPSR. */ gen_set_nzcv(tmp); tcg_temp_free_i32(tmp); } else { store_reg(s, a->rt, tmp); } } else { /* VMSR, move gp register to VFP special register */ switch (a->reg) { case ARM_VFP_FPSID: case ARM_VFP_MVFR0: case ARM_VFP_MVFR1: case ARM_VFP_MVFR2: /* Writes are ignored. */ break; case ARM_VFP_FPSCR: tmp = load_reg(s, a->rt); gen_helper_vfp_set_fpscr(cpu_env, tmp); tcg_temp_free_i32(tmp); gen_lookup_tb(s); break; case ARM_VFP_FPEXC: /* * TODO: VFP subarchitecture support. * For now, keep the EN bit only */ tmp = load_reg(s, a->rt); tcg_gen_andi_i32(tmp, tmp, 1 << 30); store_cpu_field(tmp, vfp.xregs[a->reg]); gen_lookup_tb(s); break; case ARM_VFP_FPINST: case ARM_VFP_FPINST2: tmp = load_reg(s, a->rt); store_cpu_field(tmp, vfp.xregs[a->reg]); break; default: g_assert_not_reached(); } } return true; } static bool trans_VMOV_half(DisasContext *s, arg_VMOV_single *a) { TCGv_i32 tmp; if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } if (a->rt == 15) { /* UNPREDICTABLE; we choose to UNDEF */ return false; } if (!vfp_access_check(s)) { return true; } if (a->l) { /* VFP to general purpose register */ tmp = tcg_temp_new_i32(); vfp_load_reg32(tmp, a->vn); tcg_gen_andi_i32(tmp, tmp, 0xffff); store_reg(s, a->rt, tmp); } else { /* general purpose register to VFP */ tmp = load_reg(s, a->rt); tcg_gen_andi_i32(tmp, tmp, 0xffff); vfp_store_reg32(tmp, a->vn); tcg_temp_free_i32(tmp); } return true; } static bool trans_VMOV_single(DisasContext *s, arg_VMOV_single *a) { TCGv_i32 tmp; if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) { return false; } if (!vfp_access_check(s)) { return true; } if (a->l) { /* VFP to general purpose register */ tmp = tcg_temp_new_i32(); vfp_load_reg32(tmp, a->vn); if (a->rt == 15) { /* Set the 4 flag bits in the CPSR. */ gen_set_nzcv(tmp); tcg_temp_free_i32(tmp); } else { store_reg(s, a->rt, tmp); } } else { /* general purpose register to VFP */ tmp = load_reg(s, a->rt); vfp_store_reg32(tmp, a->vn); tcg_temp_free_i32(tmp); } return true; } static bool trans_VMOV_64_sp(DisasContext *s, arg_VMOV_64_sp *a) { TCGv_i32 tmp; if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) { return false; } /* * VMOV between two general-purpose registers and two single precision * floating point registers */ if (!vfp_access_check(s)) { return true; } if (a->op) { /* fpreg to gpreg */ tmp = tcg_temp_new_i32(); vfp_load_reg32(tmp, a->vm); store_reg(s, a->rt, tmp); tmp = tcg_temp_new_i32(); vfp_load_reg32(tmp, a->vm + 1); store_reg(s, a->rt2, tmp); } else { /* gpreg to fpreg */ tmp = load_reg(s, a->rt); vfp_store_reg32(tmp, a->vm); tcg_temp_free_i32(tmp); tmp = load_reg(s, a->rt2); vfp_store_reg32(tmp, a->vm + 1); tcg_temp_free_i32(tmp); } return true; } static bool trans_VMOV_64_dp(DisasContext *s, arg_VMOV_64_dp *a) { TCGv_i32 tmp; /* * VMOV between two general-purpose registers and one double precision * floating point register. Note that this does not require support * for double precision arithmetic. */ if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } if (a->op) { /* fpreg to gpreg */ tmp = tcg_temp_new_i32(); vfp_load_reg32(tmp, a->vm * 2); store_reg(s, a->rt, tmp); tmp = tcg_temp_new_i32(); vfp_load_reg32(tmp, a->vm * 2 + 1); store_reg(s, a->rt2, tmp); } else { /* gpreg to fpreg */ tmp = load_reg(s, a->rt); vfp_store_reg32(tmp, a->vm * 2); tcg_temp_free_i32(tmp); tmp = load_reg(s, a->rt2); vfp_store_reg32(tmp, a->vm * 2 + 1); tcg_temp_free_i32(tmp); } return true; } static bool trans_VLDR_VSTR_hp(DisasContext *s, arg_VLDR_VSTR_sp *a) { uint32_t offset; TCGv_i32 addr, tmp; if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) { return false; } if (!vfp_access_check(s)) { return true; } /* imm8 field is offset/2 for fp16, unlike fp32 and fp64 */ offset = a->imm << 1; if (!a->u) { offset = -offset; } /* For thumb, use of PC is UNPREDICTABLE. */ addr = add_reg_for_lit(s, a->rn, offset); tmp = tcg_temp_new_i32(); if (a->l) { gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), MO_UW | MO_ALIGN); vfp_store_reg32(tmp, a->vd); } else { vfp_load_reg32(tmp, a->vd); gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UW | MO_ALIGN); } tcg_temp_free_i32(tmp); tcg_temp_free_i32(addr); return true; } static bool trans_VLDR_VSTR_sp(DisasContext *s, arg_VLDR_VSTR_sp *a) { uint32_t offset; TCGv_i32 addr, tmp; if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) { return false; } if (!vfp_access_check(s)) { return true; } offset = a->imm << 2; if (!a->u) { offset = -offset; } /* For thumb, use of PC is UNPREDICTABLE. */ addr = add_reg_for_lit(s, a->rn, offset); tmp = tcg_temp_new_i32(); if (a->l) { gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN); vfp_store_reg32(tmp, a->vd); } else { vfp_load_reg32(tmp, a->vd); gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN); } tcg_temp_free_i32(tmp); tcg_temp_free_i32(addr); return true; } static bool trans_VLDR_VSTR_dp(DisasContext *s, arg_VLDR_VSTR_dp *a) { uint32_t offset; TCGv_i32 addr; TCGv_i64 tmp; /* Note that this does not require support for double arithmetic. */ if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } offset = a->imm << 2; if (!a->u) { offset = -offset; } /* For thumb, use of PC is UNPREDICTABLE. */ addr = add_reg_for_lit(s, a->rn, offset); tmp = tcg_temp_new_i64(); if (a->l) { gen_aa32_ld_i64(s, tmp, addr, get_mem_index(s), MO_UQ | MO_ALIGN_4); vfp_store_reg64(tmp, a->vd); } else { vfp_load_reg64(tmp, a->vd); gen_aa32_st_i64(s, tmp, addr, get_mem_index(s), MO_UQ | MO_ALIGN_4); } tcg_temp_free_i64(tmp); tcg_temp_free_i32(addr); return true; } static bool trans_VLDM_VSTM_sp(DisasContext *s, arg_VLDM_VSTM_sp *a) { uint32_t offset; TCGv_i32 addr, tmp; int i, n; if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) { return false; } n = a->imm; if (n == 0 || (a->vd + n) > 32) { /* * UNPREDICTABLE cases for bad immediates: we choose to * UNDEF to avoid generating huge numbers of TCG ops */ return false; } if (a->rn == 15 && a->w) { /* writeback to PC is UNPREDICTABLE, we choose to UNDEF */ return false; } s->eci_handled = true; if (!vfp_access_check(s)) { return true; } /* For thumb, use of PC is UNPREDICTABLE. */ addr = add_reg_for_lit(s, a->rn, 0); if (a->p) { /* pre-decrement */ tcg_gen_addi_i32(addr, addr, -(a->imm << 2)); } if (s->v8m_stackcheck && a->rn == 13 && a->w) { /* * Here 'addr' is the lowest address we will store to, * and is either the old SP (if post-increment) or * the new SP (if pre-decrement). For post-increment * where the old value is below the limit and the new * value is above, it is UNKNOWN whether the limit check * triggers; we choose to trigger. */ gen_helper_v8m_stackcheck(cpu_env, addr); } offset = 4; tmp = tcg_temp_new_i32(); for (i = 0; i < n; i++) { if (a->l) { /* load */ gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN); vfp_store_reg32(tmp, a->vd + i); } else { /* store */ vfp_load_reg32(tmp, a->vd + i); gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN); } tcg_gen_addi_i32(addr, addr, offset); } tcg_temp_free_i32(tmp); if (a->w) { /* writeback */ if (a->p) { offset = -offset * n; tcg_gen_addi_i32(addr, addr, offset); } store_reg(s, a->rn, addr); } else { tcg_temp_free_i32(addr); } clear_eci_state(s); return true; } static bool trans_VLDM_VSTM_dp(DisasContext *s, arg_VLDM_VSTM_dp *a) { uint32_t offset; TCGv_i32 addr; TCGv_i64 tmp; int i, n; /* Note that this does not require support for double arithmetic. */ if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) { return false; } n = a->imm >> 1; if (n == 0 || (a->vd + n) > 32 || n > 16) { /* * UNPREDICTABLE cases for bad immediates: we choose to * UNDEF to avoid generating huge numbers of TCG ops */ return false; } if (a->rn == 15 && a->w) { /* writeback to PC is UNPREDICTABLE, we choose to UNDEF */ return false; } /* UNDEF accesses to D16-D31 if they don't exist */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd + n) > 16) { return false; } s->eci_handled = true; if (!vfp_access_check(s)) { return true; } /* For thumb, use of PC is UNPREDICTABLE. */ addr = add_reg_for_lit(s, a->rn, 0); if (a->p) { /* pre-decrement */ tcg_gen_addi_i32(addr, addr, -(a->imm << 2)); } if (s->v8m_stackcheck && a->rn == 13 && a->w) { /* * Here 'addr' is the lowest address we will store to, * and is either the old SP (if post-increment) or * the new SP (if pre-decrement). For post-increment * where the old value is below the limit and the new * value is above, it is UNKNOWN whether the limit check * triggers; we choose to trigger. */ gen_helper_v8m_stackcheck(cpu_env, addr); } offset = 8; tmp = tcg_temp_new_i64(); for (i = 0; i < n; i++) { if (a->l) { /* load */ gen_aa32_ld_i64(s, tmp, addr, get_mem_index(s), MO_UQ | MO_ALIGN_4); vfp_store_reg64(tmp, a->vd + i); } else { /* store */ vfp_load_reg64(tmp, a->vd + i); gen_aa32_st_i64(s, tmp, addr, get_mem_index(s), MO_UQ | MO_ALIGN_4); } tcg_gen_addi_i32(addr, addr, offset); } tcg_temp_free_i64(tmp); if (a->w) { /* writeback */ if (a->p) { offset = -offset * n; } else if (a->imm & 1) { offset = 4; } else { offset = 0; } if (offset != 0) { tcg_gen_addi_i32(addr, addr, offset); } store_reg(s, a->rn, addr); } else { tcg_temp_free_i32(addr); } clear_eci_state(s); return true; } /* * Types for callbacks for do_vfp_3op_sp() and do_vfp_3op_dp(). * The callback should emit code to write a value to vd. If * do_vfp_3op_{sp,dp}() was passed reads_vd then the TCGv vd * will contain the old value of the relevant VFP register; * otherwise it must be written to only. */ typedef void VFPGen3OpSPFn(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst); typedef void VFPGen3OpDPFn(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst); /* * Types for callbacks for do_vfp_2op_sp() and do_vfp_2op_dp(). * The callback should emit code to write a value to vd (which * should be written to only). */ typedef void VFPGen2OpSPFn(TCGv_i32 vd, TCGv_i32 vm); typedef void VFPGen2OpDPFn(TCGv_i64 vd, TCGv_i64 vm); /* * Return true if the specified S reg is in a scalar bank * (ie if it is s0..s7) */ static inline bool vfp_sreg_is_scalar(int reg) { return (reg & 0x18) == 0; } /* * Return true if the specified D reg is in a scalar bank * (ie if it is d0..d3 or d16..d19) */ static inline bool vfp_dreg_is_scalar(int reg) { return (reg & 0xc) == 0; } /* * Advance the S reg number forwards by delta within its bank * (ie increment the low 3 bits but leave the rest the same) */ static inline int vfp_advance_sreg(int reg, int delta) { return ((reg + delta) & 0x7) | (reg & ~0x7); } /* * Advance the D reg number forwards by delta within its bank * (ie increment the low 2 bits but leave the rest the same) */ static inline int vfp_advance_dreg(int reg, int delta) { return ((reg + delta) & 0x3) | (reg & ~0x3); } /* * Perform a 3-operand VFP data processing instruction. fn is the * callback to do the actual operation; this function deals with the * code to handle looping around for VFP vector processing. */ static bool do_vfp_3op_sp(DisasContext *s, VFPGen3OpSPFn *fn, int vd, int vn, int vm, bool reads_vd) { uint32_t delta_m = 0; uint32_t delta_d = 0; int veclen = s->vec_len; TCGv_i32 f0, f1, fd; TCGv_ptr fpst; if (!dc_isar_feature(aa32_fpsp_v2, s)) { return false; } if (!dc_isar_feature(aa32_fpshvec, s) && (veclen != 0 || s->vec_stride != 0)) { return false; } if (!vfp_access_check(s)) { return true; } if (veclen > 0) { /* Figure out what type of vector operation this is. */ if (vfp_sreg_is_scalar(vd)) { /* scalar */ veclen = 0; } else { delta_d = s->vec_stride + 1; if (vfp_sreg_is_scalar(vm)) { /* mixed scalar/vector */ delta_m = 0; } else { /* vector */ delta_m = delta_d; } } } f0 = tcg_temp_new_i32(); f1 = tcg_temp_new_i32(); fd = tcg_temp_new_i32(); fpst = fpstatus_ptr(FPST_FPCR); vfp_load_reg32(f0, vn); vfp_load_reg32(f1, vm); for (;;) { if (reads_vd) { vfp_load_reg32(fd, vd); } fn(fd, f0, f1, fpst); vfp_store_reg32(fd, vd); if (veclen == 0) { break; } /* Set up the operands for the next iteration */ veclen--; vd = vfp_advance_sreg(vd, delta_d); vn = vfp_advance_sreg(vn, delta_d); vfp_load_reg32(f0, vn); if (delta_m) { vm = vfp_advance_sreg(vm, delta_m); vfp_load_reg32(f1, vm); } } tcg_temp_free_i32(f0); tcg_temp_free_i32(f1); tcg_temp_free_i32(fd); tcg_temp_free_ptr(fpst); return true; } static bool do_vfp_3op_hp(DisasContext *s, VFPGen3OpSPFn *fn, int vd, int vn, int vm, bool reads_vd) { /* * Do a half-precision operation. Functionally this is * the same as do_vfp_3op_sp(), except: * - it uses the FPST_FPCR_F16 * - it doesn't need the VFP vector handling (fp16 is a * v8 feature, and in v8 VFP vectors don't exist) * - it does the aa32_fp16_arith feature test */ TCGv_i32 f0, f1, fd; TCGv_ptr fpst; if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } if (s->vec_len != 0 || s->vec_stride != 0) { return false; } if (!vfp_access_check(s)) { return true; } f0 = tcg_temp_new_i32(); f1 = tcg_temp_new_i32(); fd = tcg_temp_new_i32(); fpst = fpstatus_ptr(FPST_FPCR_F16); vfp_load_reg32(f0, vn); vfp_load_reg32(f1, vm); if (reads_vd) { vfp_load_reg32(fd, vd); } fn(fd, f0, f1, fpst); vfp_store_reg32(fd, vd); tcg_temp_free_i32(f0); tcg_temp_free_i32(f1); tcg_temp_free_i32(fd); tcg_temp_free_ptr(fpst); return true; } static bool do_vfp_3op_dp(DisasContext *s, VFPGen3OpDPFn *fn, int vd, int vn, int vm, bool reads_vd) { uint32_t delta_m = 0; uint32_t delta_d = 0; int veclen = s->vec_len; TCGv_i64 f0, f1, fd; TCGv_ptr fpst; if (!dc_isar_feature(aa32_fpdp_v2, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist */ if (!dc_isar_feature(aa32_simd_r32, s) && ((vd | vn | vm) & 0x10)) { return false; } if (!dc_isar_feature(aa32_fpshvec, s) && (veclen != 0 || s->vec_stride != 0)) { return false; } if (!vfp_access_check(s)) { return true; } if (veclen > 0) { /* Figure out what type of vector operation this is. */ if (vfp_dreg_is_scalar(vd)) { /* scalar */ veclen = 0; } else { delta_d = (s->vec_stride >> 1) + 1; if (vfp_dreg_is_scalar(vm)) { /* mixed scalar/vector */ delta_m = 0; } else { /* vector */ delta_m = delta_d; } } } f0 = tcg_temp_new_i64(); f1 = tcg_temp_new_i64(); fd = tcg_temp_new_i64(); fpst = fpstatus_ptr(FPST_FPCR); vfp_load_reg64(f0, vn); vfp_load_reg64(f1, vm); for (;;) { if (reads_vd) { vfp_load_reg64(fd, vd); } fn(fd, f0, f1, fpst); vfp_store_reg64(fd, vd); if (veclen == 0) { break; } /* Set up the operands for the next iteration */ veclen--; vd = vfp_advance_dreg(vd, delta_d); vn = vfp_advance_dreg(vn, delta_d); vfp_load_reg64(f0, vn); if (delta_m) { vm = vfp_advance_dreg(vm, delta_m); vfp_load_reg64(f1, vm); } } tcg_temp_free_i64(f0); tcg_temp_free_i64(f1); tcg_temp_free_i64(fd); tcg_temp_free_ptr(fpst); return true; } static bool do_vfp_2op_sp(DisasContext *s, VFPGen2OpSPFn *fn, int vd, int vm) { uint32_t delta_m = 0; uint32_t delta_d = 0; int veclen = s->vec_len; TCGv_i32 f0, fd; /* Note that the caller must check the aa32_fpsp_v2 feature. */ if (!dc_isar_feature(aa32_fpshvec, s) && (veclen != 0 || s->vec_stride != 0)) { return false; } if (!vfp_access_check(s)) { return true; } if (veclen > 0) { /* Figure out what type of vector operation this is. */ if (vfp_sreg_is_scalar(vd)) { /* scalar */ veclen = 0; } else { delta_d = s->vec_stride + 1; if (vfp_sreg_is_scalar(vm)) { /* mixed scalar/vector */ delta_m = 0; } else { /* vector */ delta_m = delta_d; } } } f0 = tcg_temp_new_i32(); fd = tcg_temp_new_i32(); vfp_load_reg32(f0, vm); for (;;) { fn(fd, f0); vfp_store_reg32(fd, vd); if (veclen == 0) { break; } if (delta_m == 0) { /* single source one-many */ while (veclen--) { vd = vfp_advance_sreg(vd, delta_d); vfp_store_reg32(fd, vd); } break; } /* Set up the operands for the next iteration */ veclen--; vd = vfp_advance_sreg(vd, delta_d); vm = vfp_advance_sreg(vm, delta_m); vfp_load_reg32(f0, vm); } tcg_temp_free_i32(f0); tcg_temp_free_i32(fd); return true; } static bool do_vfp_2op_hp(DisasContext *s, VFPGen2OpSPFn *fn, int vd, int vm) { /* * Do a half-precision operation. Functionally this is * the same as do_vfp_2op_sp(), except: * - it doesn't need the VFP vector handling (fp16 is a * v8 feature, and in v8 VFP vectors don't exist) * - it does the aa32_fp16_arith feature test */ TCGv_i32 f0; /* Note that the caller must check the aa32_fp16_arith feature */ if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } if (s->vec_len != 0 || s->vec_stride != 0) { return false; } if (!vfp_access_check(s)) { return true; } f0 = tcg_temp_new_i32(); vfp_load_reg32(f0, vm); fn(f0, f0); vfp_store_reg32(f0, vd); tcg_temp_free_i32(f0); return true; } static bool do_vfp_2op_dp(DisasContext *s, VFPGen2OpDPFn *fn, int vd, int vm) { uint32_t delta_m = 0; uint32_t delta_d = 0; int veclen = s->vec_len; TCGv_i64 f0, fd; /* Note that the caller must check the aa32_fpdp_v2 feature. */ /* UNDEF accesses to D16-D31 if they don't exist */ if (!dc_isar_feature(aa32_simd_r32, s) && ((vd | vm) & 0x10)) { return false; } if (!dc_isar_feature(aa32_fpshvec, s) && (veclen != 0 || s->vec_stride != 0)) { return false; } if (!vfp_access_check(s)) { return true; } if (veclen > 0) { /* Figure out what type of vector operation this is. */ if (vfp_dreg_is_scalar(vd)) { /* scalar */ veclen = 0; } else { delta_d = (s->vec_stride >> 1) + 1; if (vfp_dreg_is_scalar(vm)) { /* mixed scalar/vector */ delta_m = 0; } else { /* vector */ delta_m = delta_d; } } } f0 = tcg_temp_new_i64(); fd = tcg_temp_new_i64(); vfp_load_reg64(f0, vm); for (;;) { fn(fd, f0); vfp_store_reg64(fd, vd); if (veclen == 0) { break; } if (delta_m == 0) { /* single source one-many */ while (veclen--) { vd = vfp_advance_dreg(vd, delta_d); vfp_store_reg64(fd, vd); } break; } /* Set up the operands for the next iteration */ veclen--; vd = vfp_advance_dreg(vd, delta_d); vd = vfp_advance_dreg(vm, delta_m); vfp_load_reg64(f0, vm); } tcg_temp_free_i64(f0); tcg_temp_free_i64(fd); return true; } static void gen_VMLA_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) { /* Note that order of inputs to the add matters for NaNs */ TCGv_i32 tmp = tcg_temp_new_i32(); gen_helper_vfp_mulh(tmp, vn, vm, fpst); gen_helper_vfp_addh(vd, vd, tmp, fpst); tcg_temp_free_i32(tmp); } static bool trans_VMLA_hp(DisasContext *s, arg_VMLA_sp *a) { return do_vfp_3op_hp(s, gen_VMLA_hp, a->vd, a->vn, a->vm, true); } static void gen_VMLA_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) { /* Note that order of inputs to the add matters for NaNs */ TCGv_i32 tmp = tcg_temp_new_i32(); gen_helper_vfp_muls(tmp, vn, vm, fpst); gen_helper_vfp_adds(vd, vd, tmp, fpst); tcg_temp_free_i32(tmp); } static bool trans_VMLA_sp(DisasContext *s, arg_VMLA_sp *a) { return do_vfp_3op_sp(s, gen_VMLA_sp, a->vd, a->vn, a->vm, true); } static void gen_VMLA_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst) { /* Note that order of inputs to the add matters for NaNs */ TCGv_i64 tmp = tcg_temp_new_i64(); gen_helper_vfp_muld(tmp, vn, vm, fpst); gen_helper_vfp_addd(vd, vd, tmp, fpst); tcg_temp_free_i64(tmp); } static bool trans_VMLA_dp(DisasContext *s, arg_VMLA_dp *a) { return do_vfp_3op_dp(s, gen_VMLA_dp, a->vd, a->vn, a->vm, true); } static void gen_VMLS_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) { /* * VMLS: vd = vd + -(vn * vm) * Note that order of inputs to the add matters for NaNs. */ TCGv_i32 tmp = tcg_temp_new_i32(); gen_helper_vfp_mulh(tmp, vn, vm, fpst); gen_helper_vfp_negh(tmp, tmp); gen_helper_vfp_addh(vd, vd, tmp, fpst); tcg_temp_free_i32(tmp); } static bool trans_VMLS_hp(DisasContext *s, arg_VMLS_sp *a) { return do_vfp_3op_hp(s, gen_VMLS_hp, a->vd, a->vn, a->vm, true); } static void gen_VMLS_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) { /* * VMLS: vd = vd + -(vn * vm) * Note that order of inputs to the add matters for NaNs. */ TCGv_i32 tmp = tcg_temp_new_i32(); gen_helper_vfp_muls(tmp, vn, vm, fpst); gen_helper_vfp_negs(tmp, tmp); gen_helper_vfp_adds(vd, vd, tmp, fpst); tcg_temp_free_i32(tmp); } static bool trans_VMLS_sp(DisasContext *s, arg_VMLS_sp *a) { return do_vfp_3op_sp(s, gen_VMLS_sp, a->vd, a->vn, a->vm, true); } static void gen_VMLS_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst) { /* * VMLS: vd = vd + -(vn * vm) * Note that order of inputs to the add matters for NaNs. */ TCGv_i64 tmp = tcg_temp_new_i64(); gen_helper_vfp_muld(tmp, vn, vm, fpst); gen_helper_vfp_negd(tmp, tmp); gen_helper_vfp_addd(vd, vd, tmp, fpst); tcg_temp_free_i64(tmp); } static bool trans_VMLS_dp(DisasContext *s, arg_VMLS_dp *a) { return do_vfp_3op_dp(s, gen_VMLS_dp, a->vd, a->vn, a->vm, true); } static void gen_VNMLS_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) { /* * VNMLS: -fd + (fn * fm) * Note that it isn't valid to replace (-A + B) with (B - A) or similar * plausible looking simplifications because this will give wrong results * for NaNs. */ TCGv_i32 tmp = tcg_temp_new_i32(); gen_helper_vfp_mulh(tmp, vn, vm, fpst); gen_helper_vfp_negh(vd, vd); gen_helper_vfp_addh(vd, vd, tmp, fpst); tcg_temp_free_i32(tmp); } static bool trans_VNMLS_hp(DisasContext *s, arg_VNMLS_sp *a) { return do_vfp_3op_hp(s, gen_VNMLS_hp, a->vd, a->vn, a->vm, true); } static void gen_VNMLS_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) { /* * VNMLS: -fd + (fn * fm) * Note that it isn't valid to replace (-A + B) with (B - A) or similar * plausible looking simplifications because this will give wrong results * for NaNs. */ TCGv_i32 tmp = tcg_temp_new_i32(); gen_helper_vfp_muls(tmp, vn, vm, fpst); gen_helper_vfp_negs(vd, vd); gen_helper_vfp_adds(vd, vd, tmp, fpst); tcg_temp_free_i32(tmp); } static bool trans_VNMLS_sp(DisasContext *s, arg_VNMLS_sp *a) { return do_vfp_3op_sp(s, gen_VNMLS_sp, a->vd, a->vn, a->vm, true); } static void gen_VNMLS_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst) { /* * VNMLS: -fd + (fn * fm) * Note that it isn't valid to replace (-A + B) with (B - A) or similar * plausible looking simplifications because this will give wrong results * for NaNs. */ TCGv_i64 tmp = tcg_temp_new_i64(); gen_helper_vfp_muld(tmp, vn, vm, fpst); gen_helper_vfp_negd(vd, vd); gen_helper_vfp_addd(vd, vd, tmp, fpst); tcg_temp_free_i64(tmp); } static bool trans_VNMLS_dp(DisasContext *s, arg_VNMLS_dp *a) { return do_vfp_3op_dp(s, gen_VNMLS_dp, a->vd, a->vn, a->vm, true); } static void gen_VNMLA_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) { /* VNMLA: -fd + -(fn * fm) */ TCGv_i32 tmp = tcg_temp_new_i32(); gen_helper_vfp_mulh(tmp, vn, vm, fpst); gen_helper_vfp_negh(tmp, tmp); gen_helper_vfp_negh(vd, vd); gen_helper_vfp_addh(vd, vd, tmp, fpst); tcg_temp_free_i32(tmp); } static bool trans_VNMLA_hp(DisasContext *s, arg_VNMLA_sp *a) { return do_vfp_3op_hp(s, gen_VNMLA_hp, a->vd, a->vn, a->vm, true); } static void gen_VNMLA_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) { /* VNMLA: -fd + -(fn * fm) */ TCGv_i32 tmp = tcg_temp_new_i32(); gen_helper_vfp_muls(tmp, vn, vm, fpst); gen_helper_vfp_negs(tmp, tmp); gen_helper_vfp_negs(vd, vd); gen_helper_vfp_adds(vd, vd, tmp, fpst); tcg_temp_free_i32(tmp); } static bool trans_VNMLA_sp(DisasContext *s, arg_VNMLA_sp *a) { return do_vfp_3op_sp(s, gen_VNMLA_sp, a->vd, a->vn, a->vm, true); } static void gen_VNMLA_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst) { /* VNMLA: -fd + (fn * fm) */ TCGv_i64 tmp = tcg_temp_new_i64(); gen_helper_vfp_muld(tmp, vn, vm, fpst); gen_helper_vfp_negd(tmp, tmp); gen_helper_vfp_negd(vd, vd); gen_helper_vfp_addd(vd, vd, tmp, fpst); tcg_temp_free_i64(tmp); } static bool trans_VNMLA_dp(DisasContext *s, arg_VNMLA_dp *a) { return do_vfp_3op_dp(s, gen_VNMLA_dp, a->vd, a->vn, a->vm, true); } static bool trans_VMUL_hp(DisasContext *s, arg_VMUL_sp *a) { return do_vfp_3op_hp(s, gen_helper_vfp_mulh, a->vd, a->vn, a->vm, false); } static bool trans_VMUL_sp(DisasContext *s, arg_VMUL_sp *a) { return do_vfp_3op_sp(s, gen_helper_vfp_muls, a->vd, a->vn, a->vm, false); } static bool trans_VMUL_dp(DisasContext *s, arg_VMUL_dp *a) { return do_vfp_3op_dp(s, gen_helper_vfp_muld, a->vd, a->vn, a->vm, false); } static void gen_VNMUL_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) { /* VNMUL: -(fn * fm) */ gen_helper_vfp_mulh(vd, vn, vm, fpst); gen_helper_vfp_negh(vd, vd); } static bool trans_VNMUL_hp(DisasContext *s, arg_VNMUL_sp *a) { return do_vfp_3op_hp(s, gen_VNMUL_hp, a->vd, a->vn, a->vm, false); } static void gen_VNMUL_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) { /* VNMUL: -(fn * fm) */ gen_helper_vfp_muls(vd, vn, vm, fpst); gen_helper_vfp_negs(vd, vd); } static bool trans_VNMUL_sp(DisasContext *s, arg_VNMUL_sp *a) { return do_vfp_3op_sp(s, gen_VNMUL_sp, a->vd, a->vn, a->vm, false); } static void gen_VNMUL_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst) { /* VNMUL: -(fn * fm) */ gen_helper_vfp_muld(vd, vn, vm, fpst); gen_helper_vfp_negd(vd, vd); } static bool trans_VNMUL_dp(DisasContext *s, arg_VNMUL_dp *a) { return do_vfp_3op_dp(s, gen_VNMUL_dp, a->vd, a->vn, a->vm, false); } static bool trans_VADD_hp(DisasContext *s, arg_VADD_sp *a) { return do_vfp_3op_hp(s, gen_helper_vfp_addh, a->vd, a->vn, a->vm, false); } static bool trans_VADD_sp(DisasContext *s, arg_VADD_sp *a) { return do_vfp_3op_sp(s, gen_helper_vfp_adds, a->vd, a->vn, a->vm, false); } static bool trans_VADD_dp(DisasContext *s, arg_VADD_dp *a) { return do_vfp_3op_dp(s, gen_helper_vfp_addd, a->vd, a->vn, a->vm, false); } static bool trans_VSUB_hp(DisasContext *s, arg_VSUB_sp *a) { return do_vfp_3op_hp(s, gen_helper_vfp_subh, a->vd, a->vn, a->vm, false); } static bool trans_VSUB_sp(DisasContext *s, arg_VSUB_sp *a) { return do_vfp_3op_sp(s, gen_helper_vfp_subs, a->vd, a->vn, a->vm, false); } static bool trans_VSUB_dp(DisasContext *s, arg_VSUB_dp *a) { return do_vfp_3op_dp(s, gen_helper_vfp_subd, a->vd, a->vn, a->vm, false); } static bool trans_VDIV_hp(DisasContext *s, arg_VDIV_sp *a) { return do_vfp_3op_hp(s, gen_helper_vfp_divh, a->vd, a->vn, a->vm, false); } static bool trans_VDIV_sp(DisasContext *s, arg_VDIV_sp *a) { return do_vfp_3op_sp(s, gen_helper_vfp_divs, a->vd, a->vn, a->vm, false); } static bool trans_VDIV_dp(DisasContext *s, arg_VDIV_dp *a) { return do_vfp_3op_dp(s, gen_helper_vfp_divd, a->vd, a->vn, a->vm, false); } static bool trans_VMINNM_hp(DisasContext *s, arg_VMINNM_sp *a) { if (!dc_isar_feature(aa32_vminmaxnm, s)) { return false; } return do_vfp_3op_hp(s, gen_helper_vfp_minnumh, a->vd, a->vn, a->vm, false); } static bool trans_VMAXNM_hp(DisasContext *s, arg_VMAXNM_sp *a) { if (!dc_isar_feature(aa32_vminmaxnm, s)) { return false; } return do_vfp_3op_hp(s, gen_helper_vfp_maxnumh, a->vd, a->vn, a->vm, false); } static bool trans_VMINNM_sp(DisasContext *s, arg_VMINNM_sp *a) { if (!dc_isar_feature(aa32_vminmaxnm, s)) { return false; } return do_vfp_3op_sp(s, gen_helper_vfp_minnums, a->vd, a->vn, a->vm, false); } static bool trans_VMAXNM_sp(DisasContext *s, arg_VMAXNM_sp *a) { if (!dc_isar_feature(aa32_vminmaxnm, s)) { return false; } return do_vfp_3op_sp(s, gen_helper_vfp_maxnums, a->vd, a->vn, a->vm, false); } static bool trans_VMINNM_dp(DisasContext *s, arg_VMINNM_dp *a) { if (!dc_isar_feature(aa32_vminmaxnm, s)) { return false; } return do_vfp_3op_dp(s, gen_helper_vfp_minnumd, a->vd, a->vn, a->vm, false); } static bool trans_VMAXNM_dp(DisasContext *s, arg_VMAXNM_dp *a) { if (!dc_isar_feature(aa32_vminmaxnm, s)) { return false; } return do_vfp_3op_dp(s, gen_helper_vfp_maxnumd, a->vd, a->vn, a->vm, false); } static bool do_vfm_hp(DisasContext *s, arg_VFMA_sp *a, bool neg_n, bool neg_d) { /* * VFNMA : fd = muladd(-fd, fn, fm) * VFNMS : fd = muladd(-fd, -fn, fm) * VFMA : fd = muladd( fd, fn, fm) * VFMS : fd = muladd( fd, -fn, fm) * * These are fused multiply-add, and must be done as one floating * point operation with no rounding between the multiplication and * addition steps. NB that doing the negations here as separate * steps is correct : an input NaN should come out with its sign * bit flipped if it is a negated-input. */ TCGv_ptr fpst; TCGv_i32 vn, vm, vd; /* * Present in VFPv4 only, and only with the FP16 extension. * Note that we can't rely on the SIMDFMAC check alone, because * in a Neon-no-VFP core that ID register field will be non-zero. */ if (!dc_isar_feature(aa32_fp16_arith, s) || !dc_isar_feature(aa32_simdfmac, s) || !dc_isar_feature(aa32_fpsp_v2, s)) { return false; } if (s->vec_len != 0 || s->vec_stride != 0) { return false; } if (!vfp_access_check(s)) { return true; } vn = tcg_temp_new_i32(); vm = tcg_temp_new_i32(); vd = tcg_temp_new_i32(); vfp_load_reg32(vn, a->vn); vfp_load_reg32(vm, a->vm); if (neg_n) { /* VFNMS, VFMS */ gen_helper_vfp_negh(vn, vn); } vfp_load_reg32(vd, a->vd); if (neg_d) { /* VFNMA, VFNMS */ gen_helper_vfp_negh(vd, vd); } fpst = fpstatus_ptr(FPST_FPCR_F16); gen_helper_vfp_muladdh(vd, vn, vm, vd, fpst); vfp_store_reg32(vd, a->vd); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(vn); tcg_temp_free_i32(vm); tcg_temp_free_i32(vd); return true; } static bool do_vfm_sp(DisasContext *s, arg_VFMA_sp *a, bool neg_n, bool neg_d) { /* * VFNMA : fd = muladd(-fd, fn, fm) * VFNMS : fd = muladd(-fd, -fn, fm) * VFMA : fd = muladd( fd, fn, fm) * VFMS : fd = muladd( fd, -fn, fm) * * These are fused multiply-add, and must be done as one floating * point operation with no rounding between the multiplication and * addition steps. NB that doing the negations here as separate * steps is correct : an input NaN should come out with its sign * bit flipped if it is a negated-input. */ TCGv_ptr fpst; TCGv_i32 vn, vm, vd; /* * Present in VFPv4 only. * Note that we can't rely on the SIMDFMAC check alone, because * in a Neon-no-VFP core that ID register field will be non-zero. */ if (!dc_isar_feature(aa32_simdfmac, s) || !dc_isar_feature(aa32_fpsp_v2, s)) { return false; } /* * In v7A, UNPREDICTABLE with non-zero vector length/stride; from * v8A, must UNDEF. We choose to UNDEF for both v7A and v8A. */ if (s->vec_len != 0 || s->vec_stride != 0) { return false; } if (!vfp_access_check(s)) { return true; } vn = tcg_temp_new_i32(); vm = tcg_temp_new_i32(); vd = tcg_temp_new_i32(); vfp_load_reg32(vn, a->vn); vfp_load_reg32(vm, a->vm); if (neg_n) { /* VFNMS, VFMS */ gen_helper_vfp_negs(vn, vn); } vfp_load_reg32(vd, a->vd); if (neg_d) { /* VFNMA, VFNMS */ gen_helper_vfp_negs(vd, vd); } fpst = fpstatus_ptr(FPST_FPCR); gen_helper_vfp_muladds(vd, vn, vm, vd, fpst); vfp_store_reg32(vd, a->vd); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(vn); tcg_temp_free_i32(vm); tcg_temp_free_i32(vd); return true; } static bool do_vfm_dp(DisasContext *s, arg_VFMA_dp *a, bool neg_n, bool neg_d) { /* * VFNMA : fd = muladd(-fd, fn, fm) * VFNMS : fd = muladd(-fd, -fn, fm) * VFMA : fd = muladd( fd, fn, fm) * VFMS : fd = muladd( fd, -fn, fm) * * These are fused multiply-add, and must be done as one floating * point operation with no rounding between the multiplication and * addition steps. NB that doing the negations here as separate * steps is correct : an input NaN should come out with its sign * bit flipped if it is a negated-input. */ TCGv_ptr fpst; TCGv_i64 vn, vm, vd; /* * Present in VFPv4 only. * Note that we can't rely on the SIMDFMAC check alone, because * in a Neon-no-VFP core that ID register field will be non-zero. */ if (!dc_isar_feature(aa32_simdfmac, s) || !dc_isar_feature(aa32_fpdp_v2, s)) { return false; } /* * In v7A, UNPREDICTABLE with non-zero vector length/stride; from * v8A, must UNDEF. We choose to UNDEF for both v7A and v8A. */ if (s->vec_len != 0 || s->vec_stride != 0) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vn | a->vm) & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } vn = tcg_temp_new_i64(); vm = tcg_temp_new_i64(); vd = tcg_temp_new_i64(); vfp_load_reg64(vn, a->vn); vfp_load_reg64(vm, a->vm); if (neg_n) { /* VFNMS, VFMS */ gen_helper_vfp_negd(vn, vn); } vfp_load_reg64(vd, a->vd); if (neg_d) { /* VFNMA, VFNMS */ gen_helper_vfp_negd(vd, vd); } fpst = fpstatus_ptr(FPST_FPCR); gen_helper_vfp_muladdd(vd, vn, vm, vd, fpst); vfp_store_reg64(vd, a->vd); tcg_temp_free_ptr(fpst); tcg_temp_free_i64(vn); tcg_temp_free_i64(vm); tcg_temp_free_i64(vd); return true; } #define MAKE_ONE_VFM_TRANS_FN(INSN, PREC, NEGN, NEGD) \ static bool trans_##INSN##_##PREC(DisasContext *s, \ arg_##INSN##_##PREC *a) \ { \ return do_vfm_##PREC(s, a, NEGN, NEGD); \ } #define MAKE_VFM_TRANS_FNS(PREC) \ MAKE_ONE_VFM_TRANS_FN(VFMA, PREC, false, false) \ MAKE_ONE_VFM_TRANS_FN(VFMS, PREC, true, false) \ MAKE_ONE_VFM_TRANS_FN(VFNMA, PREC, false, true) \ MAKE_ONE_VFM_TRANS_FN(VFNMS, PREC, true, true) MAKE_VFM_TRANS_FNS(hp) MAKE_VFM_TRANS_FNS(sp) MAKE_VFM_TRANS_FNS(dp) static bool trans_VMOV_imm_hp(DisasContext *s, arg_VMOV_imm_sp *a) { TCGv_i32 fd; if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } if (s->vec_len != 0 || s->vec_stride != 0) { return false; } if (!vfp_access_check(s)) { return true; } fd = tcg_const_i32(vfp_expand_imm(MO_16, a->imm)); vfp_store_reg32(fd, a->vd); tcg_temp_free_i32(fd); return true; } static bool trans_VMOV_imm_sp(DisasContext *s, arg_VMOV_imm_sp *a) { uint32_t delta_d = 0; int veclen = s->vec_len; TCGv_i32 fd; uint32_t vd; vd = a->vd; if (!dc_isar_feature(aa32_fpsp_v3, s)) { return false; } if (!dc_isar_feature(aa32_fpshvec, s) && (veclen != 0 || s->vec_stride != 0)) { return false; } if (!vfp_access_check(s)) { return true; } if (veclen > 0) { /* Figure out what type of vector operation this is. */ if (vfp_sreg_is_scalar(vd)) { /* scalar */ veclen = 0; } else { delta_d = s->vec_stride + 1; } } fd = tcg_const_i32(vfp_expand_imm(MO_32, a->imm)); for (;;) { vfp_store_reg32(fd, vd); if (veclen == 0) { break; } /* Set up the operands for the next iteration */ veclen--; vd = vfp_advance_sreg(vd, delta_d); } tcg_temp_free_i32(fd); return true; } static bool trans_VMOV_imm_dp(DisasContext *s, arg_VMOV_imm_dp *a) { uint32_t delta_d = 0; int veclen = s->vec_len; TCGv_i64 fd; uint32_t vd; vd = a->vd; if (!dc_isar_feature(aa32_fpdp_v3, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && (vd & 0x10)) { return false; } if (!dc_isar_feature(aa32_fpshvec, s) && (veclen != 0 || s->vec_stride != 0)) { return false; } if (!vfp_access_check(s)) { return true; } if (veclen > 0) { /* Figure out what type of vector operation this is. */ if (vfp_dreg_is_scalar(vd)) { /* scalar */ veclen = 0; } else { delta_d = (s->vec_stride >> 1) + 1; } } fd = tcg_const_i64(vfp_expand_imm(MO_64, a->imm)); for (;;) { vfp_store_reg64(fd, vd); if (veclen == 0) { break; } /* Set up the operands for the next iteration */ veclen--; vd = vfp_advance_dreg(vd, delta_d); } tcg_temp_free_i64(fd); return true; } #define DO_VFP_2OP(INSN, PREC, FN, CHECK) \ static bool trans_##INSN##_##PREC(DisasContext *s, \ arg_##INSN##_##PREC *a) \ { \ if (!dc_isar_feature(CHECK, s)) { \ return false; \ } \ return do_vfp_2op_##PREC(s, FN, a->vd, a->vm); \ } #define DO_VFP_VMOV(INSN, PREC, FN) \ static bool trans_##INSN##_##PREC(DisasContext *s, \ arg_##INSN##_##PREC *a) \ { \ if (!dc_isar_feature(aa32_fp##PREC##_v2, s) && \ !dc_isar_feature(aa32_mve, s)) { \ return false; \ } \ return do_vfp_2op_##PREC(s, FN, a->vd, a->vm); \ } DO_VFP_VMOV(VMOV_reg, sp, tcg_gen_mov_i32) DO_VFP_VMOV(VMOV_reg, dp, tcg_gen_mov_i64) DO_VFP_2OP(VABS, hp, gen_helper_vfp_absh, aa32_fp16_arith) DO_VFP_2OP(VABS, sp, gen_helper_vfp_abss, aa32_fpsp_v2) DO_VFP_2OP(VABS, dp, gen_helper_vfp_absd, aa32_fpdp_v2) DO_VFP_2OP(VNEG, hp, gen_helper_vfp_negh, aa32_fp16_arith) DO_VFP_2OP(VNEG, sp, gen_helper_vfp_negs, aa32_fpsp_v2) DO_VFP_2OP(VNEG, dp, gen_helper_vfp_negd, aa32_fpdp_v2) static void gen_VSQRT_hp(TCGv_i32 vd, TCGv_i32 vm) { gen_helper_vfp_sqrth(vd, vm, cpu_env); } static void gen_VSQRT_sp(TCGv_i32 vd, TCGv_i32 vm) { gen_helper_vfp_sqrts(vd, vm, cpu_env); } static void gen_VSQRT_dp(TCGv_i64 vd, TCGv_i64 vm) { gen_helper_vfp_sqrtd(vd, vm, cpu_env); } DO_VFP_2OP(VSQRT, hp, gen_VSQRT_hp, aa32_fp16_arith) DO_VFP_2OP(VSQRT, sp, gen_VSQRT_sp, aa32_fpsp_v2) DO_VFP_2OP(VSQRT, dp, gen_VSQRT_dp, aa32_fpdp_v2) static bool trans_VCMP_hp(DisasContext *s, arg_VCMP_sp *a) { TCGv_i32 vd, vm; if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } /* Vm/M bits must be zero for the Z variant */ if (a->z && a->vm != 0) { return false; } if (!vfp_access_check(s)) { return true; } vd = tcg_temp_new_i32(); vm = tcg_temp_new_i32(); vfp_load_reg32(vd, a->vd); if (a->z) { tcg_gen_movi_i32(vm, 0); } else { vfp_load_reg32(vm, a->vm); } if (a->e) { gen_helper_vfp_cmpeh(vd, vm, cpu_env); } else { gen_helper_vfp_cmph(vd, vm, cpu_env); } tcg_temp_free_i32(vd); tcg_temp_free_i32(vm); return true; } static bool trans_VCMP_sp(DisasContext *s, arg_VCMP_sp *a) { TCGv_i32 vd, vm; if (!dc_isar_feature(aa32_fpsp_v2, s)) { return false; } /* Vm/M bits must be zero for the Z variant */ if (a->z && a->vm != 0) { return false; } if (!vfp_access_check(s)) { return true; } vd = tcg_temp_new_i32(); vm = tcg_temp_new_i32(); vfp_load_reg32(vd, a->vd); if (a->z) { tcg_gen_movi_i32(vm, 0); } else { vfp_load_reg32(vm, a->vm); } if (a->e) { gen_helper_vfp_cmpes(vd, vm, cpu_env); } else { gen_helper_vfp_cmps(vd, vm, cpu_env); } tcg_temp_free_i32(vd); tcg_temp_free_i32(vm); return true; } static bool trans_VCMP_dp(DisasContext *s, arg_VCMP_dp *a) { TCGv_i64 vd, vm; if (!dc_isar_feature(aa32_fpdp_v2, s)) { return false; } /* Vm/M bits must be zero for the Z variant */ if (a->z && a->vm != 0) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } vd = tcg_temp_new_i64(); vm = tcg_temp_new_i64(); vfp_load_reg64(vd, a->vd); if (a->z) { tcg_gen_movi_i64(vm, 0); } else { vfp_load_reg64(vm, a->vm); } if (a->e) { gen_helper_vfp_cmped(vd, vm, cpu_env); } else { gen_helper_vfp_cmpd(vd, vm, cpu_env); } tcg_temp_free_i64(vd); tcg_temp_free_i64(vm); return true; } static bool trans_VCVT_f32_f16(DisasContext *s, arg_VCVT_f32_f16 *a) { TCGv_ptr fpst; TCGv_i32 ahp_mode; TCGv_i32 tmp; if (!dc_isar_feature(aa32_fp16_spconv, s)) { return false; } if (!vfp_access_check(s)) { return true; } fpst = fpstatus_ptr(FPST_FPCR); ahp_mode = get_ahp_flag(); tmp = tcg_temp_new_i32(); /* The T bit tells us if we want the low or high 16 bits of Vm */ tcg_gen_ld16u_i32(tmp, cpu_env, vfp_f16_offset(a->vm, a->t)); gen_helper_vfp_fcvt_f16_to_f32(tmp, tmp, fpst, ahp_mode); vfp_store_reg32(tmp, a->vd); tcg_temp_free_i32(ahp_mode); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(tmp); return true; } static bool trans_VCVT_f64_f16(DisasContext *s, arg_VCVT_f64_f16 *a) { TCGv_ptr fpst; TCGv_i32 ahp_mode; TCGv_i32 tmp; TCGv_i64 vd; if (!dc_isar_feature(aa32_fpdp_v2, s)) { return false; } if (!dc_isar_feature(aa32_fp16_dpconv, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } fpst = fpstatus_ptr(FPST_FPCR); ahp_mode = get_ahp_flag(); tmp = tcg_temp_new_i32(); /* The T bit tells us if we want the low or high 16 bits of Vm */ tcg_gen_ld16u_i32(tmp, cpu_env, vfp_f16_offset(a->vm, a->t)); vd = tcg_temp_new_i64(); gen_helper_vfp_fcvt_f16_to_f64(vd, tmp, fpst, ahp_mode); vfp_store_reg64(vd, a->vd); tcg_temp_free_i32(ahp_mode); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(tmp); tcg_temp_free_i64(vd); return true; } static bool trans_VCVT_b16_f32(DisasContext *s, arg_VCVT_b16_f32 *a) { TCGv_ptr fpst; TCGv_i32 tmp; if (!dc_isar_feature(aa32_bf16, s)) { return false; } if (!vfp_access_check(s)) { return true; } fpst = fpstatus_ptr(FPST_FPCR); tmp = tcg_temp_new_i32(); vfp_load_reg32(tmp, a->vm); gen_helper_bfcvt(tmp, tmp, fpst); tcg_gen_st16_i32(tmp, cpu_env, vfp_f16_offset(a->vd, a->t)); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(tmp); return true; } static bool trans_VCVT_f16_f32(DisasContext *s, arg_VCVT_f16_f32 *a) { TCGv_ptr fpst; TCGv_i32 ahp_mode; TCGv_i32 tmp; if (!dc_isar_feature(aa32_fp16_spconv, s)) { return false; } if (!vfp_access_check(s)) { return true; } fpst = fpstatus_ptr(FPST_FPCR); ahp_mode = get_ahp_flag(); tmp = tcg_temp_new_i32(); vfp_load_reg32(tmp, a->vm); gen_helper_vfp_fcvt_f32_to_f16(tmp, tmp, fpst, ahp_mode); tcg_gen_st16_i32(tmp, cpu_env, vfp_f16_offset(a->vd, a->t)); tcg_temp_free_i32(ahp_mode); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(tmp); return true; } static bool trans_VCVT_f16_f64(DisasContext *s, arg_VCVT_f16_f64 *a) { TCGv_ptr fpst; TCGv_i32 ahp_mode; TCGv_i32 tmp; TCGv_i64 vm; if (!dc_isar_feature(aa32_fpdp_v2, s)) { return false; } if (!dc_isar_feature(aa32_fp16_dpconv, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } fpst = fpstatus_ptr(FPST_FPCR); ahp_mode = get_ahp_flag(); tmp = tcg_temp_new_i32(); vm = tcg_temp_new_i64(); vfp_load_reg64(vm, a->vm); gen_helper_vfp_fcvt_f64_to_f16(tmp, vm, fpst, ahp_mode); tcg_temp_free_i64(vm); tcg_gen_st16_i32(tmp, cpu_env, vfp_f16_offset(a->vd, a->t)); tcg_temp_free_i32(ahp_mode); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(tmp); return true; } static bool trans_VRINTR_hp(DisasContext *s, arg_VRINTR_sp *a) { TCGv_ptr fpst; TCGv_i32 tmp; if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } if (!vfp_access_check(s)) { return true; } tmp = tcg_temp_new_i32(); vfp_load_reg32(tmp, a->vm); fpst = fpstatus_ptr(FPST_FPCR_F16); gen_helper_rinth(tmp, tmp, fpst); vfp_store_reg32(tmp, a->vd); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(tmp); return true; } static bool trans_VRINTR_sp(DisasContext *s, arg_VRINTR_sp *a) { TCGv_ptr fpst; TCGv_i32 tmp; if (!dc_isar_feature(aa32_vrint, s)) { return false; } if (!vfp_access_check(s)) { return true; } tmp = tcg_temp_new_i32(); vfp_load_reg32(tmp, a->vm); fpst = fpstatus_ptr(FPST_FPCR); gen_helper_rints(tmp, tmp, fpst); vfp_store_reg32(tmp, a->vd); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(tmp); return true; } static bool trans_VRINTR_dp(DisasContext *s, arg_VRINTR_dp *a) { TCGv_ptr fpst; TCGv_i64 tmp; if (!dc_isar_feature(aa32_fpdp_v2, s)) { return false; } if (!dc_isar_feature(aa32_vrint, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } tmp = tcg_temp_new_i64(); vfp_load_reg64(tmp, a->vm); fpst = fpstatus_ptr(FPST_FPCR); gen_helper_rintd(tmp, tmp, fpst); vfp_store_reg64(tmp, a->vd); tcg_temp_free_ptr(fpst); tcg_temp_free_i64(tmp); return true; } static bool trans_VRINTZ_hp(DisasContext *s, arg_VRINTZ_sp *a) { TCGv_ptr fpst; TCGv_i32 tmp; TCGv_i32 tcg_rmode; if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } if (!vfp_access_check(s)) { return true; } tmp = tcg_temp_new_i32(); vfp_load_reg32(tmp, a->vm); fpst = fpstatus_ptr(FPST_FPCR_F16); tcg_rmode = tcg_const_i32(float_round_to_zero); gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); gen_helper_rinth(tmp, tmp, fpst); gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); vfp_store_reg32(tmp, a->vd); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(tcg_rmode); tcg_temp_free_i32(tmp); return true; } static bool trans_VRINTZ_sp(DisasContext *s, arg_VRINTZ_sp *a) { TCGv_ptr fpst; TCGv_i32 tmp; TCGv_i32 tcg_rmode; if (!dc_isar_feature(aa32_vrint, s)) { return false; } if (!vfp_access_check(s)) { return true; } tmp = tcg_temp_new_i32(); vfp_load_reg32(tmp, a->vm); fpst = fpstatus_ptr(FPST_FPCR); tcg_rmode = tcg_const_i32(float_round_to_zero); gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); gen_helper_rints(tmp, tmp, fpst); gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); vfp_store_reg32(tmp, a->vd); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(tcg_rmode); tcg_temp_free_i32(tmp); return true; } static bool trans_VRINTZ_dp(DisasContext *s, arg_VRINTZ_dp *a) { TCGv_ptr fpst; TCGv_i64 tmp; TCGv_i32 tcg_rmode; if (!dc_isar_feature(aa32_fpdp_v2, s)) { return false; } if (!dc_isar_feature(aa32_vrint, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } tmp = tcg_temp_new_i64(); vfp_load_reg64(tmp, a->vm); fpst = fpstatus_ptr(FPST_FPCR); tcg_rmode = tcg_const_i32(float_round_to_zero); gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); gen_helper_rintd(tmp, tmp, fpst); gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); vfp_store_reg64(tmp, a->vd); tcg_temp_free_ptr(fpst); tcg_temp_free_i64(tmp); tcg_temp_free_i32(tcg_rmode); return true; } static bool trans_VRINTX_hp(DisasContext *s, arg_VRINTX_sp *a) { TCGv_ptr fpst; TCGv_i32 tmp; if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } if (!vfp_access_check(s)) { return true; } tmp = tcg_temp_new_i32(); vfp_load_reg32(tmp, a->vm); fpst = fpstatus_ptr(FPST_FPCR_F16); gen_helper_rinth_exact(tmp, tmp, fpst); vfp_store_reg32(tmp, a->vd); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(tmp); return true; } static bool trans_VRINTX_sp(DisasContext *s, arg_VRINTX_sp *a) { TCGv_ptr fpst; TCGv_i32 tmp; if (!dc_isar_feature(aa32_vrint, s)) { return false; } if (!vfp_access_check(s)) { return true; } tmp = tcg_temp_new_i32(); vfp_load_reg32(tmp, a->vm); fpst = fpstatus_ptr(FPST_FPCR); gen_helper_rints_exact(tmp, tmp, fpst); vfp_store_reg32(tmp, a->vd); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(tmp); return true; } static bool trans_VRINTX_dp(DisasContext *s, arg_VRINTX_dp *a) { TCGv_ptr fpst; TCGv_i64 tmp; if (!dc_isar_feature(aa32_fpdp_v2, s)) { return false; } if (!dc_isar_feature(aa32_vrint, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } tmp = tcg_temp_new_i64(); vfp_load_reg64(tmp, a->vm); fpst = fpstatus_ptr(FPST_FPCR); gen_helper_rintd_exact(tmp, tmp, fpst); vfp_store_reg64(tmp, a->vd); tcg_temp_free_ptr(fpst); tcg_temp_free_i64(tmp); return true; } static bool trans_VCVT_sp(DisasContext *s, arg_VCVT_sp *a) { TCGv_i64 vd; TCGv_i32 vm; if (!dc_isar_feature(aa32_fpdp_v2, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } vm = tcg_temp_new_i32(); vd = tcg_temp_new_i64(); vfp_load_reg32(vm, a->vm); gen_helper_vfp_fcvtds(vd, vm, cpu_env); vfp_store_reg64(vd, a->vd); tcg_temp_free_i32(vm); tcg_temp_free_i64(vd); return true; } static bool trans_VCVT_dp(DisasContext *s, arg_VCVT_dp *a) { TCGv_i64 vm; TCGv_i32 vd; if (!dc_isar_feature(aa32_fpdp_v2, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } vd = tcg_temp_new_i32(); vm = tcg_temp_new_i64(); vfp_load_reg64(vm, a->vm); gen_helper_vfp_fcvtsd(vd, vm, cpu_env); vfp_store_reg32(vd, a->vd); tcg_temp_free_i32(vd); tcg_temp_free_i64(vm); return true; } static bool trans_VCVT_int_hp(DisasContext *s, arg_VCVT_int_sp *a) { TCGv_i32 vm; TCGv_ptr fpst; if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } if (!vfp_access_check(s)) { return true; } vm = tcg_temp_new_i32(); vfp_load_reg32(vm, a->vm); fpst = fpstatus_ptr(FPST_FPCR_F16); if (a->s) { /* i32 -> f16 */ gen_helper_vfp_sitoh(vm, vm, fpst); } else { /* u32 -> f16 */ gen_helper_vfp_uitoh(vm, vm, fpst); } vfp_store_reg32(vm, a->vd); tcg_temp_free_i32(vm); tcg_temp_free_ptr(fpst); return true; } static bool trans_VCVT_int_sp(DisasContext *s, arg_VCVT_int_sp *a) { TCGv_i32 vm; TCGv_ptr fpst; if (!dc_isar_feature(aa32_fpsp_v2, s)) { return false; } if (!vfp_access_check(s)) { return true; } vm = tcg_temp_new_i32(); vfp_load_reg32(vm, a->vm); fpst = fpstatus_ptr(FPST_FPCR); if (a->s) { /* i32 -> f32 */ gen_helper_vfp_sitos(vm, vm, fpst); } else { /* u32 -> f32 */ gen_helper_vfp_uitos(vm, vm, fpst); } vfp_store_reg32(vm, a->vd); tcg_temp_free_i32(vm); tcg_temp_free_ptr(fpst); return true; } static bool trans_VCVT_int_dp(DisasContext *s, arg_VCVT_int_dp *a) { TCGv_i32 vm; TCGv_i64 vd; TCGv_ptr fpst; if (!dc_isar_feature(aa32_fpdp_v2, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } vm = tcg_temp_new_i32(); vd = tcg_temp_new_i64(); vfp_load_reg32(vm, a->vm); fpst = fpstatus_ptr(FPST_FPCR); if (a->s) { /* i32 -> f64 */ gen_helper_vfp_sitod(vd, vm, fpst); } else { /* u32 -> f64 */ gen_helper_vfp_uitod(vd, vm, fpst); } vfp_store_reg64(vd, a->vd); tcg_temp_free_i32(vm); tcg_temp_free_i64(vd); tcg_temp_free_ptr(fpst); return true; } static bool trans_VJCVT(DisasContext *s, arg_VJCVT *a) { TCGv_i32 vd; TCGv_i64 vm; if (!dc_isar_feature(aa32_fpdp_v2, s)) { return false; } if (!dc_isar_feature(aa32_jscvt, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } vm = tcg_temp_new_i64(); vd = tcg_temp_new_i32(); vfp_load_reg64(vm, a->vm); gen_helper_vjcvt(vd, vm, cpu_env); vfp_store_reg32(vd, a->vd); tcg_temp_free_i64(vm); tcg_temp_free_i32(vd); return true; } static bool trans_VCVT_fix_hp(DisasContext *s, arg_VCVT_fix_sp *a) { TCGv_i32 vd, shift; TCGv_ptr fpst; int frac_bits; if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } if (!vfp_access_check(s)) { return true; } frac_bits = (a->opc & 1) ? (32 - a->imm) : (16 - a->imm); vd = tcg_temp_new_i32(); vfp_load_reg32(vd, a->vd); fpst = fpstatus_ptr(FPST_FPCR_F16); shift = tcg_const_i32(frac_bits); /* Switch on op:U:sx bits */ switch (a->opc) { case 0: gen_helper_vfp_shtoh_round_to_nearest(vd, vd, shift, fpst); break; case 1: gen_helper_vfp_sltoh_round_to_nearest(vd, vd, shift, fpst); break; case 2: gen_helper_vfp_uhtoh_round_to_nearest(vd, vd, shift, fpst); break; case 3: gen_helper_vfp_ultoh_round_to_nearest(vd, vd, shift, fpst); break; case 4: gen_helper_vfp_toshh_round_to_zero(vd, vd, shift, fpst); break; case 5: gen_helper_vfp_toslh_round_to_zero(vd, vd, shift, fpst); break; case 6: gen_helper_vfp_touhh_round_to_zero(vd, vd, shift, fpst); break; case 7: gen_helper_vfp_toulh_round_to_zero(vd, vd, shift, fpst); break; default: g_assert_not_reached(); } vfp_store_reg32(vd, a->vd); tcg_temp_free_i32(vd); tcg_temp_free_i32(shift); tcg_temp_free_ptr(fpst); return true; } static bool trans_VCVT_fix_sp(DisasContext *s, arg_VCVT_fix_sp *a) { TCGv_i32 vd, shift; TCGv_ptr fpst; int frac_bits; if (!dc_isar_feature(aa32_fpsp_v3, s)) { return false; } if (!vfp_access_check(s)) { return true; } frac_bits = (a->opc & 1) ? (32 - a->imm) : (16 - a->imm); vd = tcg_temp_new_i32(); vfp_load_reg32(vd, a->vd); fpst = fpstatus_ptr(FPST_FPCR); shift = tcg_const_i32(frac_bits); /* Switch on op:U:sx bits */ switch (a->opc) { case 0: gen_helper_vfp_shtos_round_to_nearest(vd, vd, shift, fpst); break; case 1: gen_helper_vfp_sltos_round_to_nearest(vd, vd, shift, fpst); break; case 2: gen_helper_vfp_uhtos_round_to_nearest(vd, vd, shift, fpst); break; case 3: gen_helper_vfp_ultos_round_to_nearest(vd, vd, shift, fpst); break; case 4: gen_helper_vfp_toshs_round_to_zero(vd, vd, shift, fpst); break; case 5: gen_helper_vfp_tosls_round_to_zero(vd, vd, shift, fpst); break; case 6: gen_helper_vfp_touhs_round_to_zero(vd, vd, shift, fpst); break; case 7: gen_helper_vfp_touls_round_to_zero(vd, vd, shift, fpst); break; default: g_assert_not_reached(); } vfp_store_reg32(vd, a->vd); tcg_temp_free_i32(vd); tcg_temp_free_i32(shift); tcg_temp_free_ptr(fpst); return true; } static bool trans_VCVT_fix_dp(DisasContext *s, arg_VCVT_fix_dp *a) { TCGv_i64 vd; TCGv_i32 shift; TCGv_ptr fpst; int frac_bits; if (!dc_isar_feature(aa32_fpdp_v3, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } frac_bits = (a->opc & 1) ? (32 - a->imm) : (16 - a->imm); vd = tcg_temp_new_i64(); vfp_load_reg64(vd, a->vd); fpst = fpstatus_ptr(FPST_FPCR); shift = tcg_const_i32(frac_bits); /* Switch on op:U:sx bits */ switch (a->opc) { case 0: gen_helper_vfp_shtod_round_to_nearest(vd, vd, shift, fpst); break; case 1: gen_helper_vfp_sltod_round_to_nearest(vd, vd, shift, fpst); break; case 2: gen_helper_vfp_uhtod_round_to_nearest(vd, vd, shift, fpst); break; case 3: gen_helper_vfp_ultod_round_to_nearest(vd, vd, shift, fpst); break; case 4: gen_helper_vfp_toshd_round_to_zero(vd, vd, shift, fpst); break; case 5: gen_helper_vfp_tosld_round_to_zero(vd, vd, shift, fpst); break; case 6: gen_helper_vfp_touhd_round_to_zero(vd, vd, shift, fpst); break; case 7: gen_helper_vfp_tould_round_to_zero(vd, vd, shift, fpst); break; default: g_assert_not_reached(); } vfp_store_reg64(vd, a->vd); tcg_temp_free_i64(vd); tcg_temp_free_i32(shift); tcg_temp_free_ptr(fpst); return true; } static bool trans_VCVT_hp_int(DisasContext *s, arg_VCVT_sp_int *a) { TCGv_i32 vm; TCGv_ptr fpst; if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } if (!vfp_access_check(s)) { return true; } fpst = fpstatus_ptr(FPST_FPCR_F16); vm = tcg_temp_new_i32(); vfp_load_reg32(vm, a->vm); if (a->s) { if (a->rz) { gen_helper_vfp_tosizh(vm, vm, fpst); } else { gen_helper_vfp_tosih(vm, vm, fpst); } } else { if (a->rz) { gen_helper_vfp_touizh(vm, vm, fpst); } else { gen_helper_vfp_touih(vm, vm, fpst); } } vfp_store_reg32(vm, a->vd); tcg_temp_free_i32(vm); tcg_temp_free_ptr(fpst); return true; } static bool trans_VCVT_sp_int(DisasContext *s, arg_VCVT_sp_int *a) { TCGv_i32 vm; TCGv_ptr fpst; if (!dc_isar_feature(aa32_fpsp_v2, s)) { return false; } if (!vfp_access_check(s)) { return true; } fpst = fpstatus_ptr(FPST_FPCR); vm = tcg_temp_new_i32(); vfp_load_reg32(vm, a->vm); if (a->s) { if (a->rz) { gen_helper_vfp_tosizs(vm, vm, fpst); } else { gen_helper_vfp_tosis(vm, vm, fpst); } } else { if (a->rz) { gen_helper_vfp_touizs(vm, vm, fpst); } else { gen_helper_vfp_touis(vm, vm, fpst); } } vfp_store_reg32(vm, a->vd); tcg_temp_free_i32(vm); tcg_temp_free_ptr(fpst); return true; } static bool trans_VCVT_dp_int(DisasContext *s, arg_VCVT_dp_int *a) { TCGv_i32 vd; TCGv_i64 vm; TCGv_ptr fpst; if (!dc_isar_feature(aa32_fpdp_v2, s)) { return false; } /* UNDEF accesses to D16-D31 if they don't exist. */ if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) { return false; } if (!vfp_access_check(s)) { return true; } fpst = fpstatus_ptr(FPST_FPCR); vm = tcg_temp_new_i64(); vd = tcg_temp_new_i32(); vfp_load_reg64(vm, a->vm); if (a->s) { if (a->rz) { gen_helper_vfp_tosizd(vd, vm, fpst); } else { gen_helper_vfp_tosid(vd, vm, fpst); } } else { if (a->rz) { gen_helper_vfp_touizd(vd, vm, fpst); } else { gen_helper_vfp_touid(vd, vm, fpst); } } vfp_store_reg32(vd, a->vd); tcg_temp_free_i32(vd); tcg_temp_free_i64(vm); tcg_temp_free_ptr(fpst); return true; } static bool trans_VINS(DisasContext *s, arg_VINS *a) { TCGv_i32 rd, rm; if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } if (s->vec_len != 0 || s->vec_stride != 0) { return false; } if (!vfp_access_check(s)) { return true; } /* Insert low half of Vm into high half of Vd */ rm = tcg_temp_new_i32(); rd = tcg_temp_new_i32(); vfp_load_reg32(rm, a->vm); vfp_load_reg32(rd, a->vd); tcg_gen_deposit_i32(rd, rd, rm, 16, 16); vfp_store_reg32(rd, a->vd); tcg_temp_free_i32(rm); tcg_temp_free_i32(rd); return true; } static bool trans_VMOVX(DisasContext *s, arg_VINS *a) { TCGv_i32 rm; if (!dc_isar_feature(aa32_fp16_arith, s)) { return false; } if (s->vec_len != 0 || s->vec_stride != 0) { return false; } if (!vfp_access_check(s)) { return true; } /* Set Vd to high half of Vm */ rm = tcg_temp_new_i32(); vfp_load_reg32(rm, a->vm); tcg_gen_shri_i32(rm, rm, 16); vfp_store_reg32(rm, a->vd); tcg_temp_free_i32(rm); return true; }