/* * TriCore emulation for qemu: fpu helper. * * Copyright (c) 2016 Bastian Koppelmann University of Paderborn * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/helper-proto.h" #include "fpu/softfloat.h" #define QUIET_NAN 0x7fc00000 #define ADD_NAN 0x7fc00001 #define DIV_NAN 0x7fc00008 #define MUL_NAN 0x7fc00002 #define FPU_FS PSW_USB_C #define FPU_FI PSW_USB_V #define FPU_FV PSW_USB_SV #define FPU_FZ PSW_USB_AV #define FPU_FU PSW_USB_SAV /* we don't care about input_denormal */ static inline uint8_t f_get_excp_flags(CPUTriCoreState *env) { return get_float_exception_flags(&env->fp_status) & (float_flag_invalid | float_flag_overflow | float_flag_underflow | float_flag_output_denormal | float_flag_divbyzero | float_flag_inexact); } static inline float32 f_maddsub_nan_result(float32 arg1, float32 arg2, float32 arg3, float32 result, uint32_t muladd_negate_c) { uint32_t aSign, bSign, cSign; uint32_t aExp, bExp, cExp; if (float32_is_any_nan(arg1) || float32_is_any_nan(arg2) || float32_is_any_nan(arg3)) { return QUIET_NAN; } else if (float32_is_infinity(arg1) && float32_is_zero(arg2)) { return MUL_NAN; } else if (float32_is_zero(arg1) && float32_is_infinity(arg2)) { return MUL_NAN; } else { aSign = arg1 >> 31; bSign = arg2 >> 31; cSign = arg3 >> 31; aExp = (arg1 >> 23) & 0xff; bExp = (arg2 >> 23) & 0xff; cExp = (arg3 >> 23) & 0xff; if (muladd_negate_c) { cSign ^= 1; } if (((aExp == 0xff) || (bExp == 0xff)) && (cExp == 0xff)) { if (aSign ^ bSign ^ cSign) { return ADD_NAN; } } } return result; } static void f_update_psw_flags(CPUTriCoreState *env, uint8_t flags) { uint8_t some_excp = 0; set_float_exception_flags(0, &env->fp_status); if (flags & float_flag_invalid) { env->FPU_FI = 1 << 31; some_excp = 1; } if (flags & float_flag_overflow) { env->FPU_FV = 1 << 31; some_excp = 1; } if (flags & float_flag_underflow || flags & float_flag_output_denormal) { env->FPU_FU = 1 << 31; some_excp = 1; } if (flags & float_flag_divbyzero) { env->FPU_FZ = 1 << 31; some_excp = 1; } if (flags & float_flag_inexact || flags & float_flag_output_denormal) { env->PSW |= 1 << 26; some_excp = 1; } env->FPU_FS = some_excp; } #define FADD_SUB(op) \ uint32_t helper_f##op(CPUTriCoreState *env, uint32_t r1, uint32_t r2) \ { \ float32 arg1 = make_float32(r1); \ float32 arg2 = make_float32(r2); \ uint32_t flags; \ float32 f_result; \ \ f_result = float32_##op(arg2, arg1, &env->fp_status); \ flags = f_get_excp_flags(env); \ if (flags) { \ /* If the output is a NaN, but the inputs aren't, \ we return a unique value. */ \ if ((flags & float_flag_invalid) \ && !float32_is_any_nan(arg1) \ && !float32_is_any_nan(arg2)) { \ f_result = ADD_NAN; \ } \ f_update_psw_flags(env, flags); \ } else { \ env->FPU_FS = 0; \ } \ return (uint32_t)f_result; \ } FADD_SUB(add) FADD_SUB(sub) uint32_t helper_fmul(CPUTriCoreState *env, uint32_t r1, uint32_t r2) { uint32_t flags; float32 arg1 = make_float32(r1); float32 arg2 = make_float32(r2); float32 f_result; f_result = float32_mul(arg1, arg2, &env->fp_status); flags = f_get_excp_flags(env); if (flags) { /* If the output is a NaN, but the inputs aren't, we return a unique value. */ if ((flags & float_flag_invalid) && !float32_is_any_nan(arg1) && !float32_is_any_nan(arg2)) { f_result = MUL_NAN; } f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } return (uint32_t)f_result; } uint32_t helper_fdiv(CPUTriCoreState *env, uint32_t r1, uint32_t r2) { uint32_t flags; float32 arg1 = make_float32(r1); float32 arg2 = make_float32(r2); float32 f_result; f_result = float32_div(arg1, arg2 , &env->fp_status); flags = f_get_excp_flags(env); if (flags) { /* If the output is a NaN, but the inputs aren't, we return a unique value. */ if ((flags & float_flag_invalid) && !float32_is_any_nan(arg1) && !float32_is_any_nan(arg2)) { f_result = DIV_NAN; } f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } return (uint32_t)f_result; } uint32_t helper_fmadd(CPUTriCoreState *env, uint32_t r1, uint32_t r2, uint32_t r3) { uint32_t flags; float32 arg1 = make_float32(r1); float32 arg2 = make_float32(r2); float32 arg3 = make_float32(r3); float32 f_result; f_result = float32_muladd(arg1, arg2, arg3, 0, &env->fp_status); flags = f_get_excp_flags(env); if (flags) { if (flags & float_flag_invalid) { arg1 = float32_squash_input_denormal(arg1, &env->fp_status); arg2 = float32_squash_input_denormal(arg2, &env->fp_status); arg3 = float32_squash_input_denormal(arg3, &env->fp_status); f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 0); } f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } return (uint32_t)f_result; } uint32_t helper_fmsub(CPUTriCoreState *env, uint32_t r1, uint32_t r2, uint32_t r3) { uint32_t flags; float32 arg1 = make_float32(r1); float32 arg2 = make_float32(r2); float32 arg3 = make_float32(r3); float32 f_result; f_result = float32_muladd(arg1, arg2, arg3, float_muladd_negate_product, &env->fp_status); flags = f_get_excp_flags(env); if (flags) { if (flags & float_flag_invalid) { arg1 = float32_squash_input_denormal(arg1, &env->fp_status); arg2 = float32_squash_input_denormal(arg2, &env->fp_status); arg3 = float32_squash_input_denormal(arg3, &env->fp_status); f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 1); } f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } return (uint32_t)f_result; } uint32_t helper_fcmp(CPUTriCoreState *env, uint32_t r1, uint32_t r2) { uint32_t result, flags; float32 arg1 = make_float32(r1); float32 arg2 = make_float32(r2); set_flush_inputs_to_zero(0, &env->fp_status); result = 1 << (float32_compare_quiet(arg1, arg2, &env->fp_status) + 1); result |= float32_is_denormal(arg1) << 4; result |= float32_is_denormal(arg2) << 5; flags = f_get_excp_flags(env); if (flags) { f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } set_flush_inputs_to_zero(1, &env->fp_status); return result; } uint32_t helper_ftoi(CPUTriCoreState *env, uint32_t arg) { float32 f_arg = make_float32(arg); int32_t result, flags; result = float32_to_int32(f_arg, &env->fp_status); flags = f_get_excp_flags(env); if (flags) { if (float32_is_any_nan(f_arg)) { result = 0; } f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } return (uint32_t)result; } uint32_t helper_itof(CPUTriCoreState *env, uint32_t arg) { float32 f_result; uint32_t flags; f_result = int32_to_float32(arg, &env->fp_status); flags = f_get_excp_flags(env); if (flags) { f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } return (uint32_t)f_result; } uint32_t helper_ftouz(CPUTriCoreState *env, uint32_t arg) { float32 f_arg = make_float32(arg); uint32_t result; int32_t flags; result = float32_to_uint32_round_to_zero(f_arg, &env->fp_status); flags = f_get_excp_flags(env); if (flags & float_flag_invalid) { flags &= ~float_flag_inexact; if (float32_is_any_nan(f_arg)) { result = 0; } } else if (float32_lt_quiet(f_arg, 0, &env->fp_status)) { flags = float_flag_invalid; result = 0; } if (flags) { f_update_psw_flags(env, flags); } else { env->FPU_FS = 0; } return result; } void helper_updfl(CPUTriCoreState *env, uint32_t arg) { env->FPU_FS = extract32(arg, 7, 1) & extract32(arg, 15, 1); env->FPU_FI = (extract32(arg, 6, 1) & extract32(arg, 14, 1)) << 31; env->FPU_FV = (extract32(arg, 5, 1) & extract32(arg, 13, 1)) << 31; env->FPU_FZ = (extract32(arg, 4, 1) & extract32(arg, 12, 1)) << 31; env->FPU_FU = (extract32(arg, 3, 1) & extract32(arg, 11, 1)) << 31; /* clear FX and RM */ env->PSW &= ~(extract32(arg, 10, 1) << 26); env->PSW |= (extract32(arg, 2, 1) & extract32(arg, 10, 1)) << 26; fpu_set_state(env); }