/* * Optimizations for Tiny Code Generator for QEMU * * Copyright (c) 2010 Samsung Electronics. * Contributed by Kirill Batuzov * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/int128.h" #include "qemu/interval-tree.h" #include "tcg/tcg-op-common.h" #include "tcg-internal.h" #define CASE_OP_32_64(x) \ glue(glue(case INDEX_op_, x), _i32): \ glue(glue(case INDEX_op_, x), _i64) #define CASE_OP_32_64_VEC(x) \ glue(glue(case INDEX_op_, x), _i32): \ glue(glue(case INDEX_op_, x), _i64): \ glue(glue(case INDEX_op_, x), _vec) typedef struct MemCopyInfo { IntervalTreeNode itree; QSIMPLEQ_ENTRY (MemCopyInfo) next; TCGTemp *ts; TCGType type; } MemCopyInfo; typedef struct TempOptInfo { bool is_const; TCGTemp *prev_copy; TCGTemp *next_copy; QSIMPLEQ_HEAD(, MemCopyInfo) mem_copy; uint64_t val; uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ uint64_t s_mask; /* a left-aligned mask of clrsb(value) bits. */ } TempOptInfo; typedef struct OptContext { TCGContext *tcg; TCGOp *prev_mb; TCGTempSet temps_used; IntervalTreeRoot mem_copy; QSIMPLEQ_HEAD(, MemCopyInfo) mem_free; /* In flight values from optimization. */ uint64_t a_mask; /* mask bit is 0 iff value identical to first input */ uint64_t z_mask; /* mask bit is 0 iff value bit is 0 */ uint64_t s_mask; /* mask of clrsb(value) bits */ TCGType type; } OptContext; /* Calculate the smask for a specific value. */ static uint64_t smask_from_value(uint64_t value) { int rep = clrsb64(value); return ~(~0ull >> rep); } /* * Calculate the smask for a given set of known-zeros. * If there are lots of zeros on the left, we can consider the remainder * an unsigned field, and thus the corresponding signed field is one bit * larger. */ static uint64_t smask_from_zmask(uint64_t zmask) { /* * Only the 0 bits are significant for zmask, thus the msb itself * must be zero, else we have no sign information. */ int rep = clz64(zmask); if (rep == 0) { return 0; } rep -= 1; return ~(~0ull >> rep); } /* * Recreate a properly left-aligned smask after manipulation. * Some bit-shuffling, particularly shifts and rotates, may * retain sign bits on the left, but may scatter disconnected * sign bits on the right. Retain only what remains to the left. */ static uint64_t smask_from_smask(int64_t smask) { /* Only the 1 bits are significant for smask */ return smask_from_zmask(~smask); } static inline TempOptInfo *ts_info(TCGTemp *ts) { return ts->state_ptr; } static inline TempOptInfo *arg_info(TCGArg arg) { return ts_info(arg_temp(arg)); } static inline bool ts_is_const(TCGTemp *ts) { return ts_info(ts)->is_const; } static inline bool arg_is_const(TCGArg arg) { return ts_is_const(arg_temp(arg)); } static inline bool ts_is_copy(TCGTemp *ts) { return ts_info(ts)->next_copy != ts; } static TCGTemp *cmp_better_copy(TCGTemp *a, TCGTemp *b) { return a->kind < b->kind ? b : a; } /* Initialize and activate a temporary. */ static void init_ts_info(OptContext *ctx, TCGTemp *ts) { size_t idx = temp_idx(ts); TempOptInfo *ti; if (test_bit(idx, ctx->temps_used.l)) { return; } set_bit(idx, ctx->temps_used.l); ti = ts->state_ptr; if (ti == NULL) { ti = tcg_malloc(sizeof(TempOptInfo)); ts->state_ptr = ti; } ti->next_copy = ts; ti->prev_copy = ts; QSIMPLEQ_INIT(&ti->mem_copy); if (ts->kind == TEMP_CONST) { ti->is_const = true; ti->val = ts->val; ti->z_mask = ts->val; ti->s_mask = smask_from_value(ts->val); } else { ti->is_const = false; ti->z_mask = -1; ti->s_mask = 0; } } static MemCopyInfo *mem_copy_first(OptContext *ctx, intptr_t s, intptr_t l) { IntervalTreeNode *r = interval_tree_iter_first(&ctx->mem_copy, s, l); return r ? container_of(r, MemCopyInfo, itree) : NULL; } static MemCopyInfo *mem_copy_next(MemCopyInfo *mem, intptr_t s, intptr_t l) { IntervalTreeNode *r = interval_tree_iter_next(&mem->itree, s, l); return r ? container_of(r, MemCopyInfo, itree) : NULL; } static void remove_mem_copy(OptContext *ctx, MemCopyInfo *mc) { TCGTemp *ts = mc->ts; TempOptInfo *ti = ts_info(ts); interval_tree_remove(&mc->itree, &ctx->mem_copy); QSIMPLEQ_REMOVE(&ti->mem_copy, mc, MemCopyInfo, next); QSIMPLEQ_INSERT_TAIL(&ctx->mem_free, mc, next); } static void remove_mem_copy_in(OptContext *ctx, intptr_t s, intptr_t l) { while (true) { MemCopyInfo *mc = mem_copy_first(ctx, s, l); if (!mc) { break; } remove_mem_copy(ctx, mc); } } static void remove_mem_copy_all(OptContext *ctx) { remove_mem_copy_in(ctx, 0, -1); tcg_debug_assert(interval_tree_is_empty(&ctx->mem_copy)); } static TCGTemp *find_better_copy(TCGTemp *ts) { TCGTemp *i, *ret; /* If this is already readonly, we can't do better. */ if (temp_readonly(ts)) { return ts; } ret = ts; for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { ret = cmp_better_copy(ret, i); } return ret; } static void move_mem_copies(TCGTemp *dst_ts, TCGTemp *src_ts) { TempOptInfo *si = ts_info(src_ts); TempOptInfo *di = ts_info(dst_ts); MemCopyInfo *mc; QSIMPLEQ_FOREACH(mc, &si->mem_copy, next) { tcg_debug_assert(mc->ts == src_ts); mc->ts = dst_ts; } QSIMPLEQ_CONCAT(&di->mem_copy, &si->mem_copy); } /* Reset TEMP's state, possibly removing the temp for the list of copies. */ static void reset_ts(OptContext *ctx, TCGTemp *ts) { TempOptInfo *ti = ts_info(ts); TCGTemp *pts = ti->prev_copy; TCGTemp *nts = ti->next_copy; TempOptInfo *pi = ts_info(pts); TempOptInfo *ni = ts_info(nts); ni->prev_copy = ti->prev_copy; pi->next_copy = ti->next_copy; ti->next_copy = ts; ti->prev_copy = ts; ti->is_const = false; ti->z_mask = -1; ti->s_mask = 0; if (!QSIMPLEQ_EMPTY(&ti->mem_copy)) { if (ts == nts) { /* Last temp copy being removed, the mem copies die. */ MemCopyInfo *mc; QSIMPLEQ_FOREACH(mc, &ti->mem_copy, next) { interval_tree_remove(&mc->itree, &ctx->mem_copy); } QSIMPLEQ_CONCAT(&ctx->mem_free, &ti->mem_copy); } else { move_mem_copies(find_better_copy(nts), ts); } } } static void reset_temp(OptContext *ctx, TCGArg arg) { reset_ts(ctx, arg_temp(arg)); } static void record_mem_copy(OptContext *ctx, TCGType type, TCGTemp *ts, intptr_t start, intptr_t last) { MemCopyInfo *mc; TempOptInfo *ti; mc = QSIMPLEQ_FIRST(&ctx->mem_free); if (mc) { QSIMPLEQ_REMOVE_HEAD(&ctx->mem_free, next); } else { mc = tcg_malloc(sizeof(*mc)); } memset(mc, 0, sizeof(*mc)); mc->itree.start = start; mc->itree.last = last; mc->type = type; interval_tree_insert(&mc->itree, &ctx->mem_copy); ts = find_better_copy(ts); ti = ts_info(ts); mc->ts = ts; QSIMPLEQ_INSERT_TAIL(&ti->mem_copy, mc, next); } static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) { TCGTemp *i; if (ts1 == ts2) { return true; } if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { return false; } for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { if (i == ts2) { return true; } } return false; } static bool args_are_copies(TCGArg arg1, TCGArg arg2) { return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); } static TCGTemp *find_mem_copy_for(OptContext *ctx, TCGType type, intptr_t s) { MemCopyInfo *mc; for (mc = mem_copy_first(ctx, s, s); mc; mc = mem_copy_next(mc, s, s)) { if (mc->itree.start == s && mc->type == type) { return find_better_copy(mc->ts); } } return NULL; } static TCGArg arg_new_constant(OptContext *ctx, uint64_t val) { TCGType type = ctx->type; TCGTemp *ts; if (type == TCG_TYPE_I32) { val = (int32_t)val; } ts = tcg_constant_internal(type, val); init_ts_info(ctx, ts); return temp_arg(ts); } static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) { TCGTemp *dst_ts = arg_temp(dst); TCGTemp *src_ts = arg_temp(src); TempOptInfo *di; TempOptInfo *si; TCGOpcode new_op; if (ts_are_copies(dst_ts, src_ts)) { tcg_op_remove(ctx->tcg, op); return true; } reset_ts(ctx, dst_ts); di = ts_info(dst_ts); si = ts_info(src_ts); switch (ctx->type) { case TCG_TYPE_I32: new_op = INDEX_op_mov_i32; break; case TCG_TYPE_I64: new_op = INDEX_op_mov_i64; break; case TCG_TYPE_V64: case TCG_TYPE_V128: case TCG_TYPE_V256: /* TCGOP_VECL and TCGOP_VECE remain unchanged. */ new_op = INDEX_op_mov_vec; break; default: g_assert_not_reached(); } op->opc = new_op; op->args[0] = dst; op->args[1] = src; di->z_mask = si->z_mask; di->s_mask = si->s_mask; if (src_ts->type == dst_ts->type) { TempOptInfo *ni = ts_info(si->next_copy); di->next_copy = si->next_copy; di->prev_copy = src_ts; ni->prev_copy = dst_ts; si->next_copy = dst_ts; di->is_const = si->is_const; di->val = si->val; if (!QSIMPLEQ_EMPTY(&si->mem_copy) && cmp_better_copy(src_ts, dst_ts) == dst_ts) { move_mem_copies(dst_ts, src_ts); } } return true; } static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, TCGArg dst, uint64_t val) { /* Convert movi to mov with constant temp. */ return tcg_opt_gen_mov(ctx, op, dst, arg_new_constant(ctx, val)); } static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y) { uint64_t l64, h64; switch (op) { CASE_OP_32_64(add): return x + y; CASE_OP_32_64(sub): return x - y; CASE_OP_32_64(mul): return x * y; CASE_OP_32_64_VEC(and): return x & y; CASE_OP_32_64_VEC(or): return x | y; CASE_OP_32_64_VEC(xor): return x ^ y; case INDEX_op_shl_i32: return (uint32_t)x << (y & 31); case INDEX_op_shl_i64: return (uint64_t)x << (y & 63); case INDEX_op_shr_i32: return (uint32_t)x >> (y & 31); case INDEX_op_shr_i64: return (uint64_t)x >> (y & 63); case INDEX_op_sar_i32: return (int32_t)x >> (y & 31); case INDEX_op_sar_i64: return (int64_t)x >> (y & 63); case INDEX_op_rotr_i32: return ror32(x, y & 31); case INDEX_op_rotr_i64: return ror64(x, y & 63); case INDEX_op_rotl_i32: return rol32(x, y & 31); case INDEX_op_rotl_i64: return rol64(x, y & 63); CASE_OP_32_64_VEC(not): return ~x; CASE_OP_32_64(neg): return -x; CASE_OP_32_64_VEC(andc): return x & ~y; CASE_OP_32_64_VEC(orc): return x | ~y; CASE_OP_32_64_VEC(eqv): return ~(x ^ y); CASE_OP_32_64_VEC(nand): return ~(x & y); CASE_OP_32_64_VEC(nor): return ~(x | y); case INDEX_op_clz_i32: return (uint32_t)x ? clz32(x) : y; case INDEX_op_clz_i64: return x ? clz64(x) : y; case INDEX_op_ctz_i32: return (uint32_t)x ? ctz32(x) : y; case INDEX_op_ctz_i64: return x ? ctz64(x) : y; case INDEX_op_ctpop_i32: return ctpop32(x); case INDEX_op_ctpop_i64: return ctpop64(x); CASE_OP_32_64(ext8s): return (int8_t)x; CASE_OP_32_64(ext16s): return (int16_t)x; CASE_OP_32_64(ext8u): return (uint8_t)x; CASE_OP_32_64(ext16u): return (uint16_t)x; CASE_OP_32_64(bswap16): x = bswap16(x); return y & TCG_BSWAP_OS ? (int16_t)x : x; CASE_OP_32_64(bswap32): x = bswap32(x); return y & TCG_BSWAP_OS ? (int32_t)x : x; case INDEX_op_bswap64_i64: return bswap64(x); case INDEX_op_ext_i32_i64: case INDEX_op_ext32s_i64: return (int32_t)x; case INDEX_op_extu_i32_i64: case INDEX_op_extrl_i64_i32: case INDEX_op_ext32u_i64: return (uint32_t)x; case INDEX_op_extrh_i64_i32: return (uint64_t)x >> 32; case INDEX_op_muluh_i32: return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; case INDEX_op_mulsh_i32: return ((int64_t)(int32_t)x * (int32_t)y) >> 32; case INDEX_op_muluh_i64: mulu64(&l64, &h64, x, y); return h64; case INDEX_op_mulsh_i64: muls64(&l64, &h64, x, y); return h64; case INDEX_op_div_i32: /* Avoid crashing on divide by zero, otherwise undefined. */ return (int32_t)x / ((int32_t)y ? : 1); case INDEX_op_divu_i32: return (uint32_t)x / ((uint32_t)y ? : 1); case INDEX_op_div_i64: return (int64_t)x / ((int64_t)y ? : 1); case INDEX_op_divu_i64: return (uint64_t)x / ((uint64_t)y ? : 1); case INDEX_op_rem_i32: return (int32_t)x % ((int32_t)y ? : 1); case INDEX_op_remu_i32: return (uint32_t)x % ((uint32_t)y ? : 1); case INDEX_op_rem_i64: return (int64_t)x % ((int64_t)y ? : 1); case INDEX_op_remu_i64: return (uint64_t)x % ((uint64_t)y ? : 1); default: g_assert_not_reached(); } } static uint64_t do_constant_folding(TCGOpcode op, TCGType type, uint64_t x, uint64_t y) { uint64_t res = do_constant_folding_2(op, x, y); if (type == TCG_TYPE_I32) { res = (int32_t)res; } return res; } static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) { switch (c) { case TCG_COND_EQ: return x == y; case TCG_COND_NE: return x != y; case TCG_COND_LT: return (int32_t)x < (int32_t)y; case TCG_COND_GE: return (int32_t)x >= (int32_t)y; case TCG_COND_LE: return (int32_t)x <= (int32_t)y; case TCG_COND_GT: return (int32_t)x > (int32_t)y; case TCG_COND_LTU: return x < y; case TCG_COND_GEU: return x >= y; case TCG_COND_LEU: return x <= y; case TCG_COND_GTU: return x > y; default: g_assert_not_reached(); } } static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) { switch (c) { case TCG_COND_EQ: return x == y; case TCG_COND_NE: return x != y; case TCG_COND_LT: return (int64_t)x < (int64_t)y; case TCG_COND_GE: return (int64_t)x >= (int64_t)y; case TCG_COND_LE: return (int64_t)x <= (int64_t)y; case TCG_COND_GT: return (int64_t)x > (int64_t)y; case TCG_COND_LTU: return x < y; case TCG_COND_GEU: return x >= y; case TCG_COND_LEU: return x <= y; case TCG_COND_GTU: return x > y; default: g_assert_not_reached(); } } static bool do_constant_folding_cond_eq(TCGCond c) { switch (c) { case TCG_COND_GT: case TCG_COND_LTU: case TCG_COND_LT: case TCG_COND_GTU: case TCG_COND_NE: return 0; case TCG_COND_GE: case TCG_COND_GEU: case TCG_COND_LE: case TCG_COND_LEU: case TCG_COND_EQ: return 1; default: g_assert_not_reached(); } } /* * Return -1 if the condition can't be simplified, * and the result of the condition (0 or 1) if it can. */ static int do_constant_folding_cond(TCGType type, TCGArg x, TCGArg y, TCGCond c) { if (arg_is_const(x) && arg_is_const(y)) { uint64_t xv = arg_info(x)->val; uint64_t yv = arg_info(y)->val; switch (type) { case TCG_TYPE_I32: return do_constant_folding_cond_32(xv, yv, c); case TCG_TYPE_I64: return do_constant_folding_cond_64(xv, yv, c); default: /* Only scalar comparisons are optimizable */ return -1; } } else if (args_are_copies(x, y)) { return do_constant_folding_cond_eq(c); } else if (arg_is_const(y) && arg_info(y)->val == 0) { switch (c) { case TCG_COND_LTU: return 0; case TCG_COND_GEU: return 1; default: return -1; } } return -1; } /* * Return -1 if the condition can't be simplified, * and the result of the condition (0 or 1) if it can. */ static int do_constant_folding_cond2(TCGArg *p1, TCGArg *p2, TCGCond c) { TCGArg al = p1[0], ah = p1[1]; TCGArg bl = p2[0], bh = p2[1]; if (arg_is_const(bl) && arg_is_const(bh)) { tcg_target_ulong blv = arg_info(bl)->val; tcg_target_ulong bhv = arg_info(bh)->val; uint64_t b = deposit64(blv, 32, 32, bhv); if (arg_is_const(al) && arg_is_const(ah)) { tcg_target_ulong alv = arg_info(al)->val; tcg_target_ulong ahv = arg_info(ah)->val; uint64_t a = deposit64(alv, 32, 32, ahv); return do_constant_folding_cond_64(a, b, c); } if (b == 0) { switch (c) { case TCG_COND_LTU: return 0; case TCG_COND_GEU: return 1; default: break; } } } if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { return do_constant_folding_cond_eq(c); } return -1; } /** * swap_commutative: * @dest: TCGArg of the destination argument, or NO_DEST. * @p1: first paired argument * @p2: second paired argument * * If *@p1 is a constant and *@p2 is not, swap. * If *@p2 matches @dest, swap. * Return true if a swap was performed. */ #define NO_DEST temp_arg(NULL) static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) { TCGArg a1 = *p1, a2 = *p2; int sum = 0; sum += arg_is_const(a1); sum -= arg_is_const(a2); /* Prefer the constant in second argument, and then the form op a, a, b, which is better handled on non-RISC hosts. */ if (sum > 0 || (sum == 0 && dest == a2)) { *p1 = a2; *p2 = a1; return true; } return false; } static bool swap_commutative2(TCGArg *p1, TCGArg *p2) { int sum = 0; sum += arg_is_const(p1[0]); sum += arg_is_const(p1[1]); sum -= arg_is_const(p2[0]); sum -= arg_is_const(p2[1]); if (sum > 0) { TCGArg t; t = p1[0], p1[0] = p2[0], p2[0] = t; t = p1[1], p1[1] = p2[1], p2[1] = t; return true; } return false; } static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) { for (int i = 0; i < nb_args; i++) { TCGTemp *ts = arg_temp(op->args[i]); init_ts_info(ctx, ts); } } static void copy_propagate(OptContext *ctx, TCGOp *op, int nb_oargs, int nb_iargs) { for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { TCGTemp *ts = arg_temp(op->args[i]); if (ts_is_copy(ts)) { op->args[i] = temp_arg(find_better_copy(ts)); } } } static void finish_folding(OptContext *ctx, TCGOp *op) { const TCGOpDef *def = &tcg_op_defs[op->opc]; int i, nb_oargs; /* * We only optimize extended basic blocks. If the opcode ends a BB * and is not a conditional branch, reset all temp data. */ if (def->flags & TCG_OPF_BB_END) { ctx->prev_mb = NULL; if (!(def->flags & TCG_OPF_COND_BRANCH)) { memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); remove_mem_copy_all(ctx); } return; } nb_oargs = def->nb_oargs; for (i = 0; i < nb_oargs; i++) { TCGTemp *ts = arg_temp(op->args[i]); reset_ts(ctx, ts); /* * Save the corresponding known-zero/sign bits mask for the * first output argument (only one supported so far). */ if (i == 0) { ts_info(ts)->z_mask = ctx->z_mask; ts_info(ts)->s_mask = ctx->s_mask; } } } /* * The fold_* functions return true when processing is complete, * usually by folding the operation to a constant or to a copy, * and calling tcg_opt_gen_{mov,movi}. They may do other things, * like collect information about the value produced, for use in * optimizing a subsequent operation. * * These first fold_* functions are all helpers, used by other * folders for more specific operations. */ static bool fold_const1(OptContext *ctx, TCGOp *op) { if (arg_is_const(op->args[1])) { uint64_t t; t = arg_info(op->args[1])->val; t = do_constant_folding(op->opc, ctx->type, t, 0); return tcg_opt_gen_movi(ctx, op, op->args[0], t); } return false; } static bool fold_const2(OptContext *ctx, TCGOp *op) { if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { uint64_t t1 = arg_info(op->args[1])->val; uint64_t t2 = arg_info(op->args[2])->val; t1 = do_constant_folding(op->opc, ctx->type, t1, t2); return tcg_opt_gen_movi(ctx, op, op->args[0], t1); } return false; } static bool fold_commutative(OptContext *ctx, TCGOp *op) { swap_commutative(op->args[0], &op->args[1], &op->args[2]); return false; } static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) { swap_commutative(op->args[0], &op->args[1], &op->args[2]); return fold_const2(ctx, op); } static bool fold_masks(OptContext *ctx, TCGOp *op) { uint64_t a_mask = ctx->a_mask; uint64_t z_mask = ctx->z_mask; uint64_t s_mask = ctx->s_mask; /* * 32-bit ops generate 32-bit results, which for the purpose of * simplifying tcg are sign-extended. Certainly that's how we * represent our constants elsewhere. Note that the bits will * be reset properly for a 64-bit value when encountering the * type changing opcodes. */ if (ctx->type == TCG_TYPE_I32) { a_mask = (int32_t)a_mask; z_mask = (int32_t)z_mask; s_mask |= MAKE_64BIT_MASK(32, 32); ctx->z_mask = z_mask; ctx->s_mask = s_mask; } if (z_mask == 0) { return tcg_opt_gen_movi(ctx, op, op->args[0], 0); } if (a_mask == 0) { return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); } return false; } /* * Convert @op to NOT, if NOT is supported by the host. * Return true f the conversion is successful, which will still * indicate that the processing is complete. */ static bool fold_not(OptContext *ctx, TCGOp *op); static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) { TCGOpcode not_op; bool have_not; switch (ctx->type) { case TCG_TYPE_I32: not_op = INDEX_op_not_i32; have_not = TCG_TARGET_HAS_not_i32; break; case TCG_TYPE_I64: not_op = INDEX_op_not_i64; have_not = TCG_TARGET_HAS_not_i64; break; case TCG_TYPE_V64: case TCG_TYPE_V128: case TCG_TYPE_V256: not_op = INDEX_op_not_vec; have_not = TCG_TARGET_HAS_not_vec; break; default: g_assert_not_reached(); } if (have_not) { op->opc = not_op; op->args[1] = op->args[idx]; return fold_not(ctx, op); } return false; } /* If the binary operation has first argument @i, fold to @i. */ static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) { if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == i) { return tcg_opt_gen_movi(ctx, op, op->args[0], i); } return false; } /* If the binary operation has first argument @i, fold to NOT. */ static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) { if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == i) { return fold_to_not(ctx, op, 2); } return false; } /* If the binary operation has second argument @i, fold to @i. */ static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) { if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) { return tcg_opt_gen_movi(ctx, op, op->args[0], i); } return false; } /* If the binary operation has second argument @i, fold to identity. */ static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) { if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) { return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); } return false; } /* If the binary operation has second argument @i, fold to NOT. */ static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) { if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) { return fold_to_not(ctx, op, 1); } return false; } /* If the binary operation has both arguments equal, fold to @i. */ static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) { if (args_are_copies(op->args[1], op->args[2])) { return tcg_opt_gen_movi(ctx, op, op->args[0], i); } return false; } /* If the binary operation has both arguments equal, fold to identity. */ static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) { if (args_are_copies(op->args[1], op->args[2])) { return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); } return false; } /* * These outermost fold_ functions are sorted alphabetically. * * The ordering of the transformations should be: * 1) those that produce a constant * 2) those that produce a copy * 3) those that produce information about the result value. */ static bool fold_add(OptContext *ctx, TCGOp *op) { if (fold_const2_commutative(ctx, op) || fold_xi_to_x(ctx, op, 0)) { return true; } return false; } /* We cannot as yet do_constant_folding with vectors. */ static bool fold_add_vec(OptContext *ctx, TCGOp *op) { if (fold_commutative(ctx, op) || fold_xi_to_x(ctx, op, 0)) { return true; } return false; } static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) { if (arg_is_const(op->args[2]) && arg_is_const(op->args[3]) && arg_is_const(op->args[4]) && arg_is_const(op->args[5])) { uint64_t al = arg_info(op->args[2])->val; uint64_t ah = arg_info(op->args[3])->val; uint64_t bl = arg_info(op->args[4])->val; uint64_t bh = arg_info(op->args[5])->val; TCGArg rl, rh; TCGOp *op2; if (ctx->type == TCG_TYPE_I32) { uint64_t a = deposit64(al, 32, 32, ah); uint64_t b = deposit64(bl, 32, 32, bh); if (add) { a += b; } else { a -= b; } al = sextract64(a, 0, 32); ah = sextract64(a, 32, 32); } else { Int128 a = int128_make128(al, ah); Int128 b = int128_make128(bl, bh); if (add) { a = int128_add(a, b); } else { a = int128_sub(a, b); } al = int128_getlo(a); ah = int128_gethi(a); } rl = op->args[0]; rh = op->args[1]; /* The proper opcode is supplied by tcg_opt_gen_mov. */ op2 = tcg_op_insert_before(ctx->tcg, op, 0, 2); tcg_opt_gen_movi(ctx, op, rl, al); tcg_opt_gen_movi(ctx, op2, rh, ah); return true; } return false; } static bool fold_add2(OptContext *ctx, TCGOp *op) { /* Note that the high and low parts may be independently swapped. */ swap_commutative(op->args[0], &op->args[2], &op->args[4]); swap_commutative(op->args[1], &op->args[3], &op->args[5]); return fold_addsub2(ctx, op, true); } static bool fold_and(OptContext *ctx, TCGOp *op) { uint64_t z1, z2; if (fold_const2_commutative(ctx, op) || fold_xi_to_i(ctx, op, 0) || fold_xi_to_x(ctx, op, -1) || fold_xx_to_x(ctx, op)) { return true; } z1 = arg_info(op->args[1])->z_mask; z2 = arg_info(op->args[2])->z_mask; ctx->z_mask = z1 & z2; /* * Sign repetitions are perforce all identical, whether they are 1 or 0. * Bitwise operations preserve the relative quantity of the repetitions. */ ctx->s_mask = arg_info(op->args[1])->s_mask & arg_info(op->args[2])->s_mask; /* * Known-zeros does not imply known-ones. Therefore unless * arg2 is constant, we can't infer affected bits from it. */ if (arg_is_const(op->args[2])) { ctx->a_mask = z1 & ~z2; } return fold_masks(ctx, op); } static bool fold_andc(OptContext *ctx, TCGOp *op) { uint64_t z1; if (fold_const2(ctx, op) || fold_xx_to_i(ctx, op, 0) || fold_xi_to_x(ctx, op, 0) || fold_ix_to_not(ctx, op, -1)) { return true; } z1 = arg_info(op->args[1])->z_mask; /* * Known-zeros does not imply known-ones. Therefore unless * arg2 is constant, we can't infer anything from it. */ if (arg_is_const(op->args[2])) { uint64_t z2 = ~arg_info(op->args[2])->z_mask; ctx->a_mask = z1 & ~z2; z1 &= z2; } ctx->z_mask = z1; ctx->s_mask = arg_info(op->args[1])->s_mask & arg_info(op->args[2])->s_mask; return fold_masks(ctx, op); } static bool fold_brcond(OptContext *ctx, TCGOp *op) { TCGCond cond = op->args[2]; int i; if (swap_commutative(NO_DEST, &op->args[0], &op->args[1])) { op->args[2] = cond = tcg_swap_cond(cond); } i = do_constant_folding_cond(ctx->type, op->args[0], op->args[1], cond); if (i == 0) { tcg_op_remove(ctx->tcg, op); return true; } if (i > 0) { op->opc = INDEX_op_br; op->args[0] = op->args[3]; } return false; } static bool fold_brcond2(OptContext *ctx, TCGOp *op) { TCGCond cond = op->args[4]; TCGArg label = op->args[5]; int i, inv = 0; if (swap_commutative2(&op->args[0], &op->args[2])) { op->args[4] = cond = tcg_swap_cond(cond); } i = do_constant_folding_cond2(&op->args[0], &op->args[2], cond); if (i >= 0) { goto do_brcond_const; } switch (cond) { case TCG_COND_LT: case TCG_COND_GE: /* * Simplify LT/GE comparisons vs zero to a single compare * vs the high word of the input. */ if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == 0 && arg_is_const(op->args[3]) && arg_info(op->args[3])->val == 0) { goto do_brcond_high; } break; case TCG_COND_NE: inv = 1; QEMU_FALLTHROUGH; case TCG_COND_EQ: /* * Simplify EQ/NE comparisons where one of the pairs * can be simplified. */ i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], op->args[2], cond); switch (i ^ inv) { case 0: goto do_brcond_const; case 1: goto do_brcond_high; } i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], op->args[3], cond); switch (i ^ inv) { case 0: goto do_brcond_const; case 1: op->opc = INDEX_op_brcond_i32; op->args[1] = op->args[2]; op->args[2] = cond; op->args[3] = label; break; } break; default: break; do_brcond_high: op->opc = INDEX_op_brcond_i32; op->args[0] = op->args[1]; op->args[1] = op->args[3]; op->args[2] = cond; op->args[3] = label; break; do_brcond_const: if (i == 0) { tcg_op_remove(ctx->tcg, op); return true; } op->opc = INDEX_op_br; op->args[0] = label; break; } return false; } static bool fold_bswap(OptContext *ctx, TCGOp *op) { uint64_t z_mask, s_mask, sign; if (arg_is_const(op->args[1])) { uint64_t t = arg_info(op->args[1])->val; t = do_constant_folding(op->opc, ctx->type, t, op->args[2]); return tcg_opt_gen_movi(ctx, op, op->args[0], t); } z_mask = arg_info(op->args[1])->z_mask; switch (op->opc) { case INDEX_op_bswap16_i32: case INDEX_op_bswap16_i64: z_mask = bswap16(z_mask); sign = INT16_MIN; break; case INDEX_op_bswap32_i32: case INDEX_op_bswap32_i64: z_mask = bswap32(z_mask); sign = INT32_MIN; break; case INDEX_op_bswap64_i64: z_mask = bswap64(z_mask); sign = INT64_MIN; break; default: g_assert_not_reached(); } s_mask = smask_from_zmask(z_mask); switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { case TCG_BSWAP_OZ: break; case TCG_BSWAP_OS: /* If the sign bit may be 1, force all the bits above to 1. */ if (z_mask & sign) { z_mask |= sign; s_mask = sign << 1; } break; default: /* The high bits are undefined: force all bits above the sign to 1. */ z_mask |= sign << 1; s_mask = 0; break; } ctx->z_mask = z_mask; ctx->s_mask = s_mask; return fold_masks(ctx, op); } static bool fold_call(OptContext *ctx, TCGOp *op) { TCGContext *s = ctx->tcg; int nb_oargs = TCGOP_CALLO(op); int nb_iargs = TCGOP_CALLI(op); int flags, i; init_arguments(ctx, op, nb_oargs + nb_iargs); copy_propagate(ctx, op, nb_oargs, nb_iargs); /* If the function reads or writes globals, reset temp data. */ flags = tcg_call_flags(op); if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { int nb_globals = s->nb_globals; for (i = 0; i < nb_globals; i++) { if (test_bit(i, ctx->temps_used.l)) { reset_ts(ctx, &ctx->tcg->temps[i]); } } } /* If the function has side effects, reset mem data. */ if (!(flags & TCG_CALL_NO_SIDE_EFFECTS)) { remove_mem_copy_all(ctx); } /* Reset temp data for outputs. */ for (i = 0; i < nb_oargs; i++) { reset_temp(ctx, op->args[i]); } /* Stop optimizing MB across calls. */ ctx->prev_mb = NULL; return true; } static bool fold_count_zeros(OptContext *ctx, TCGOp *op) { uint64_t z_mask; if (arg_is_const(op->args[1])) { uint64_t t = arg_info(op->args[1])->val; if (t != 0) { t = do_constant_folding(op->opc, ctx->type, t, 0); return tcg_opt_gen_movi(ctx, op, op->args[0], t); } return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); } switch (ctx->type) { case TCG_TYPE_I32: z_mask = 31; break; case TCG_TYPE_I64: z_mask = 63; break; default: g_assert_not_reached(); } ctx->z_mask = arg_info(op->args[2])->z_mask | z_mask; ctx->s_mask = smask_from_zmask(ctx->z_mask); return false; } static bool fold_ctpop(OptContext *ctx, TCGOp *op) { if (fold_const1(ctx, op)) { return true; } switch (ctx->type) { case TCG_TYPE_I32: ctx->z_mask = 32 | 31; break; case TCG_TYPE_I64: ctx->z_mask = 64 | 63; break; default: g_assert_not_reached(); } ctx->s_mask = smask_from_zmask(ctx->z_mask); return false; } static bool fold_deposit(OptContext *ctx, TCGOp *op) { TCGOpcode and_opc; if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { uint64_t t1 = arg_info(op->args[1])->val; uint64_t t2 = arg_info(op->args[2])->val; t1 = deposit64(t1, op->args[3], op->args[4], t2); return tcg_opt_gen_movi(ctx, op, op->args[0], t1); } switch (ctx->type) { case TCG_TYPE_I32: and_opc = INDEX_op_and_i32; break; case TCG_TYPE_I64: and_opc = INDEX_op_and_i64; break; default: g_assert_not_reached(); } /* Inserting a value into zero at offset 0. */ if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == 0 && op->args[3] == 0) { uint64_t mask = MAKE_64BIT_MASK(0, op->args[4]); op->opc = and_opc; op->args[1] = op->args[2]; op->args[2] = arg_new_constant(ctx, mask); ctx->z_mask = mask & arg_info(op->args[1])->z_mask; return false; } /* Inserting zero into a value. */ if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == 0) { uint64_t mask = deposit64(-1, op->args[3], op->args[4], 0); op->opc = and_opc; op->args[2] = arg_new_constant(ctx, mask); ctx->z_mask = mask & arg_info(op->args[1])->z_mask; return false; } ctx->z_mask = deposit64(arg_info(op->args[1])->z_mask, op->args[3], op->args[4], arg_info(op->args[2])->z_mask); return false; } static bool fold_divide(OptContext *ctx, TCGOp *op) { if (fold_const2(ctx, op) || fold_xi_to_x(ctx, op, 1)) { return true; } return false; } static bool fold_dup(OptContext *ctx, TCGOp *op) { if (arg_is_const(op->args[1])) { uint64_t t = arg_info(op->args[1])->val; t = dup_const(TCGOP_VECE(op), t); return tcg_opt_gen_movi(ctx, op, op->args[0], t); } return false; } static bool fold_dup2(OptContext *ctx, TCGOp *op) { if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, arg_info(op->args[2])->val); return tcg_opt_gen_movi(ctx, op, op->args[0], t); } if (args_are_copies(op->args[1], op->args[2])) { op->opc = INDEX_op_dup_vec; TCGOP_VECE(op) = MO_32; } return false; } static bool fold_eqv(OptContext *ctx, TCGOp *op) { if (fold_const2_commutative(ctx, op) || fold_xi_to_x(ctx, op, -1) || fold_xi_to_not(ctx, op, 0)) { return true; } ctx->s_mask = arg_info(op->args[1])->s_mask & arg_info(op->args[2])->s_mask; return false; } static bool fold_extract(OptContext *ctx, TCGOp *op) { uint64_t z_mask_old, z_mask; int pos = op->args[2]; int len = op->args[3]; if (arg_is_const(op->args[1])) { uint64_t t; t = arg_info(op->args[1])->val; t = extract64(t, pos, len); return tcg_opt_gen_movi(ctx, op, op->args[0], t); } z_mask_old = arg_info(op->args[1])->z_mask; z_mask = extract64(z_mask_old, pos, len); if (pos == 0) { ctx->a_mask = z_mask_old ^ z_mask; } ctx->z_mask = z_mask; ctx->s_mask = smask_from_zmask(z_mask); return fold_masks(ctx, op); } static bool fold_extract2(OptContext *ctx, TCGOp *op) { if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { uint64_t v1 = arg_info(op->args[1])->val; uint64_t v2 = arg_info(op->args[2])->val; int shr = op->args[3]; if (op->opc == INDEX_op_extract2_i64) { v1 >>= shr; v2 <<= 64 - shr; } else { v1 = (uint32_t)v1 >> shr; v2 = (uint64_t)((int32_t)v2 << (32 - shr)); } return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); } return false; } static bool fold_exts(OptContext *ctx, TCGOp *op) { uint64_t s_mask_old, s_mask, z_mask, sign; bool type_change = false; if (fold_const1(ctx, op)) { return true; } z_mask = arg_info(op->args[1])->z_mask; s_mask = arg_info(op->args[1])->s_mask; s_mask_old = s_mask; switch (op->opc) { CASE_OP_32_64(ext8s): sign = INT8_MIN; z_mask = (uint8_t)z_mask; break; CASE_OP_32_64(ext16s): sign = INT16_MIN; z_mask = (uint16_t)z_mask; break; case INDEX_op_ext_i32_i64: type_change = true; QEMU_FALLTHROUGH; case INDEX_op_ext32s_i64: sign = INT32_MIN; z_mask = (uint32_t)z_mask; break; default: g_assert_not_reached(); } if (z_mask & sign) { z_mask |= sign; } s_mask |= sign << 1; ctx->z_mask = z_mask; ctx->s_mask = s_mask; if (!type_change) { ctx->a_mask = s_mask & ~s_mask_old; } return fold_masks(ctx, op); } static bool fold_extu(OptContext *ctx, TCGOp *op) { uint64_t z_mask_old, z_mask; bool type_change = false; if (fold_const1(ctx, op)) { return true; } z_mask_old = z_mask = arg_info(op->args[1])->z_mask; switch (op->opc) { CASE_OP_32_64(ext8u): z_mask = (uint8_t)z_mask; break; CASE_OP_32_64(ext16u): z_mask = (uint16_t)z_mask; break; case INDEX_op_extrl_i64_i32: case INDEX_op_extu_i32_i64: type_change = true; QEMU_FALLTHROUGH; case INDEX_op_ext32u_i64: z_mask = (uint32_t)z_mask; break; case INDEX_op_extrh_i64_i32: type_change = true; z_mask >>= 32; break; default: g_assert_not_reached(); } ctx->z_mask = z_mask; ctx->s_mask = smask_from_zmask(z_mask); if (!type_change) { ctx->a_mask = z_mask_old ^ z_mask; } return fold_masks(ctx, op); } static bool fold_mb(OptContext *ctx, TCGOp *op) { /* Eliminate duplicate and redundant fence instructions. */ if (ctx->prev_mb) { /* * Merge two barriers of the same type into one, * or a weaker barrier into a stronger one, * or two weaker barriers into a stronger one. * mb X; mb Y => mb X|Y * mb; strl => mb; st * ldaq; mb => ld; mb * ldaq; strl => ld; mb; st * Other combinations are also merged into a strong * barrier. This is stricter than specified but for * the purposes of TCG is better than not optimizing. */ ctx->prev_mb->args[0] |= op->args[0]; tcg_op_remove(ctx->tcg, op); } else { ctx->prev_mb = op; } return true; } static bool fold_mov(OptContext *ctx, TCGOp *op) { return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); } static bool fold_movcond(OptContext *ctx, TCGOp *op) { TCGCond cond = op->args[5]; int i; if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { op->args[5] = cond = tcg_swap_cond(cond); } /* * Canonicalize the "false" input reg to match the destination reg so * that the tcg backend can implement a "move if true" operation. */ if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { op->args[5] = cond = tcg_invert_cond(cond); } i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond); if (i >= 0) { return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); } ctx->z_mask = arg_info(op->args[3])->z_mask | arg_info(op->args[4])->z_mask; ctx->s_mask = arg_info(op->args[3])->s_mask & arg_info(op->args[4])->s_mask; if (arg_is_const(op->args[3]) && arg_is_const(op->args[4])) { uint64_t tv = arg_info(op->args[3])->val; uint64_t fv = arg_info(op->args[4])->val; TCGOpcode opc, negopc = 0; switch (ctx->type) { case TCG_TYPE_I32: opc = INDEX_op_setcond_i32; if (TCG_TARGET_HAS_negsetcond_i32) { negopc = INDEX_op_negsetcond_i32; } tv = (int32_t)tv; fv = (int32_t)fv; break; case TCG_TYPE_I64: opc = INDEX_op_setcond_i64; if (TCG_TARGET_HAS_negsetcond_i64) { negopc = INDEX_op_negsetcond_i64; } break; default: g_assert_not_reached(); } if (tv == 1 && fv == 0) { op->opc = opc; op->args[3] = cond; } else if (fv == 1 && tv == 0) { op->opc = opc; op->args[3] = tcg_invert_cond(cond); } else if (negopc) { if (tv == -1 && fv == 0) { op->opc = negopc; op->args[3] = cond; } else if (fv == -1 && tv == 0) { op->opc = negopc; op->args[3] = tcg_invert_cond(cond); } } } return false; } static bool fold_mul(OptContext *ctx, TCGOp *op) { if (fold_const2(ctx, op) || fold_xi_to_i(ctx, op, 0) || fold_xi_to_x(ctx, op, 1)) { return true; } return false; } static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) { if (fold_const2_commutative(ctx, op) || fold_xi_to_i(ctx, op, 0)) { return true; } return false; } static bool fold_multiply2(OptContext *ctx, TCGOp *op) { swap_commutative(op->args[0], &op->args[2], &op->args[3]); if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { uint64_t a = arg_info(op->args[2])->val; uint64_t b = arg_info(op->args[3])->val; uint64_t h, l; TCGArg rl, rh; TCGOp *op2; switch (op->opc) { case INDEX_op_mulu2_i32: l = (uint64_t)(uint32_t)a * (uint32_t)b; h = (int32_t)(l >> 32); l = (int32_t)l; break; case INDEX_op_muls2_i32: l = (int64_t)(int32_t)a * (int32_t)b; h = l >> 32; l = (int32_t)l; break; case INDEX_op_mulu2_i64: mulu64(&l, &h, a, b); break; case INDEX_op_muls2_i64: muls64(&l, &h, a, b); break; default: g_assert_not_reached(); } rl = op->args[0]; rh = op->args[1]; /* The proper opcode is supplied by tcg_opt_gen_mov. */ op2 = tcg_op_insert_before(ctx->tcg, op, 0, 2); tcg_opt_gen_movi(ctx, op, rl, l); tcg_opt_gen_movi(ctx, op2, rh, h); return true; } return false; } static bool fold_nand(OptContext *ctx, TCGOp *op) { if (fold_const2_commutative(ctx, op) || fold_xi_to_not(ctx, op, -1)) { return true; } ctx->s_mask = arg_info(op->args[1])->s_mask & arg_info(op->args[2])->s_mask; return false; } static bool fold_neg(OptContext *ctx, TCGOp *op) { uint64_t z_mask; if (fold_const1(ctx, op)) { return true; } /* Set to 1 all bits to the left of the rightmost. */ z_mask = arg_info(op->args[1])->z_mask; ctx->z_mask = -(z_mask & -z_mask); /* * Because of fold_sub_to_neg, we want to always return true, * via finish_folding. */ finish_folding(ctx, op); return true; } static bool fold_nor(OptContext *ctx, TCGOp *op) { if (fold_const2_commutative(ctx, op) || fold_xi_to_not(ctx, op, 0)) { return true; } ctx->s_mask = arg_info(op->args[1])->s_mask & arg_info(op->args[2])->s_mask; return false; } static bool fold_not(OptContext *ctx, TCGOp *op) { if (fold_const1(ctx, op)) { return true; } ctx->s_mask = arg_info(op->args[1])->s_mask; /* Because of fold_to_not, we want to always return true, via finish. */ finish_folding(ctx, op); return true; } static bool fold_or(OptContext *ctx, TCGOp *op) { if (fold_const2_commutative(ctx, op) || fold_xi_to_x(ctx, op, 0) || fold_xx_to_x(ctx, op)) { return true; } ctx->z_mask = arg_info(op->args[1])->z_mask | arg_info(op->args[2])->z_mask; ctx->s_mask = arg_info(op->args[1])->s_mask & arg_info(op->args[2])->s_mask; return fold_masks(ctx, op); } static bool fold_orc(OptContext *ctx, TCGOp *op) { if (fold_const2(ctx, op) || fold_xx_to_i(ctx, op, -1) || fold_xi_to_x(ctx, op, -1) || fold_ix_to_not(ctx, op, 0)) { return true; } ctx->s_mask = arg_info(op->args[1])->s_mask & arg_info(op->args[2])->s_mask; return false; } static bool fold_qemu_ld(OptContext *ctx, TCGOp *op) { const TCGOpDef *def = &tcg_op_defs[op->opc]; MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; MemOp mop = get_memop(oi); int width = 8 * memop_size(mop); if (width < 64) { ctx->s_mask = MAKE_64BIT_MASK(width, 64 - width); if (!(mop & MO_SIGN)) { ctx->z_mask = MAKE_64BIT_MASK(0, width); ctx->s_mask <<= 1; } } /* Opcodes that touch guest memory stop the mb optimization. */ ctx->prev_mb = NULL; return false; } static bool fold_qemu_st(OptContext *ctx, TCGOp *op) { /* Opcodes that touch guest memory stop the mb optimization. */ ctx->prev_mb = NULL; return false; } static bool fold_remainder(OptContext *ctx, TCGOp *op) { if (fold_const2(ctx, op) || fold_xx_to_i(ctx, op, 0)) { return true; } return false; } static bool fold_setcond(OptContext *ctx, TCGOp *op) { TCGCond cond = op->args[3]; int i; if (swap_commutative(op->args[0], &op->args[1], &op->args[2])) { op->args[3] = cond = tcg_swap_cond(cond); } i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond); if (i >= 0) { return tcg_opt_gen_movi(ctx, op, op->args[0], i); } ctx->z_mask = 1; ctx->s_mask = smask_from_zmask(1); return false; } static bool fold_negsetcond(OptContext *ctx, TCGOp *op) { TCGCond cond = op->args[3]; int i; if (swap_commutative(op->args[0], &op->args[1], &op->args[2])) { op->args[3] = cond = tcg_swap_cond(cond); } i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond); if (i >= 0) { return tcg_opt_gen_movi(ctx, op, op->args[0], -i); } /* Value is {0,-1} so all bits are repetitions of the sign. */ ctx->s_mask = -1; return false; } static bool fold_setcond2(OptContext *ctx, TCGOp *op) { TCGCond cond = op->args[5]; int i, inv = 0; if (swap_commutative2(&op->args[1], &op->args[3])) { op->args[5] = cond = tcg_swap_cond(cond); } i = do_constant_folding_cond2(&op->args[1], &op->args[3], cond); if (i >= 0) { goto do_setcond_const; } switch (cond) { case TCG_COND_LT: case TCG_COND_GE: /* * Simplify LT/GE comparisons vs zero to a single compare * vs the high word of the input. */ if (arg_is_const(op->args[3]) && arg_info(op->args[3])->val == 0 && arg_is_const(op->args[4]) && arg_info(op->args[4])->val == 0) { goto do_setcond_high; } break; case TCG_COND_NE: inv = 1; QEMU_FALLTHROUGH; case TCG_COND_EQ: /* * Simplify EQ/NE comparisons where one of the pairs * can be simplified. */ i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], op->args[3], cond); switch (i ^ inv) { case 0: goto do_setcond_const; case 1: goto do_setcond_high; } i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], op->args[4], cond); switch (i ^ inv) { case 0: goto do_setcond_const; case 1: op->args[2] = op->args[3]; op->args[3] = cond; op->opc = INDEX_op_setcond_i32; break; } break; default: break; do_setcond_high: op->args[1] = op->args[2]; op->args[2] = op->args[4]; op->args[3] = cond; op->opc = INDEX_op_setcond_i32; break; } ctx->z_mask = 1; ctx->s_mask = smask_from_zmask(1); return false; do_setcond_const: return tcg_opt_gen_movi(ctx, op, op->args[0], i); } static bool fold_sextract(OptContext *ctx, TCGOp *op) { uint64_t z_mask, s_mask, s_mask_old; int pos = op->args[2]; int len = op->args[3]; if (arg_is_const(op->args[1])) { uint64_t t; t = arg_info(op->args[1])->val; t = sextract64(t, pos, len); return tcg_opt_gen_movi(ctx, op, op->args[0], t); } z_mask = arg_info(op->args[1])->z_mask; z_mask = sextract64(z_mask, pos, len); ctx->z_mask = z_mask; s_mask_old = arg_info(op->args[1])->s_mask; s_mask = sextract64(s_mask_old, pos, len); s_mask |= MAKE_64BIT_MASK(len, 64 - len); ctx->s_mask = s_mask; if (pos == 0) { ctx->a_mask = s_mask & ~s_mask_old; } return fold_masks(ctx, op); } static bool fold_shift(OptContext *ctx, TCGOp *op) { uint64_t s_mask, z_mask, sign; if (fold_const2(ctx, op) || fold_ix_to_i(ctx, op, 0) || fold_xi_to_x(ctx, op, 0)) { return true; } s_mask = arg_info(op->args[1])->s_mask; z_mask = arg_info(op->args[1])->z_mask; if (arg_is_const(op->args[2])) { int sh = arg_info(op->args[2])->val; ctx->z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); ctx->s_mask = smask_from_smask(s_mask); return fold_masks(ctx, op); } switch (op->opc) { CASE_OP_32_64(sar): /* * Arithmetic right shift will not reduce the number of * input sign repetitions. */ ctx->s_mask = s_mask; break; CASE_OP_32_64(shr): /* * If the sign bit is known zero, then logical right shift * will not reduced the number of input sign repetitions. */ sign = (s_mask & -s_mask) >> 1; if (!(z_mask & sign)) { ctx->s_mask = s_mask; } break; default: break; } return false; } static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) { TCGOpcode neg_op; bool have_neg; if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { return false; } switch (ctx->type) { case TCG_TYPE_I32: neg_op = INDEX_op_neg_i32; have_neg = true; break; case TCG_TYPE_I64: neg_op = INDEX_op_neg_i64; have_neg = true; break; case TCG_TYPE_V64: case TCG_TYPE_V128: case TCG_TYPE_V256: neg_op = INDEX_op_neg_vec; have_neg = (TCG_TARGET_HAS_neg_vec && tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); break; default: g_assert_not_reached(); } if (have_neg) { op->opc = neg_op; op->args[1] = op->args[2]; return fold_neg(ctx, op); } return false; } /* We cannot as yet do_constant_folding with vectors. */ static bool fold_sub_vec(OptContext *ctx, TCGOp *op) { if (fold_xx_to_i(ctx, op, 0) || fold_xi_to_x(ctx, op, 0) || fold_sub_to_neg(ctx, op)) { return true; } return false; } static bool fold_sub(OptContext *ctx, TCGOp *op) { if (fold_const2(ctx, op) || fold_sub_vec(ctx, op)) { return true; } /* Fold sub r,x,i to add r,x,-i */ if (arg_is_const(op->args[2])) { uint64_t val = arg_info(op->args[2])->val; op->opc = (ctx->type == TCG_TYPE_I32 ? INDEX_op_add_i32 : INDEX_op_add_i64); op->args[2] = arg_new_constant(ctx, -val); } return false; } static bool fold_sub2(OptContext *ctx, TCGOp *op) { return fold_addsub2(ctx, op, false); } static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) { /* We can't do any folding with a load, but we can record bits. */ switch (op->opc) { CASE_OP_32_64(ld8s): ctx->s_mask = MAKE_64BIT_MASK(8, 56); break; CASE_OP_32_64(ld8u): ctx->z_mask = MAKE_64BIT_MASK(0, 8); ctx->s_mask = MAKE_64BIT_MASK(9, 55); break; CASE_OP_32_64(ld16s): ctx->s_mask = MAKE_64BIT_MASK(16, 48); break; CASE_OP_32_64(ld16u): ctx->z_mask = MAKE_64BIT_MASK(0, 16); ctx->s_mask = MAKE_64BIT_MASK(17, 47); break; case INDEX_op_ld32s_i64: ctx->s_mask = MAKE_64BIT_MASK(32, 32); break; case INDEX_op_ld32u_i64: ctx->z_mask = MAKE_64BIT_MASK(0, 32); ctx->s_mask = MAKE_64BIT_MASK(33, 31); break; default: g_assert_not_reached(); } return false; } static bool fold_tcg_ld_memcopy(OptContext *ctx, TCGOp *op) { TCGTemp *dst, *src; intptr_t ofs; TCGType type; if (op->args[1] != tcgv_ptr_arg(tcg_env)) { return false; } type = ctx->type; ofs = op->args[2]; dst = arg_temp(op->args[0]); src = find_mem_copy_for(ctx, type, ofs); if (src && src->base_type == type) { return tcg_opt_gen_mov(ctx, op, temp_arg(dst), temp_arg(src)); } reset_ts(ctx, dst); record_mem_copy(ctx, type, dst, ofs, ofs + tcg_type_size(type) - 1); return true; } static bool fold_tcg_st(OptContext *ctx, TCGOp *op) { intptr_t ofs = op->args[2]; intptr_t lm1; if (op->args[1] != tcgv_ptr_arg(tcg_env)) { remove_mem_copy_all(ctx); return false; } switch (op->opc) { CASE_OP_32_64(st8): lm1 = 0; break; CASE_OP_32_64(st16): lm1 = 1; break; case INDEX_op_st32_i64: case INDEX_op_st_i32: lm1 = 3; break; case INDEX_op_st_i64: lm1 = 7; break; case INDEX_op_st_vec: lm1 = tcg_type_size(ctx->type) - 1; break; default: g_assert_not_reached(); } remove_mem_copy_in(ctx, ofs, ofs + lm1); return false; } static bool fold_tcg_st_memcopy(OptContext *ctx, TCGOp *op) { TCGTemp *src; intptr_t ofs, last; TCGType type; if (op->args[1] != tcgv_ptr_arg(tcg_env)) { fold_tcg_st(ctx, op); return false; } src = arg_temp(op->args[0]); ofs = op->args[2]; type = ctx->type; /* * Eliminate duplicate stores of a constant. * This happens frequently when the target ISA zero-extends. */ if (ts_is_const(src)) { TCGTemp *prev = find_mem_copy_for(ctx, type, ofs); if (src == prev) { tcg_op_remove(ctx->tcg, op); return true; } } last = ofs + tcg_type_size(type) - 1; remove_mem_copy_in(ctx, ofs, last); record_mem_copy(ctx, type, src, ofs, last); return false; } static bool fold_xor(OptContext *ctx, TCGOp *op) { if (fold_const2_commutative(ctx, op) || fold_xx_to_i(ctx, op, 0) || fold_xi_to_x(ctx, op, 0) || fold_xi_to_not(ctx, op, -1)) { return true; } ctx->z_mask = arg_info(op->args[1])->z_mask | arg_info(op->args[2])->z_mask; ctx->s_mask = arg_info(op->args[1])->s_mask & arg_info(op->args[2])->s_mask; return fold_masks(ctx, op); } /* Propagate constants and copies, fold constant expressions. */ void tcg_optimize(TCGContext *s) { int nb_temps, i; TCGOp *op, *op_next; OptContext ctx = { .tcg = s }; QSIMPLEQ_INIT(&ctx.mem_free); /* Array VALS has an element for each temp. If this temp holds a constant then its value is kept in VALS' element. If this temp is a copy of other ones then the other copies are available through the doubly linked circular list. */ nb_temps = s->nb_temps; for (i = 0; i < nb_temps; ++i) { s->temps[i].state_ptr = NULL; } QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { TCGOpcode opc = op->opc; const TCGOpDef *def; bool done = false; /* Calls are special. */ if (opc == INDEX_op_call) { fold_call(&ctx, op); continue; } def = &tcg_op_defs[opc]; init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); /* Pre-compute the type of the operation. */ if (def->flags & TCG_OPF_VECTOR) { ctx.type = TCG_TYPE_V64 + TCGOP_VECL(op); } else if (def->flags & TCG_OPF_64BIT) { ctx.type = TCG_TYPE_I64; } else { ctx.type = TCG_TYPE_I32; } /* Assume all bits affected, no bits known zero, no sign reps. */ ctx.a_mask = -1; ctx.z_mask = -1; ctx.s_mask = 0; /* * Process each opcode. * Sorted alphabetically by opcode as much as possible. */ switch (opc) { CASE_OP_32_64(add): done = fold_add(&ctx, op); break; case INDEX_op_add_vec: done = fold_add_vec(&ctx, op); break; CASE_OP_32_64(add2): done = fold_add2(&ctx, op); break; CASE_OP_32_64_VEC(and): done = fold_and(&ctx, op); break; CASE_OP_32_64_VEC(andc): done = fold_andc(&ctx, op); break; CASE_OP_32_64(brcond): done = fold_brcond(&ctx, op); break; case INDEX_op_brcond2_i32: done = fold_brcond2(&ctx, op); break; CASE_OP_32_64(bswap16): CASE_OP_32_64(bswap32): case INDEX_op_bswap64_i64: done = fold_bswap(&ctx, op); break; CASE_OP_32_64(clz): CASE_OP_32_64(ctz): done = fold_count_zeros(&ctx, op); break; CASE_OP_32_64(ctpop): done = fold_ctpop(&ctx, op); break; CASE_OP_32_64(deposit): done = fold_deposit(&ctx, op); break; CASE_OP_32_64(div): CASE_OP_32_64(divu): done = fold_divide(&ctx, op); break; case INDEX_op_dup_vec: done = fold_dup(&ctx, op); break; case INDEX_op_dup2_vec: done = fold_dup2(&ctx, op); break; CASE_OP_32_64_VEC(eqv): done = fold_eqv(&ctx, op); break; CASE_OP_32_64(extract): done = fold_extract(&ctx, op); break; CASE_OP_32_64(extract2): done = fold_extract2(&ctx, op); break; CASE_OP_32_64(ext8s): CASE_OP_32_64(ext16s): case INDEX_op_ext32s_i64: case INDEX_op_ext_i32_i64: done = fold_exts(&ctx, op); break; CASE_OP_32_64(ext8u): CASE_OP_32_64(ext16u): case INDEX_op_ext32u_i64: case INDEX_op_extu_i32_i64: case INDEX_op_extrl_i64_i32: case INDEX_op_extrh_i64_i32: done = fold_extu(&ctx, op); break; CASE_OP_32_64(ld8s): CASE_OP_32_64(ld8u): CASE_OP_32_64(ld16s): CASE_OP_32_64(ld16u): case INDEX_op_ld32s_i64: case INDEX_op_ld32u_i64: done = fold_tcg_ld(&ctx, op); break; case INDEX_op_ld_i32: case INDEX_op_ld_i64: case INDEX_op_ld_vec: done = fold_tcg_ld_memcopy(&ctx, op); break; CASE_OP_32_64(st8): CASE_OP_32_64(st16): case INDEX_op_st32_i64: done = fold_tcg_st(&ctx, op); break; case INDEX_op_st_i32: case INDEX_op_st_i64: case INDEX_op_st_vec: done = fold_tcg_st_memcopy(&ctx, op); break; case INDEX_op_mb: done = fold_mb(&ctx, op); break; CASE_OP_32_64_VEC(mov): done = fold_mov(&ctx, op); break; CASE_OP_32_64(movcond): done = fold_movcond(&ctx, op); break; CASE_OP_32_64(mul): done = fold_mul(&ctx, op); break; CASE_OP_32_64(mulsh): CASE_OP_32_64(muluh): done = fold_mul_highpart(&ctx, op); break; CASE_OP_32_64(muls2): CASE_OP_32_64(mulu2): done = fold_multiply2(&ctx, op); break; CASE_OP_32_64_VEC(nand): done = fold_nand(&ctx, op); break; CASE_OP_32_64(neg): done = fold_neg(&ctx, op); break; CASE_OP_32_64_VEC(nor): done = fold_nor(&ctx, op); break; CASE_OP_32_64_VEC(not): done = fold_not(&ctx, op); break; CASE_OP_32_64_VEC(or): done = fold_or(&ctx, op); break; CASE_OP_32_64_VEC(orc): done = fold_orc(&ctx, op); break; case INDEX_op_qemu_ld_a32_i32: case INDEX_op_qemu_ld_a64_i32: case INDEX_op_qemu_ld_a32_i64: case INDEX_op_qemu_ld_a64_i64: case INDEX_op_qemu_ld_a32_i128: case INDEX_op_qemu_ld_a64_i128: done = fold_qemu_ld(&ctx, op); break; case INDEX_op_qemu_st8_a32_i32: case INDEX_op_qemu_st8_a64_i32: case INDEX_op_qemu_st_a32_i32: case INDEX_op_qemu_st_a64_i32: case INDEX_op_qemu_st_a32_i64: case INDEX_op_qemu_st_a64_i64: case INDEX_op_qemu_st_a32_i128: case INDEX_op_qemu_st_a64_i128: done = fold_qemu_st(&ctx, op); break; CASE_OP_32_64(rem): CASE_OP_32_64(remu): done = fold_remainder(&ctx, op); break; CASE_OP_32_64(rotl): CASE_OP_32_64(rotr): CASE_OP_32_64(sar): CASE_OP_32_64(shl): CASE_OP_32_64(shr): done = fold_shift(&ctx, op); break; CASE_OP_32_64(setcond): done = fold_setcond(&ctx, op); break; CASE_OP_32_64(negsetcond): done = fold_negsetcond(&ctx, op); break; case INDEX_op_setcond2_i32: done = fold_setcond2(&ctx, op); break; CASE_OP_32_64(sextract): done = fold_sextract(&ctx, op); break; CASE_OP_32_64(sub): done = fold_sub(&ctx, op); break; case INDEX_op_sub_vec: done = fold_sub_vec(&ctx, op); break; CASE_OP_32_64(sub2): done = fold_sub2(&ctx, op); break; CASE_OP_32_64_VEC(xor): done = fold_xor(&ctx, op); break; default: break; } if (!done) { finish_folding(&ctx, op); } } }