/* * PowerPC Radix MMU mulation helpers for QEMU. * * Copyright (c) 2016 Suraj Jitindar Singh, IBM Corporation * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "qemu/error-report.h" #include "sysemu/kvm.h" #include "kvm_ppc.h" #include "exec/log.h" #include "internal.h" #include "mmu-radix64.h" #include "mmu-book3s-v3.h" static bool ppc_radix64_get_fully_qualified_addr(const CPUPPCState *env, vaddr eaddr, uint64_t *lpid, uint64_t *pid) { /* When EA(2:11) are nonzero, raise a segment interrupt */ if (eaddr & ~R_EADDR_VALID_MASK) { return false; } if (FIELD_EX64(env->msr, MSR, HV)) { /* MSR[HV] -> Hypervisor/bare metal */ switch (eaddr & R_EADDR_QUADRANT) { case R_EADDR_QUADRANT0: *lpid = 0; *pid = env->spr[SPR_BOOKS_PID]; break; case R_EADDR_QUADRANT1: *lpid = env->spr[SPR_LPIDR]; *pid = env->spr[SPR_BOOKS_PID]; break; case R_EADDR_QUADRANT2: *lpid = env->spr[SPR_LPIDR]; *pid = 0; break; case R_EADDR_QUADRANT3: *lpid = 0; *pid = 0; break; default: g_assert_not_reached(); } } else { /* !MSR[HV] -> Guest */ switch (eaddr & R_EADDR_QUADRANT) { case R_EADDR_QUADRANT0: /* Guest application */ *lpid = env->spr[SPR_LPIDR]; *pid = env->spr[SPR_BOOKS_PID]; break; case R_EADDR_QUADRANT1: /* Illegal */ case R_EADDR_QUADRANT2: return false; case R_EADDR_QUADRANT3: /* Guest OS */ *lpid = env->spr[SPR_LPIDR]; *pid = 0; /* pid set to 0 -> addresses guest operating system */ break; default: g_assert_not_reached(); } } return true; } static void ppc_radix64_raise_segi(PowerPCCPU *cpu, MMUAccessType access_type, vaddr eaddr) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; switch (access_type) { case MMU_INST_FETCH: /* Instruction Segment Interrupt */ cs->exception_index = POWERPC_EXCP_ISEG; break; case MMU_DATA_STORE: case MMU_DATA_LOAD: /* Data Segment Interrupt */ cs->exception_index = POWERPC_EXCP_DSEG; env->spr[SPR_DAR] = eaddr; break; default: g_assert_not_reached(); } env->error_code = 0; } static inline const char *access_str(MMUAccessType access_type) { return access_type == MMU_DATA_LOAD ? "reading" : (access_type == MMU_DATA_STORE ? "writing" : "execute"); } static void ppc_radix64_raise_si(PowerPCCPU *cpu, MMUAccessType access_type, vaddr eaddr, uint32_t cause) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx" cause %08x\n", __func__, access_str(access_type), eaddr, cause); switch (access_type) { case MMU_INST_FETCH: /* Instruction Storage Interrupt */ cs->exception_index = POWERPC_EXCP_ISI; env->error_code = cause; break; case MMU_DATA_STORE: cause |= DSISR_ISSTORE; /* fall through */ case MMU_DATA_LOAD: /* Data Storage Interrupt */ cs->exception_index = POWERPC_EXCP_DSI; env->spr[SPR_DSISR] = cause; env->spr[SPR_DAR] = eaddr; env->error_code = 0; break; default: g_assert_not_reached(); } } static void ppc_radix64_raise_hsi(PowerPCCPU *cpu, MMUAccessType access_type, vaddr eaddr, hwaddr g_raddr, uint32_t cause) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx" 0x%" HWADDR_PRIx" cause %08x\n", __func__, access_str(access_type), eaddr, g_raddr, cause); switch (access_type) { case MMU_INST_FETCH: /* H Instruction Storage Interrupt */ cs->exception_index = POWERPC_EXCP_HISI; env->spr[SPR_ASDR] = g_raddr; env->error_code = cause; break; case MMU_DATA_STORE: cause |= DSISR_ISSTORE; /* fall through */ case MMU_DATA_LOAD: /* H Data Storage Interrupt */ cs->exception_index = POWERPC_EXCP_HDSI; env->spr[SPR_HDSISR] = cause; env->spr[SPR_HDAR] = eaddr; env->spr[SPR_ASDR] = g_raddr; env->error_code = 0; break; default: g_assert_not_reached(); } } static bool ppc_radix64_check_prot(PowerPCCPU *cpu, MMUAccessType access_type, uint64_t pte, int *fault_cause, int *prot, int mmu_idx, bool partition_scoped) { CPUPPCState *env = &cpu->env; int need_prot; /* Check Page Attributes (pte58:59) */ if ((pte & R_PTE_ATT) == R_PTE_ATT_NI_IO && access_type == MMU_INST_FETCH) { /* * Radix PTE entries with the non-idempotent I/O attribute are treated * as guarded storage */ *fault_cause |= SRR1_NOEXEC_GUARD; return true; } /* Determine permissions allowed by Encoded Access Authority */ if (!partition_scoped && (pte & R_PTE_EAA_PRIV) && FIELD_EX64(env->msr, MSR, PR)) { *prot = 0; } else if (mmuidx_pr(mmu_idx) || (pte & R_PTE_EAA_PRIV) || partition_scoped) { *prot = ppc_radix64_get_prot_eaa(pte); } else { /* !MSR_PR && !(pte & R_PTE_EAA_PRIV) && !partition_scoped */ *prot = ppc_radix64_get_prot_eaa(pte); *prot &= ppc_radix64_get_prot_amr(cpu); /* Least combined permissions */ } /* Check if requested access type is allowed */ need_prot = prot_for_access_type(access_type); if (need_prot & ~*prot) { /* Page Protected for that Access */ *fault_cause |= access_type == MMU_INST_FETCH ? SRR1_NOEXEC_GUARD : DSISR_PROTFAULT; return true; } return false; } static void ppc_radix64_set_rc(PowerPCCPU *cpu, MMUAccessType access_type, uint64_t pte, hwaddr pte_addr, int *prot) { CPUState *cs = CPU(cpu); uint64_t npte; npte = pte | R_PTE_R; /* Always set reference bit */ if (access_type == MMU_DATA_STORE) { /* Store/Write */ npte |= R_PTE_C; /* Set change bit */ } else { /* * Treat the page as read-only for now, so that a later write * will pass through this function again to set the C bit. */ *prot &= ~PAGE_WRITE; } if (pte ^ npte) { /* If pte has changed then write it back */ stq_phys(cs->as, pte_addr, npte); } } static int ppc_radix64_next_level(AddressSpace *as, vaddr eaddr, uint64_t *pte_addr, uint64_t *nls, int *psize, uint64_t *pte, int *fault_cause) { uint64_t index, pde; if (*nls < 5) { /* Directory maps less than 2**5 entries */ *fault_cause |= DSISR_R_BADCONFIG; return 1; } /* Read page entry from guest address space */ pde = ldq_phys(as, *pte_addr); if (!(pde & R_PTE_VALID)) { /* Invalid Entry */ *fault_cause |= DSISR_NOPTE; return 1; } *pte = pde; *psize -= *nls; if (!(pde & R_PTE_LEAF)) { /* Prepare for next iteration */ *nls = pde & R_PDE_NLS; index = eaddr >> (*psize - *nls); /* Shift */ index &= ((1UL << *nls) - 1); /* Mask */ *pte_addr = (pde & R_PDE_NLB) + (index * sizeof(pde)); } return 0; } static int ppc_radix64_walk_tree(AddressSpace *as, vaddr eaddr, uint64_t base_addr, uint64_t nls, hwaddr *raddr, int *psize, uint64_t *pte, int *fault_cause, hwaddr *pte_addr) { uint64_t index, pde, rpn , mask; if (nls < 5) { /* Directory maps less than 2**5 entries */ *fault_cause |= DSISR_R_BADCONFIG; return 1; } index = eaddr >> (*psize - nls); /* Shift */ index &= ((1UL << nls) - 1); /* Mask */ *pte_addr = base_addr + (index * sizeof(pde)); do { int ret; ret = ppc_radix64_next_level(as, eaddr, pte_addr, &nls, psize, &pde, fault_cause); if (ret) { return ret; } } while (!(pde & R_PTE_LEAF)); *pte = pde; rpn = pde & R_PTE_RPN; mask = (1UL << *psize) - 1; /* Or high bits of rpn and low bits to ea to form whole real addr */ *raddr = (rpn & ~mask) | (eaddr & mask); return 0; } static bool validate_pate(PowerPCCPU *cpu, uint64_t lpid, ppc_v3_pate_t *pate) { CPUPPCState *env = &cpu->env; if (!(pate->dw0 & PATE0_HR)) { return false; } if (lpid == 0 && !FIELD_EX64(env->msr, MSR, HV)) { return false; } if ((pate->dw0 & PATE1_R_PRTS) < 5) { return false; } /* More checks ... */ return true; } static int ppc_radix64_partition_scoped_xlate(PowerPCCPU *cpu, MMUAccessType access_type, vaddr eaddr, hwaddr g_raddr, ppc_v3_pate_t pate, hwaddr *h_raddr, int *h_prot, int *h_page_size, bool pde_addr, int mmu_idx, bool guest_visible) { int fault_cause = 0; hwaddr pte_addr; uint64_t pte; qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx " mmu_idx %u 0x%"HWADDR_PRIx"\n", __func__, access_str(access_type), eaddr, mmu_idx, g_raddr); *h_page_size = PRTBE_R_GET_RTS(pate.dw0); /* No valid pte or access denied due to protection */ if (ppc_radix64_walk_tree(CPU(cpu)->as, g_raddr, pate.dw0 & PRTBE_R_RPDB, pate.dw0 & PRTBE_R_RPDS, h_raddr, h_page_size, &pte, &fault_cause, &pte_addr) || ppc_radix64_check_prot(cpu, access_type, pte, &fault_cause, h_prot, mmu_idx, true)) { if (pde_addr) { /* address being translated was that of a guest pde */ fault_cause |= DSISR_PRTABLE_FAULT; } if (guest_visible) { ppc_radix64_raise_hsi(cpu, access_type, eaddr, g_raddr, fault_cause); } return 1; } if (guest_visible) { ppc_radix64_set_rc(cpu, access_type, pte, pte_addr, h_prot); } return 0; } /* * The spapr vhc has a flat partition scope provided by qemu memory when * not nested. * * When running a nested guest, the addressing is 2-level radix on top of the * vhc memory, so it works practically identically to the bare metal 2-level * radix. So that code is selected directly. A cleaner and more flexible nested * hypervisor implementation would allow the vhc to provide a ->nested_xlate() * function but that is not required for the moment. */ static bool vhyp_flat_addressing(PowerPCCPU *cpu) { if (cpu->vhyp) { return !vhyp_cpu_in_nested(cpu); } return false; } static int ppc_radix64_process_scoped_xlate(PowerPCCPU *cpu, MMUAccessType access_type, vaddr eaddr, uint64_t pid, ppc_v3_pate_t pate, hwaddr *g_raddr, int *g_prot, int *g_page_size, int mmu_idx, bool guest_visible) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; uint64_t offset, size, prtbe_addr, prtbe0, base_addr, nls, index, pte; int fault_cause = 0, h_page_size, h_prot; hwaddr h_raddr, pte_addr; int ret; qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx " mmu_idx %u pid %"PRIu64"\n", __func__, access_str(access_type), eaddr, mmu_idx, pid); /* Index Process Table by PID to Find Corresponding Process Table Entry */ offset = pid * sizeof(struct prtb_entry); size = 1ULL << ((pate.dw1 & PATE1_R_PRTS) + 12); if (offset >= size) { /* offset exceeds size of the process table */ if (guest_visible) { ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_NOPTE); } return 1; } prtbe_addr = (pate.dw1 & PATE1_R_PRTB) + offset; if (vhyp_flat_addressing(cpu)) { prtbe0 = ldq_phys(cs->as, prtbe_addr); } else { /* * Process table addresses are subject to partition-scoped * translation * * On a Radix host, the partition-scoped page table for LPID=0 * is only used to translate the effective addresses of the * process table entries. */ ret = ppc_radix64_partition_scoped_xlate(cpu, 0, eaddr, prtbe_addr, pate, &h_raddr, &h_prot, &h_page_size, true, /* mmu_idx is 5 because we're translating from hypervisor scope */ 5, guest_visible); if (ret) { return ret; } prtbe0 = ldq_phys(cs->as, h_raddr); } /* Walk Radix Tree from Process Table Entry to Convert EA to RA */ *g_page_size = PRTBE_R_GET_RTS(prtbe0); base_addr = prtbe0 & PRTBE_R_RPDB; nls = prtbe0 & PRTBE_R_RPDS; if (FIELD_EX64(env->msr, MSR, HV) || vhyp_flat_addressing(cpu)) { /* * Can treat process table addresses as real addresses */ ret = ppc_radix64_walk_tree(cs->as, eaddr & R_EADDR_MASK, base_addr, nls, g_raddr, g_page_size, &pte, &fault_cause, &pte_addr); if (ret) { /* No valid PTE */ if (guest_visible) { ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause); } return ret; } } else { uint64_t rpn, mask; index = (eaddr & R_EADDR_MASK) >> (*g_page_size - nls); /* Shift */ index &= ((1UL << nls) - 1); /* Mask */ pte_addr = base_addr + (index * sizeof(pte)); /* * Each process table address is subject to a partition-scoped * translation */ do { ret = ppc_radix64_partition_scoped_xlate(cpu, 0, eaddr, pte_addr, pate, &h_raddr, &h_prot, &h_page_size, true, /* mmu_idx is 5 because we're translating from hypervisor scope */ 5, guest_visible); if (ret) { return ret; } ret = ppc_radix64_next_level(cs->as, eaddr & R_EADDR_MASK, &h_raddr, &nls, g_page_size, &pte, &fault_cause); if (ret) { /* No valid pte */ if (guest_visible) { ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause); } return ret; } pte_addr = h_raddr; } while (!(pte & R_PTE_LEAF)); rpn = pte & R_PTE_RPN; mask = (1UL << *g_page_size) - 1; /* Or high bits of rpn and low bits to ea to form whole real addr */ *g_raddr = (rpn & ~mask) | (eaddr & mask); } if (ppc_radix64_check_prot(cpu, access_type, pte, &fault_cause, g_prot, mmu_idx, false)) { /* Access denied due to protection */ if (guest_visible) { ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause); } return 1; } if (guest_visible) { ppc_radix64_set_rc(cpu, access_type, pte, pte_addr, g_prot); } return 0; } /* * Radix tree translation is a 2 steps translation process: * * 1. Process-scoped translation: Guest Eff Addr -> Guest Real Addr * 2. Partition-scoped translation: Guest Real Addr -> Host Real Addr * * MSR[HV] * +-------------+----------------+---------------+ * | | HV = 0 | HV = 1 | * +-------------+----------------+---------------+ * | Relocation | Partition | No | * | = Off | Scoped | Translation | * Relocation +-------------+----------------+---------------+ * | Relocation | Partition & | Process | * | = On | Process Scoped | Scoped | * +-------------+----------------+---------------+ */ static bool ppc_radix64_xlate_impl(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type, hwaddr *raddr, int *psizep, int *protp, int mmu_idx, bool guest_visible) { CPUPPCState *env = &cpu->env; uint64_t lpid, pid; ppc_v3_pate_t pate; int psize, prot; hwaddr g_raddr; bool relocation; assert(!(mmuidx_hv(mmu_idx) && cpu->vhyp)); relocation = !mmuidx_real(mmu_idx); /* HV or virtual hypervisor Real Mode Access */ if (!relocation && (mmuidx_hv(mmu_idx) || vhyp_flat_addressing(cpu))) { /* In real mode top 4 effective addr bits (mostly) ignored */ *raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL; /* In HV mode, add HRMOR if top EA bit is clear */ if (mmuidx_hv(mmu_idx) || !env->has_hv_mode) { if (!(eaddr >> 63)) { *raddr |= env->spr[SPR_HRMOR]; } } *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC; *psizep = TARGET_PAGE_BITS; return true; } /* * Check UPRT (we avoid the check in real mode to deal with * transitional states during kexec. */ if (guest_visible && !ppc64_use_proc_tbl(cpu)) { qemu_log_mask(LOG_GUEST_ERROR, "LPCR:UPRT not set in radix mode ! LPCR=" TARGET_FMT_lx "\n", env->spr[SPR_LPCR]); } /* Virtual Mode Access - get the fully qualified address */ if (!ppc_radix64_get_fully_qualified_addr(&cpu->env, eaddr, &lpid, &pid)) { if (guest_visible) { ppc_radix64_raise_segi(cpu, access_type, eaddr); } return false; } /* Get Process Table */ if (cpu->vhyp) { PPCVirtualHypervisorClass *vhc; vhc = PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp); if (!vhc->get_pate(cpu->vhyp, cpu, lpid, &pate)) { if (guest_visible) { ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr, DSISR_R_BADCONFIG); } return false; } } else { if (!ppc64_v3_get_pate(cpu, lpid, &pate)) { if (guest_visible) { ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr, DSISR_R_BADCONFIG); } return false; } if (!validate_pate(cpu, lpid, &pate)) { if (guest_visible) { ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr, DSISR_R_BADCONFIG); } return false; } } *psizep = INT_MAX; *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC; /* * Perform process-scoped translation if relocation enabled. * * - Translates an effective address to a host real address in * quadrants 0 and 3 when HV=1. * * - Translates an effective address to a guest real address. */ if (relocation) { int ret = ppc_radix64_process_scoped_xlate(cpu, access_type, eaddr, pid, pate, &g_raddr, &prot, &psize, mmu_idx, guest_visible); if (ret) { return false; } *psizep = MIN(*psizep, psize); *protp &= prot; } else { g_raddr = eaddr & R_EADDR_MASK; } if (vhyp_flat_addressing(cpu)) { *raddr = g_raddr; } else { /* * Perform partition-scoped translation if !HV or HV access to * quadrants 1 or 2. Translates a guest real address to a host * real address. */ if (lpid || !mmuidx_hv(mmu_idx)) { int ret; ret = ppc_radix64_partition_scoped_xlate(cpu, access_type, eaddr, g_raddr, pate, raddr, &prot, &psize, false, mmu_idx, guest_visible); if (ret) { return false; } *psizep = MIN(*psizep, psize); *protp &= prot; } else { *raddr = g_raddr; } } return true; } bool ppc_radix64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type, hwaddr *raddrp, int *psizep, int *protp, int mmu_idx, bool guest_visible) { bool ret = ppc_radix64_xlate_impl(cpu, eaddr, access_type, raddrp, psizep, protp, mmu_idx, guest_visible); qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx " mmu_idx %u (prot %c%c%c) -> 0x%"HWADDR_PRIx"\n", __func__, access_str(access_type), eaddr, mmu_idx, *protp & PAGE_READ ? 'r' : '-', *protp & PAGE_WRITE ? 'w' : '-', *protp & PAGE_EXEC ? 'x' : '-', *raddrp); return ret; }