/* * ARM MPS2 AN505 FPGAIO emulation * * Copyright (c) 2018 Linaro Limited * Written by Peter Maydell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 or * (at your option) any later version. */ /* This is a model of the "FPGA system control and I/O" block found * in the AN505 FPGA image for the MPS2 devboard. * It is documented in AN505: * https://developer.arm.com/documentation/dai0505/latest/ */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/module.h" #include "qapi/error.h" #include "trace.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "hw/registerfields.h" #include "hw/misc/mps2-fpgaio.h" #include "hw/misc/led.h" #include "hw/qdev-properties.h" #include "qemu/timer.h" REG32(LED0, 0) REG32(DBGCTRL, 4) REG32(BUTTON, 8) REG32(CLK1HZ, 0x10) REG32(CLK100HZ, 0x14) REG32(COUNTER, 0x18) REG32(PRESCALE, 0x1c) REG32(PSCNTR, 0x20) REG32(SWITCH, 0x28) REG32(MISC, 0x4c) static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq) { return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND); } static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq) { return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq); } static void resync_counter(MPS2FPGAIO *s) { /* * Update s->counter and s->pscntr to their true current values * by calculating how many times PSCNTR has ticked since the * last time we did a resync. */ int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); int64_t elapsed = now - s->pscntr_sync_ticks; /* * Round elapsed down to a whole number of PSCNTR ticks, so we don't * lose time if we do multiple resyncs in a single tick. */ uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND); /* * Work out what PSCNTR and COUNTER have moved to. We assume that * PSCNTR reloads from PRESCALE one tick-period after it hits zero, * and that COUNTER increments at the same moment. */ if (ticks == 0) { /* We haven't ticked since the last time we were asked */ return; } else if (ticks < s->pscntr) { /* We haven't yet reached zero, just reduce the PSCNTR */ s->pscntr -= ticks; } else { if (s->prescale == 0) { /* * If the reload value is zero then the PSCNTR will stick * at zero once it reaches it, and so we will increment * COUNTER every tick after that. */ s->counter += ticks - s->pscntr; s->pscntr = 0; } else { /* * This is the complicated bit. This ASCII art diagram gives an * example with PRESCALE==5 PSCNTR==7: * * ticks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 * PSCNTR 7 6 5 4 3 2 1 0 5 4 3 2 1 0 5 * cinc 1 2 * y 0 1 2 3 4 5 6 7 8 9 10 11 12 * x 0 1 2 3 4 5 0 1 2 3 4 5 0 * * where x = y % (s->prescale + 1) * and so PSCNTR = s->prescale - x * and COUNTER is incremented by y / (s->prescale + 1) * * The case where PSCNTR < PRESCALE works out the same, * though we must be careful to calculate y as 64-bit unsigned * for all parts of the expression. * y < 0 is not possible because that implies ticks < s->pscntr. */ uint64_t y = ticks - s->pscntr + s->prescale; s->pscntr = s->prescale - (y % (s->prescale + 1)); s->counter += y / (s->prescale + 1); } } /* * Only advance the sync time to the timestamp of the last PSCNTR tick, * not all the way to 'now', so we don't lose time if we do multiple * resyncs in a single tick. */ s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND, s->prescale_clk); } static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size) { MPS2FPGAIO *s = MPS2_FPGAIO(opaque); uint64_t r; int64_t now; switch (offset) { case A_LED0: r = s->led0; break; case A_DBGCTRL: if (!s->has_dbgctrl) { goto bad_offset; } r = s->dbgctrl; break; case A_BUTTON: /* User-pressable board buttons. We don't model that, so just return * zeroes. */ r = 0; break; case A_PRESCALE: r = s->prescale; break; case A_MISC: r = s->misc; break; case A_CLK1HZ: now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1); break; case A_CLK100HZ: now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100); break; case A_COUNTER: resync_counter(s); r = s->counter; break; case A_PSCNTR: resync_counter(s); r = s->pscntr; break; case A_SWITCH: if (!s->has_switches) { goto bad_offset; } /* User-togglable board switches. We don't model that, so report 0. */ r = 0; break; default: bad_offset: qemu_log_mask(LOG_GUEST_ERROR, "MPS2 FPGAIO read: bad offset %x\n", (int) offset); r = 0; break; } trace_mps2_fpgaio_read(offset, r, size); return r; } static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { MPS2FPGAIO *s = MPS2_FPGAIO(opaque); int64_t now; trace_mps2_fpgaio_write(offset, value, size); switch (offset) { case A_LED0: if (s->num_leds != 0) { uint32_t i; s->led0 = value & MAKE_64BIT_MASK(0, s->num_leds); for (i = 0; i < s->num_leds; i++) { led_set_state(s->led[i], value & (1 << i)); } } break; case A_DBGCTRL: if (!s->has_dbgctrl) { goto bad_offset; } qemu_log_mask(LOG_UNIMP, "MPS2 FPGAIO: DBGCTRL unimplemented\n"); s->dbgctrl = value; break; case A_PRESCALE: resync_counter(s); s->prescale = value; break; case A_MISC: /* These are control bits for some of the other devices on the * board (SPI, CLCD, etc). We don't implement that yet, so just * make the bits read as written. */ qemu_log_mask(LOG_UNIMP, "MPS2 FPGAIO: MISC control bits unimplemented\n"); s->misc = value; break; case A_CLK1HZ: now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1); break; case A_CLK100HZ: now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100); break; case A_COUNTER: resync_counter(s); s->counter = value; break; case A_PSCNTR: resync_counter(s); s->pscntr = value; break; default: bad_offset: qemu_log_mask(LOG_GUEST_ERROR, "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset); break; } } static const MemoryRegionOps mps2_fpgaio_ops = { .read = mps2_fpgaio_read, .write = mps2_fpgaio_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void mps2_fpgaio_reset(DeviceState *dev) { MPS2FPGAIO *s = MPS2_FPGAIO(dev); int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); trace_mps2_fpgaio_reset(); s->led0 = 0; s->prescale = 0; s->misc = 0; s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1); s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100); s->counter = 0; s->pscntr = 0; s->pscntr_sync_ticks = now; for (size_t i = 0; i < s->num_leds; i++) { device_cold_reset(DEVICE(s->led[i])); } } static void mps2_fpgaio_init(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); MPS2FPGAIO *s = MPS2_FPGAIO(obj); memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s, "mps2-fpgaio", 0x1000); sysbus_init_mmio(sbd, &s->iomem); } static void mps2_fpgaio_realize(DeviceState *dev, Error **errp) { MPS2FPGAIO *s = MPS2_FPGAIO(dev); uint32_t i; if (s->num_leds > MPS2FPGAIO_MAX_LEDS) { error_setg(errp, "num-leds cannot be greater than %d", MPS2FPGAIO_MAX_LEDS); return; } for (i = 0; i < s->num_leds; i++) { g_autofree char *ledname = g_strdup_printf("USERLED%d", i); s->led[i] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH, LED_COLOR_GREEN, ledname); } } static const VMStateDescription mps2_fpgaio_vmstate = { .name = "mps2-fpgaio", .version_id = 3, .minimum_version_id = 3, .fields = (const VMStateField[]) { VMSTATE_UINT32(led0, MPS2FPGAIO), VMSTATE_UINT32(prescale, MPS2FPGAIO), VMSTATE_UINT32(misc, MPS2FPGAIO), VMSTATE_UINT32(dbgctrl, MPS2FPGAIO), VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO), VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO), VMSTATE_UINT32(counter, MPS2FPGAIO), VMSTATE_UINT32(pscntr, MPS2FPGAIO), VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO), VMSTATE_END_OF_LIST() }, }; static Property mps2_fpgaio_properties[] = { /* Frequency of the prescale counter */ DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000), /* Number of LEDs controlled by LED0 register */ DEFINE_PROP_UINT32("num-leds", MPS2FPGAIO, num_leds, 2), DEFINE_PROP_BOOL("has-switches", MPS2FPGAIO, has_switches, false), DEFINE_PROP_BOOL("has-dbgctrl", MPS2FPGAIO, has_dbgctrl, false), DEFINE_PROP_END_OF_LIST(), }; static void mps2_fpgaio_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &mps2_fpgaio_vmstate; dc->realize = mps2_fpgaio_realize; device_class_set_legacy_reset(dc, mps2_fpgaio_reset); device_class_set_props(dc, mps2_fpgaio_properties); } static const TypeInfo mps2_fpgaio_info = { .name = TYPE_MPS2_FPGAIO, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(MPS2FPGAIO), .instance_init = mps2_fpgaio_init, .class_init = mps2_fpgaio_class_init, }; static void mps2_fpgaio_register_types(void) { type_register_static(&mps2_fpgaio_info); } type_init(mps2_fpgaio_register_types);