/* * IMX6 System Reset Controller * * Copyright (c) 2015 Jean-Christophe Dubois * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "hw/misc/imx6_src.h" #include "migration/vmstate.h" #include "qemu/bitops.h" #include "qemu/log.h" #include "qemu/main-loop.h" #include "qemu/module.h" #include "target/arm/arm-powerctl.h" #include "hw/core/cpu.h" #ifndef DEBUG_IMX6_SRC #define DEBUG_IMX6_SRC 0 #endif #define DPRINTF(fmt, args...) \ do { \ if (DEBUG_IMX6_SRC) { \ fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_SRC, \ __func__, ##args); \ } \ } while (0) static const char *imx6_src_reg_name(uint32_t reg) { static char unknown[20]; switch (reg) { case SRC_SCR: return "SRC_SCR"; case SRC_SBMR1: return "SRC_SBMR1"; case SRC_SRSR: return "SRC_SRSR"; case SRC_SISR: return "SRC_SISR"; case SRC_SIMR: return "SRC_SIMR"; case SRC_SBMR2: return "SRC_SBMR2"; case SRC_GPR1: return "SRC_GPR1"; case SRC_GPR2: return "SRC_GPR2"; case SRC_GPR3: return "SRC_GPR3"; case SRC_GPR4: return "SRC_GPR4"; case SRC_GPR5: return "SRC_GPR5"; case SRC_GPR6: return "SRC_GPR6"; case SRC_GPR7: return "SRC_GPR7"; case SRC_GPR8: return "SRC_GPR8"; case SRC_GPR9: return "SRC_GPR9"; case SRC_GPR10: return "SRC_GPR10"; default: snprintf(unknown, sizeof(unknown), "%u ?", reg); return unknown; } } static const VMStateDescription vmstate_imx6_src = { .name = TYPE_IMX6_SRC, .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT32_ARRAY(regs, IMX6SRCState, SRC_MAX), VMSTATE_END_OF_LIST() }, }; static void imx6_src_reset(DeviceState *dev) { IMX6SRCState *s = IMX6_SRC(dev); DPRINTF("\n"); memset(s->regs, 0, sizeof(s->regs)); /* Set reset values */ s->regs[SRC_SCR] = 0x521; s->regs[SRC_SRSR] = 0x1; s->regs[SRC_SIMR] = 0x1F; } static uint64_t imx6_src_read(void *opaque, hwaddr offset, unsigned size) { uint32_t value = 0; IMX6SRCState *s = (IMX6SRCState *)opaque; uint32_t index = offset >> 2; if (index < SRC_MAX) { value = s->regs[index]; } else { qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset); } DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_src_reg_name(index), value); return value; } /* The reset is asynchronous so we need to defer clearing the reset * bit until the work is completed. */ struct SRCSCRResetInfo { IMX6SRCState *s; int reset_bit; }; static void imx6_clear_reset_bit(CPUState *cpu, run_on_cpu_data data) { struct SRCSCRResetInfo *ri = data.host_ptr; IMX6SRCState *s = ri->s; assert(bql_locked()); s->regs[SRC_SCR] = deposit32(s->regs[SRC_SCR], ri->reset_bit, 1, 0); DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_src_reg_name(SRC_SCR), s->regs[SRC_SCR]); g_free(ri); } static void imx6_defer_clear_reset_bit(int cpuid, IMX6SRCState *s, unsigned long reset_shift) { struct SRCSCRResetInfo *ri; CPUState *cpu = arm_get_cpu_by_id(cpuid); if (!cpu) { return; } ri = g_new(struct SRCSCRResetInfo, 1); ri->s = s; ri->reset_bit = reset_shift; async_run_on_cpu(cpu, imx6_clear_reset_bit, RUN_ON_CPU_HOST_PTR(ri)); } static void imx6_src_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { IMX6SRCState *s = (IMX6SRCState *)opaque; uint32_t index = offset >> 2; unsigned long change_mask; unsigned long current_value = value; if (index >= SRC_MAX) { qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset); return; } DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_src_reg_name(index), (uint32_t)current_value); change_mask = s->regs[index] ^ (uint32_t)current_value; switch (index) { case SRC_SCR: /* * On real hardware when the system reset controller starts a * secondary CPU it runs through some boot ROM code which reads * the SRC_GPRX registers controlling the start address and branches * to it. * Here we are taking a short cut and branching directly to the * requested address (we don't want to run the boot ROM code inside * QEMU) */ if (EXTRACT(change_mask, CORE3_ENABLE)) { if (EXTRACT(current_value, CORE3_ENABLE)) { /* CORE 3 is brought up */ arm_set_cpu_on(3, s->regs[SRC_GPR7], s->regs[SRC_GPR8], 3, false); } else { /* CORE 3 is shut down */ arm_set_cpu_off(3); } /* We clear the reset bits as the processor changed state */ imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT); clear_bit(CORE3_RST_SHIFT, &change_mask); } if (EXTRACT(change_mask, CORE2_ENABLE)) { if (EXTRACT(current_value, CORE2_ENABLE)) { /* CORE 2 is brought up */ arm_set_cpu_on(2, s->regs[SRC_GPR5], s->regs[SRC_GPR6], 3, false); } else { /* CORE 2 is shut down */ arm_set_cpu_off(2); } /* We clear the reset bits as the processor changed state */ imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT); clear_bit(CORE2_RST_SHIFT, &change_mask); } if (EXTRACT(change_mask, CORE1_ENABLE)) { if (EXTRACT(current_value, CORE1_ENABLE)) { /* CORE 1 is brought up */ arm_set_cpu_on(1, s->regs[SRC_GPR3], s->regs[SRC_GPR4], 3, false); } else { /* CORE 1 is shut down */ arm_set_cpu_off(1); } /* We clear the reset bits as the processor changed state */ imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT); clear_bit(CORE1_RST_SHIFT, &change_mask); } if (EXTRACT(change_mask, CORE0_RST)) { arm_reset_cpu(0); imx6_defer_clear_reset_bit(0, s, CORE0_RST_SHIFT); } if (EXTRACT(change_mask, CORE1_RST)) { arm_reset_cpu(1); imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT); } if (EXTRACT(change_mask, CORE2_RST)) { arm_reset_cpu(2); imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT); } if (EXTRACT(change_mask, CORE3_RST)) { arm_reset_cpu(3); imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT); } if (EXTRACT(change_mask, SW_IPU2_RST)) { /* We pretend the IPU2 is reset */ clear_bit(SW_IPU2_RST_SHIFT, ¤t_value); } if (EXTRACT(change_mask, SW_IPU1_RST)) { /* We pretend the IPU1 is reset */ clear_bit(SW_IPU1_RST_SHIFT, ¤t_value); } s->regs[index] = current_value; break; default: s->regs[index] = current_value; break; } } static const struct MemoryRegionOps imx6_src_ops = { .read = imx6_src_read, .write = imx6_src_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { /* * Our device would not work correctly if the guest was doing * unaligned access. This might not be a limitation on the real * device but in practice there is no reason for a guest to access * this device unaligned. */ .min_access_size = 4, .max_access_size = 4, .unaligned = false, }, }; static void imx6_src_realize(DeviceState *dev, Error **errp) { IMX6SRCState *s = IMX6_SRC(dev); memory_region_init_io(&s->iomem, OBJECT(dev), &imx6_src_ops, s, TYPE_IMX6_SRC, 0x1000); sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem); } static void imx6_src_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = imx6_src_realize; device_class_set_legacy_reset(dc, imx6_src_reset); dc->vmsd = &vmstate_imx6_src; dc->desc = "i.MX6 System Reset Controller"; } static const TypeInfo imx6_src_info = { .name = TYPE_IMX6_SRC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(IMX6SRCState), .class_init = imx6_src_class_init, }; static void imx6_src_register_types(void) { type_register_static(&imx6_src_info); } type_init(imx6_src_register_types)