/* * vfio based device assignment support * * Copyright Red Hat, Inc. 2012 * * Authors: * Alex Williamson * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Based on qemu-kvm device-assignment: * Adapted for KVM by Qumranet. * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) */ #include #include #include #include #include #include #include #include "config.h" #include "exec/address-spaces.h" #include "exec/memory.h" #include "hw/pci/msi.h" #include "hw/pci/msix.h" #include "hw/pci/pci.h" #include "qemu-common.h" #include "qemu/error-report.h" #include "qemu/event_notifier.h" #include "qemu/queue.h" #include "qemu/range.h" #include "sysemu/kvm.h" #include "sysemu/sysemu.h" #include "trace.h" #include "hw/vfio/vfio.h" #include "hw/vfio/vfio-common.h" struct VFIOPCIDevice; typedef struct VFIOQuirk { MemoryRegion mem; struct VFIOPCIDevice *vdev; QLIST_ENTRY(VFIOQuirk) next; struct { uint32_t base_offset:TARGET_PAGE_BITS; uint32_t address_offset:TARGET_PAGE_BITS; uint32_t address_size:3; uint32_t bar:3; uint32_t address_match; uint32_t address_mask; uint32_t address_val:TARGET_PAGE_BITS; uint32_t data_offset:TARGET_PAGE_BITS; uint32_t data_size:3; uint8_t flags; uint8_t read_flags; uint8_t write_flags; } data; } VFIOQuirk; typedef struct VFIOBAR { VFIORegion region; bool ioport; bool mem64; QLIST_HEAD(, VFIOQuirk) quirks; } VFIOBAR; typedef struct VFIOVGARegion { MemoryRegion mem; off_t offset; int nr; QLIST_HEAD(, VFIOQuirk) quirks; } VFIOVGARegion; typedef struct VFIOVGA { off_t fd_offset; int fd; VFIOVGARegion region[QEMU_PCI_VGA_NUM_REGIONS]; } VFIOVGA; typedef struct VFIOINTx { bool pending; /* interrupt pending */ bool kvm_accel; /* set when QEMU bypass through KVM enabled */ uint8_t pin; /* which pin to pull for qemu_set_irq */ EventNotifier interrupt; /* eventfd triggered on interrupt */ EventNotifier unmask; /* eventfd for unmask on QEMU bypass */ PCIINTxRoute route; /* routing info for QEMU bypass */ uint32_t mmap_timeout; /* delay to re-enable mmaps after interrupt */ QEMUTimer *mmap_timer; /* enable mmaps after periods w/o interrupts */ } VFIOINTx; typedef struct VFIOMSIVector { /* * Two interrupt paths are configured per vector. The first, is only used * for interrupts injected via QEMU. This is typically the non-accel path, * but may also be used when we want QEMU to handle masking and pending * bits. The KVM path bypasses QEMU and is therefore higher performance, * but requires masking at the device. virq is used to track the MSI route * through KVM, thus kvm_interrupt is only available when virq is set to a * valid (>= 0) value. */ EventNotifier interrupt; EventNotifier kvm_interrupt; struct VFIOPCIDevice *vdev; /* back pointer to device */ int virq; bool use; } VFIOMSIVector; enum { VFIO_INT_NONE = 0, VFIO_INT_INTx = 1, VFIO_INT_MSI = 2, VFIO_INT_MSIX = 3, }; /* Cache of MSI-X setup plus extra mmap and memory region for split BAR map */ typedef struct VFIOMSIXInfo { uint8_t table_bar; uint8_t pba_bar; uint16_t entries; uint32_t table_offset; uint32_t pba_offset; MemoryRegion mmap_mem; void *mmap; } VFIOMSIXInfo; typedef struct VFIOPCIDevice { PCIDevice pdev; VFIODevice vbasedev; VFIOINTx intx; unsigned int config_size; uint8_t *emulated_config_bits; /* QEMU emulated bits, little-endian */ off_t config_offset; /* Offset of config space region within device fd */ unsigned int rom_size; off_t rom_offset; /* Offset of ROM region within device fd */ void *rom; int msi_cap_size; VFIOMSIVector *msi_vectors; VFIOMSIXInfo *msix; int nr_vectors; /* Number of MSI/MSIX vectors currently in use */ int interrupt; /* Current interrupt type */ VFIOBAR bars[PCI_NUM_REGIONS - 1]; /* No ROM */ VFIOVGA vga; /* 0xa0000, 0x3b0, 0x3c0 */ PCIHostDeviceAddress host; EventNotifier err_notifier; EventNotifier req_notifier; uint32_t features; #define VFIO_FEATURE_ENABLE_VGA_BIT 0 #define VFIO_FEATURE_ENABLE_VGA (1 << VFIO_FEATURE_ENABLE_VGA_BIT) #define VFIO_FEATURE_ENABLE_REQ_BIT 1 #define VFIO_FEATURE_ENABLE_REQ (1 << VFIO_FEATURE_ENABLE_REQ_BIT) int32_t bootindex; uint8_t pm_cap; bool has_vga; bool pci_aer; bool req_enabled; bool has_flr; bool has_pm_reset; bool rom_read_failed; } VFIOPCIDevice; typedef struct VFIORomBlacklistEntry { uint16_t vendor_id; uint16_t device_id; } VFIORomBlacklistEntry; /* * List of device ids/vendor ids for which to disable * option rom loading. This avoids the guest hangs during rom * execution as noticed with the BCM 57810 card for lack of a * more better way to handle such issues. * The user can still override by specifying a romfile or * rombar=1. * Please see https://bugs.launchpad.net/qemu/+bug/1284874 * for an analysis of the 57810 card hang. When adding * a new vendor id/device id combination below, please also add * your card/environment details and information that could * help in debugging to the bug tracking this issue */ static const VFIORomBlacklistEntry romblacklist[] = { /* Broadcom BCM 57810 */ { 0x14e4, 0x168e } }; #define MSIX_CAP_LENGTH 12 static void vfio_disable_interrupts(VFIOPCIDevice *vdev); static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len); static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr, uint32_t val, int len); static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled); /* * Disabling BAR mmaping can be slow, but toggling it around INTx can * also be a huge overhead. We try to get the best of both worlds by * waiting until an interrupt to disable mmaps (subsequent transitions * to the same state are effectively no overhead). If the interrupt has * been serviced and the time gap is long enough, we re-enable mmaps for * performance. This works well for things like graphics cards, which * may not use their interrupt at all and are penalized to an unusable * level by read/write BAR traps. Other devices, like NICs, have more * regular interrupts and see much better latency by staying in non-mmap * mode. We therefore set the default mmap_timeout such that a ping * is just enough to keep the mmap disabled. Users can experiment with * other options with the x-intx-mmap-timeout-ms parameter (a value of * zero disables the timer). */ static void vfio_intx_mmap_enable(void *opaque) { VFIOPCIDevice *vdev = opaque; if (vdev->intx.pending) { timer_mod(vdev->intx.mmap_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); return; } vfio_mmap_set_enabled(vdev, true); } static void vfio_intx_interrupt(void *opaque) { VFIOPCIDevice *vdev = opaque; if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) { return; } trace_vfio_intx_interrupt(vdev->vbasedev.name, 'A' + vdev->intx.pin); vdev->intx.pending = true; pci_irq_assert(&vdev->pdev); vfio_mmap_set_enabled(vdev, false); if (vdev->intx.mmap_timeout) { timer_mod(vdev->intx.mmap_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); } } static void vfio_eoi(VFIODevice *vbasedev) { VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); if (!vdev->intx.pending) { return; } trace_vfio_eoi(vbasedev->name); vdev->intx.pending = false; pci_irq_deassert(&vdev->pdev); vfio_unmask_single_irqindex(vbasedev, VFIO_PCI_INTX_IRQ_INDEX); } static void vfio_enable_intx_kvm(VFIOPCIDevice *vdev) { #ifdef CONFIG_KVM struct kvm_irqfd irqfd = { .fd = event_notifier_get_fd(&vdev->intx.interrupt), .gsi = vdev->intx.route.irq, .flags = KVM_IRQFD_FLAG_RESAMPLE, }; struct vfio_irq_set *irq_set; int ret, argsz; int32_t *pfd; if (!VFIO_ALLOW_KVM_INTX || !kvm_irqfds_enabled() || vdev->intx.route.mode != PCI_INTX_ENABLED || !kvm_resamplefds_enabled()) { return; } /* Get to a known interrupt state */ qemu_set_fd_handler(irqfd.fd, NULL, NULL, vdev); vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); vdev->intx.pending = false; pci_irq_deassert(&vdev->pdev); /* Get an eventfd for resample/unmask */ if (event_notifier_init(&vdev->intx.unmask, 0)) { error_report("vfio: Error: event_notifier_init failed eoi"); goto fail; } /* KVM triggers it, VFIO listens for it */ irqfd.resamplefd = event_notifier_get_fd(&vdev->intx.unmask); if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) { error_report("vfio: Error: Failed to setup resample irqfd: %m"); goto fail_irqfd; } argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_UNMASK; irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; irq_set->start = 0; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = irqfd.resamplefd; ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); g_free(irq_set); if (ret) { error_report("vfio: Error: Failed to setup INTx unmask fd: %m"); goto fail_vfio; } /* Let'em rip */ vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); vdev->intx.kvm_accel = true; trace_vfio_enable_intx_kvm(vdev->vbasedev.name); return; fail_vfio: irqfd.flags = KVM_IRQFD_FLAG_DEASSIGN; kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd); fail_irqfd: event_notifier_cleanup(&vdev->intx.unmask); fail: qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev); vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); #endif } static void vfio_disable_intx_kvm(VFIOPCIDevice *vdev) { #ifdef CONFIG_KVM struct kvm_irqfd irqfd = { .fd = event_notifier_get_fd(&vdev->intx.interrupt), .gsi = vdev->intx.route.irq, .flags = KVM_IRQFD_FLAG_DEASSIGN, }; if (!vdev->intx.kvm_accel) { return; } /* * Get to a known state, hardware masked, QEMU ready to accept new * interrupts, QEMU IRQ de-asserted. */ vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); vdev->intx.pending = false; pci_irq_deassert(&vdev->pdev); /* Tell KVM to stop listening for an INTx irqfd */ if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) { error_report("vfio: Error: Failed to disable INTx irqfd: %m"); } /* We only need to close the eventfd for VFIO to cleanup the kernel side */ event_notifier_cleanup(&vdev->intx.unmask); /* QEMU starts listening for interrupt events. */ qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev); vdev->intx.kvm_accel = false; /* If we've missed an event, let it re-fire through QEMU */ vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); trace_vfio_disable_intx_kvm(vdev->vbasedev.name); #endif } static void vfio_update_irq(PCIDevice *pdev) { VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); PCIINTxRoute route; if (vdev->interrupt != VFIO_INT_INTx) { return; } route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin); if (!pci_intx_route_changed(&vdev->intx.route, &route)) { return; /* Nothing changed */ } trace_vfio_update_irq(vdev->vbasedev.name, vdev->intx.route.irq, route.irq); vfio_disable_intx_kvm(vdev); vdev->intx.route = route; if (route.mode != PCI_INTX_ENABLED) { return; } vfio_enable_intx_kvm(vdev); /* Re-enable the interrupt in cased we missed an EOI */ vfio_eoi(&vdev->vbasedev); } static int vfio_enable_intx(VFIOPCIDevice *vdev) { uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1); int ret, argsz; struct vfio_irq_set *irq_set; int32_t *pfd; if (!pin) { return 0; } vfio_disable_interrupts(vdev); vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */ pci_config_set_interrupt_pin(vdev->pdev.config, pin); #ifdef CONFIG_KVM /* * Only conditional to avoid generating error messages on platforms * where we won't actually use the result anyway. */ if (kvm_irqfds_enabled() && kvm_resamplefds_enabled()) { vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin); } #endif ret = event_notifier_init(&vdev->intx.interrupt, 0); if (ret) { error_report("vfio: Error: event_notifier_init failed"); return ret; } argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; irq_set->start = 0; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = event_notifier_get_fd(&vdev->intx.interrupt); qemu_set_fd_handler(*pfd, vfio_intx_interrupt, NULL, vdev); ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); g_free(irq_set); if (ret) { error_report("vfio: Error: Failed to setup INTx fd: %m"); qemu_set_fd_handler(*pfd, NULL, NULL, vdev); event_notifier_cleanup(&vdev->intx.interrupt); return -errno; } vfio_enable_intx_kvm(vdev); vdev->interrupt = VFIO_INT_INTx; trace_vfio_enable_intx(vdev->vbasedev.name); return 0; } static void vfio_disable_intx(VFIOPCIDevice *vdev) { int fd; timer_del(vdev->intx.mmap_timer); vfio_disable_intx_kvm(vdev); vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); vdev->intx.pending = false; pci_irq_deassert(&vdev->pdev); vfio_mmap_set_enabled(vdev, true); fd = event_notifier_get_fd(&vdev->intx.interrupt); qemu_set_fd_handler(fd, NULL, NULL, vdev); event_notifier_cleanup(&vdev->intx.interrupt); vdev->interrupt = VFIO_INT_NONE; trace_vfio_disable_intx(vdev->vbasedev.name); } /* * MSI/X */ static void vfio_msi_interrupt(void *opaque) { VFIOMSIVector *vector = opaque; VFIOPCIDevice *vdev = vector->vdev; int nr = vector - vdev->msi_vectors; if (!event_notifier_test_and_clear(&vector->interrupt)) { return; } #ifdef DEBUG_VFIO MSIMessage msg; if (vdev->interrupt == VFIO_INT_MSIX) { msg = msix_get_message(&vdev->pdev, nr); } else if (vdev->interrupt == VFIO_INT_MSI) { msg = msi_get_message(&vdev->pdev, nr); } else { abort(); } trace_vfio_msi_interrupt(vdev->vbasedev.name, nr, msg.address, msg.data); #endif if (vdev->interrupt == VFIO_INT_MSIX) { msix_notify(&vdev->pdev, nr); } else if (vdev->interrupt == VFIO_INT_MSI) { msi_notify(&vdev->pdev, nr); } else { error_report("vfio: MSI interrupt receieved, but not enabled?"); } } static int vfio_enable_vectors(VFIOPCIDevice *vdev, bool msix) { struct vfio_irq_set *irq_set; int ret = 0, i, argsz; int32_t *fds; argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds)); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX; irq_set->start = 0; irq_set->count = vdev->nr_vectors; fds = (int32_t *)&irq_set->data; for (i = 0; i < vdev->nr_vectors; i++) { int fd = -1; /* * MSI vs MSI-X - The guest has direct access to MSI mask and pending * bits, therefore we always use the KVM signaling path when setup. * MSI-X mask and pending bits are emulated, so we want to use the * KVM signaling path only when configured and unmasked. */ if (vdev->msi_vectors[i].use) { if (vdev->msi_vectors[i].virq < 0 || (msix && msix_is_masked(&vdev->pdev, i))) { fd = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt); } else { fd = event_notifier_get_fd(&vdev->msi_vectors[i].kvm_interrupt); } } fds[i] = fd; } ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); g_free(irq_set); return ret; } static void vfio_add_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage *msg, bool msix) { int virq; if ((msix && !VFIO_ALLOW_KVM_MSIX) || (!msix && !VFIO_ALLOW_KVM_MSI) || !msg) { return; } if (event_notifier_init(&vector->kvm_interrupt, 0)) { return; } virq = kvm_irqchip_add_msi_route(kvm_state, *msg); if (virq < 0) { event_notifier_cleanup(&vector->kvm_interrupt); return; } if (kvm_irqchip_add_irqfd_notifier(kvm_state, &vector->kvm_interrupt, NULL, virq) < 0) { kvm_irqchip_release_virq(kvm_state, virq); event_notifier_cleanup(&vector->kvm_interrupt); return; } vector->virq = virq; } static void vfio_remove_kvm_msi_virq(VFIOMSIVector *vector) { kvm_irqchip_remove_irqfd_notifier(kvm_state, &vector->kvm_interrupt, vector->virq); kvm_irqchip_release_virq(kvm_state, vector->virq); vector->virq = -1; event_notifier_cleanup(&vector->kvm_interrupt); } static void vfio_update_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage msg) { kvm_irqchip_update_msi_route(kvm_state, vector->virq, msg); } static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr, MSIMessage *msg, IOHandler *handler) { VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); VFIOMSIVector *vector; int ret; trace_vfio_msix_vector_do_use(vdev->vbasedev.name, nr); vector = &vdev->msi_vectors[nr]; if (!vector->use) { vector->vdev = vdev; vector->virq = -1; if (event_notifier_init(&vector->interrupt, 0)) { error_report("vfio: Error: event_notifier_init failed"); } vector->use = true; msix_vector_use(pdev, nr); } qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), handler, NULL, vector); /* * Attempt to enable route through KVM irqchip, * default to userspace handling if unavailable. */ if (vector->virq >= 0) { if (!msg) { vfio_remove_kvm_msi_virq(vector); } else { vfio_update_kvm_msi_virq(vector, *msg); } } else { vfio_add_kvm_msi_virq(vector, msg, true); } /* * We don't want to have the host allocate all possible MSI vectors * for a device if they're not in use, so we shutdown and incrementally * increase them as needed. */ if (vdev->nr_vectors < nr + 1) { vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX); vdev->nr_vectors = nr + 1; ret = vfio_enable_vectors(vdev, true); if (ret) { error_report("vfio: failed to enable vectors, %d", ret); } } else { int argsz; struct vfio_irq_set *irq_set; int32_t *pfd; argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; irq_set->start = nr; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; if (vector->virq >= 0) { *pfd = event_notifier_get_fd(&vector->kvm_interrupt); } else { *pfd = event_notifier_get_fd(&vector->interrupt); } ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); g_free(irq_set); if (ret) { error_report("vfio: failed to modify vector, %d", ret); } } return 0; } static int vfio_msix_vector_use(PCIDevice *pdev, unsigned int nr, MSIMessage msg) { return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt); } static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr) { VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); VFIOMSIVector *vector = &vdev->msi_vectors[nr]; trace_vfio_msix_vector_release(vdev->vbasedev.name, nr); /* * There are still old guests that mask and unmask vectors on every * interrupt. If we're using QEMU bypass with a KVM irqfd, leave all of * the KVM setup in place, simply switch VFIO to use the non-bypass * eventfd. We'll then fire the interrupt through QEMU and the MSI-X * core will mask the interrupt and set pending bits, allowing it to * be re-asserted on unmask. Nothing to do if already using QEMU mode. */ if (vector->virq >= 0) { int argsz; struct vfio_irq_set *irq_set; int32_t *pfd; argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; irq_set->start = nr; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = event_notifier_get_fd(&vector->interrupt); ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); g_free(irq_set); } } static void vfio_enable_msix(VFIOPCIDevice *vdev) { vfio_disable_interrupts(vdev); vdev->msi_vectors = g_malloc0(vdev->msix->entries * sizeof(VFIOMSIVector)); vdev->interrupt = VFIO_INT_MSIX; /* * Some communication channels between VF & PF or PF & fw rely on the * physical state of the device and expect that enabling MSI-X from the * guest enables the same on the host. When our guest is Linux, the * guest driver call to pci_enable_msix() sets the enabling bit in the * MSI-X capability, but leaves the vector table masked. We therefore * can't rely on a vector_use callback (from request_irq() in the guest) * to switch the physical device into MSI-X mode because that may come a * long time after pci_enable_msix(). This code enables vector 0 with * triggering to userspace, then immediately release the vector, leaving * the physical device with no vectors enabled, but MSI-X enabled, just * like the guest view. */ vfio_msix_vector_do_use(&vdev->pdev, 0, NULL, NULL); vfio_msix_vector_release(&vdev->pdev, 0); if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use, vfio_msix_vector_release, NULL)) { error_report("vfio: msix_set_vector_notifiers failed"); } trace_vfio_enable_msix(vdev->vbasedev.name); } static void vfio_enable_msi(VFIOPCIDevice *vdev) { int ret, i; vfio_disable_interrupts(vdev); vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev); retry: vdev->msi_vectors = g_malloc0(vdev->nr_vectors * sizeof(VFIOMSIVector)); for (i = 0; i < vdev->nr_vectors; i++) { VFIOMSIVector *vector = &vdev->msi_vectors[i]; MSIMessage msg = msi_get_message(&vdev->pdev, i); vector->vdev = vdev; vector->virq = -1; vector->use = true; if (event_notifier_init(&vector->interrupt, 0)) { error_report("vfio: Error: event_notifier_init failed"); } qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), vfio_msi_interrupt, NULL, vector); /* * Attempt to enable route through KVM irqchip, * default to userspace handling if unavailable. */ vfio_add_kvm_msi_virq(vector, &msg, false); } /* Set interrupt type prior to possible interrupts */ vdev->interrupt = VFIO_INT_MSI; ret = vfio_enable_vectors(vdev, false); if (ret) { if (ret < 0) { error_report("vfio: Error: Failed to setup MSI fds: %m"); } else if (ret != vdev->nr_vectors) { error_report("vfio: Error: Failed to enable %d " "MSI vectors, retry with %d", vdev->nr_vectors, ret); } for (i = 0; i < vdev->nr_vectors; i++) { VFIOMSIVector *vector = &vdev->msi_vectors[i]; if (vector->virq >= 0) { vfio_remove_kvm_msi_virq(vector); } qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), NULL, NULL, NULL); event_notifier_cleanup(&vector->interrupt); } g_free(vdev->msi_vectors); if (ret > 0 && ret != vdev->nr_vectors) { vdev->nr_vectors = ret; goto retry; } vdev->nr_vectors = 0; /* * Failing to setup MSI doesn't really fall within any specification. * Let's try leaving interrupts disabled and hope the guest figures * out to fall back to INTx for this device. */ error_report("vfio: Error: Failed to enable MSI"); vdev->interrupt = VFIO_INT_NONE; return; } trace_vfio_enable_msi(vdev->vbasedev.name, vdev->nr_vectors); } static void vfio_disable_msi_common(VFIOPCIDevice *vdev) { int i; for (i = 0; i < vdev->nr_vectors; i++) { VFIOMSIVector *vector = &vdev->msi_vectors[i]; if (vdev->msi_vectors[i].use) { if (vector->virq >= 0) { vfio_remove_kvm_msi_virq(vector); } qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), NULL, NULL, NULL); event_notifier_cleanup(&vector->interrupt); } } g_free(vdev->msi_vectors); vdev->msi_vectors = NULL; vdev->nr_vectors = 0; vdev->interrupt = VFIO_INT_NONE; vfio_enable_intx(vdev); } static void vfio_disable_msix(VFIOPCIDevice *vdev) { int i; msix_unset_vector_notifiers(&vdev->pdev); /* * MSI-X will only release vectors if MSI-X is still enabled on the * device, check through the rest and release it ourselves if necessary. */ for (i = 0; i < vdev->nr_vectors; i++) { if (vdev->msi_vectors[i].use) { vfio_msix_vector_release(&vdev->pdev, i); msix_vector_unuse(&vdev->pdev, i); } } if (vdev->nr_vectors) { vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX); } vfio_disable_msi_common(vdev); trace_vfio_disable_msix(vdev->vbasedev.name); } static void vfio_disable_msi(VFIOPCIDevice *vdev) { vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSI_IRQ_INDEX); vfio_disable_msi_common(vdev); trace_vfio_disable_msi(vdev->vbasedev.name); } static void vfio_update_msi(VFIOPCIDevice *vdev) { int i; for (i = 0; i < vdev->nr_vectors; i++) { VFIOMSIVector *vector = &vdev->msi_vectors[i]; MSIMessage msg; if (!vector->use || vector->virq < 0) { continue; } msg = msi_get_message(&vdev->pdev, i); vfio_update_kvm_msi_virq(vector, msg); } } static void vfio_pci_load_rom(VFIOPCIDevice *vdev) { struct vfio_region_info reg_info = { .argsz = sizeof(reg_info), .index = VFIO_PCI_ROM_REGION_INDEX }; uint64_t size; off_t off = 0; size_t bytes; if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, ®_info)) { error_report("vfio: Error getting ROM info: %m"); return; } trace_vfio_pci_load_rom(vdev->vbasedev.name, (unsigned long)reg_info.size, (unsigned long)reg_info.offset, (unsigned long)reg_info.flags); vdev->rom_size = size = reg_info.size; vdev->rom_offset = reg_info.offset; if (!vdev->rom_size) { vdev->rom_read_failed = true; error_report("vfio-pci: Cannot read device rom at " "%s", vdev->vbasedev.name); error_printf("Device option ROM contents are probably invalid " "(check dmesg).\nSkip option ROM probe with rombar=0, " "or load from file with romfile=\n"); return; } vdev->rom = g_malloc(size); memset(vdev->rom, 0xff, size); while (size) { bytes = pread(vdev->vbasedev.fd, vdev->rom + off, size, vdev->rom_offset + off); if (bytes == 0) { break; } else if (bytes > 0) { off += bytes; size -= bytes; } else { if (errno == EINTR || errno == EAGAIN) { continue; } error_report("vfio: Error reading device ROM: %m"); break; } } } static uint64_t vfio_rom_read(void *opaque, hwaddr addr, unsigned size) { VFIOPCIDevice *vdev = opaque; union { uint8_t byte; uint16_t word; uint32_t dword; uint64_t qword; } val; uint64_t data = 0; /* Load the ROM lazily when the guest tries to read it */ if (unlikely(!vdev->rom && !vdev->rom_read_failed)) { vfio_pci_load_rom(vdev); } memcpy(&val, vdev->rom + addr, (addr < vdev->rom_size) ? MIN(size, vdev->rom_size - addr) : 0); switch (size) { case 1: data = val.byte; break; case 2: data = le16_to_cpu(val.word); break; case 4: data = le32_to_cpu(val.dword); break; default: hw_error("vfio: unsupported read size, %d bytes\n", size); break; } trace_vfio_rom_read(vdev->vbasedev.name, addr, size, data); return data; } static void vfio_rom_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { } static const MemoryRegionOps vfio_rom_ops = { .read = vfio_rom_read, .write = vfio_rom_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev) { PCIDevice *pdev = &vdev->pdev; uint16_t vendor_id, device_id; int count = 0; vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID); device_id = pci_get_word(pdev->config + PCI_DEVICE_ID); while (count < ARRAY_SIZE(romblacklist)) { if (romblacklist[count].vendor_id == vendor_id && romblacklist[count].device_id == device_id) { return true; } count++; } return false; } static void vfio_pci_size_rom(VFIOPCIDevice *vdev) { uint32_t orig, size = cpu_to_le32((uint32_t)PCI_ROM_ADDRESS_MASK); off_t offset = vdev->config_offset + PCI_ROM_ADDRESS; DeviceState *dev = DEVICE(vdev); char name[32]; int fd = vdev->vbasedev.fd; if (vdev->pdev.romfile || !vdev->pdev.rom_bar) { /* Since pci handles romfile, just print a message and return */ if (vfio_blacklist_opt_rom(vdev) && vdev->pdev.romfile) { error_printf("Warning : Device at %04x:%02x:%02x.%x " "is known to cause system instability issues during " "option rom execution. " "Proceeding anyway since user specified romfile\n", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); } return; } /* * Use the same size ROM BAR as the physical device. The contents * will get filled in later when the guest tries to read it. */ if (pread(fd, &orig, 4, offset) != 4 || pwrite(fd, &size, 4, offset) != 4 || pread(fd, &size, 4, offset) != 4 || pwrite(fd, &orig, 4, offset) != 4) { error_report("%s(%04x:%02x:%02x.%x) failed: %m", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); return; } size = ~(le32_to_cpu(size) & PCI_ROM_ADDRESS_MASK) + 1; if (!size) { return; } if (vfio_blacklist_opt_rom(vdev)) { if (dev->opts && qemu_opt_get(dev->opts, "rombar")) { error_printf("Warning : Device at %04x:%02x:%02x.%x " "is known to cause system instability issues during " "option rom execution. " "Proceeding anyway since user specified non zero value for " "rombar\n", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); } else { error_printf("Warning : Rom loading for device at " "%04x:%02x:%02x.%x has been disabled due to " "system instability issues. " "Specify rombar=1 or romfile to force\n", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); return; } } trace_vfio_pci_size_rom(vdev->vbasedev.name, size); snprintf(name, sizeof(name), "vfio[%04x:%02x:%02x.%x].rom", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); memory_region_init_io(&vdev->pdev.rom, OBJECT(vdev), &vfio_rom_ops, vdev, name, size); pci_register_bar(&vdev->pdev, PCI_ROM_SLOT, PCI_BASE_ADDRESS_SPACE_MEMORY, &vdev->pdev.rom); vdev->pdev.has_rom = true; vdev->rom_read_failed = false; } static void vfio_vga_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOVGARegion *region = opaque; VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); union { uint8_t byte; uint16_t word; uint32_t dword; uint64_t qword; } buf; off_t offset = vga->fd_offset + region->offset + addr; switch (size) { case 1: buf.byte = data; break; case 2: buf.word = cpu_to_le16(data); break; case 4: buf.dword = cpu_to_le32(data); break; default: hw_error("vfio: unsupported write size, %d bytes", size); break; } if (pwrite(vga->fd, &buf, size, offset) != size) { error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m", __func__, region->offset + addr, data, size); } trace_vfio_vga_write(region->offset + addr, data, size); } static uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size) { VFIOVGARegion *region = opaque; VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); union { uint8_t byte; uint16_t word; uint32_t dword; uint64_t qword; } buf; uint64_t data = 0; off_t offset = vga->fd_offset + region->offset + addr; if (pread(vga->fd, &buf, size, offset) != size) { error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m", __func__, region->offset + addr, size); return (uint64_t)-1; } switch (size) { case 1: data = buf.byte; break; case 2: data = le16_to_cpu(buf.word); break; case 4: data = le32_to_cpu(buf.dword); break; default: hw_error("vfio: unsupported read size, %d bytes", size); break; } trace_vfio_vga_read(region->offset + addr, size, data); return data; } static const MemoryRegionOps vfio_vga_ops = { .read = vfio_vga_read, .write = vfio_vga_write, .endianness = DEVICE_LITTLE_ENDIAN, }; /* * Device specific quirks */ /* Is range1 fully contained within range2? */ static bool vfio_range_contained(uint64_t first1, uint64_t len1, uint64_t first2, uint64_t len2) { return (first1 >= first2 && first1 + len1 <= first2 + len2); } static bool vfio_flags_enabled(uint8_t flags, uint8_t mask) { return (mask && (flags & mask) == mask); } static uint64_t vfio_generic_window_quirk_read(void *opaque, hwaddr addr, unsigned size) { VFIOQuirk *quirk = opaque; VFIOPCIDevice *vdev = quirk->vdev; uint64_t data; if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) && ranges_overlap(addr, size, quirk->data.data_offset, quirk->data.data_size)) { hwaddr offset = addr - quirk->data.data_offset; if (!vfio_range_contained(addr, size, quirk->data.data_offset, quirk->data.data_size)) { hw_error("%s: window data read not fully contained: %s", __func__, memory_region_name(&quirk->mem)); } data = vfio_pci_read_config(&vdev->pdev, quirk->data.address_val + offset, size); trace_vfio_generic_window_quirk_read(memory_region_name(&quirk->mem), vdev->vbasedev.name, quirk->data.bar, addr, size, data); } else { data = vfio_region_read(&vdev->bars[quirk->data.bar].region, addr + quirk->data.base_offset, size); } return data; } static void vfio_generic_window_quirk_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOQuirk *quirk = opaque; VFIOPCIDevice *vdev = quirk->vdev; if (ranges_overlap(addr, size, quirk->data.address_offset, quirk->data.address_size)) { if (addr != quirk->data.address_offset) { hw_error("%s: offset write into address window: %s", __func__, memory_region_name(&quirk->mem)); } if ((data & ~quirk->data.address_mask) == quirk->data.address_match) { quirk->data.flags |= quirk->data.write_flags | quirk->data.read_flags; quirk->data.address_val = data & quirk->data.address_mask; } else { quirk->data.flags &= ~(quirk->data.write_flags | quirk->data.read_flags); } } if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) && ranges_overlap(addr, size, quirk->data.data_offset, quirk->data.data_size)) { hwaddr offset = addr - quirk->data.data_offset; if (!vfio_range_contained(addr, size, quirk->data.data_offset, quirk->data.data_size)) { hw_error("%s: window data write not fully contained: %s", __func__, memory_region_name(&quirk->mem)); } vfio_pci_write_config(&vdev->pdev, quirk->data.address_val + offset, data, size); trace_vfio_generic_window_quirk_write(memory_region_name(&quirk->mem), vdev->vbasedev.name, quirk->data.bar, addr, data, size); return; } vfio_region_write(&vdev->bars[quirk->data.bar].region, addr + quirk->data.base_offset, data, size); } static const MemoryRegionOps vfio_generic_window_quirk = { .read = vfio_generic_window_quirk_read, .write = vfio_generic_window_quirk_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static uint64_t vfio_generic_quirk_read(void *opaque, hwaddr addr, unsigned size) { VFIOQuirk *quirk = opaque; VFIOPCIDevice *vdev = quirk->vdev; hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK; hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK; uint64_t data; if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) && ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) { if (!vfio_range_contained(addr, size, offset, quirk->data.address_mask + 1)) { hw_error("%s: read not fully contained: %s", __func__, memory_region_name(&quirk->mem)); } data = vfio_pci_read_config(&vdev->pdev, addr - offset, size); trace_vfio_generic_quirk_read(memory_region_name(&quirk->mem), vdev->vbasedev.name, quirk->data.bar, addr + base, size, data); } else { data = vfio_region_read(&vdev->bars[quirk->data.bar].region, addr + base, size); } return data; } static void vfio_generic_quirk_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOQuirk *quirk = opaque; VFIOPCIDevice *vdev = quirk->vdev; hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK; hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK; if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) && ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) { if (!vfio_range_contained(addr, size, offset, quirk->data.address_mask + 1)) { hw_error("%s: write not fully contained: %s", __func__, memory_region_name(&quirk->mem)); } vfio_pci_write_config(&vdev->pdev, addr - offset, data, size); trace_vfio_generic_quirk_write(memory_region_name(&quirk->mem), vdev->vbasedev.name, quirk->data.bar, addr + base, data, size); } else { vfio_region_write(&vdev->bars[quirk->data.bar].region, addr + base, data, size); } } static const MemoryRegionOps vfio_generic_quirk = { .read = vfio_generic_quirk_read, .write = vfio_generic_quirk_write, .endianness = DEVICE_LITTLE_ENDIAN, }; #define PCI_VENDOR_ID_ATI 0x1002 /* * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR * through VGA register 0x3c3. On newer cards, the I/O port BAR is always * BAR4 (older cards like the X550 used BAR1, but we don't care to support * those). Note that on bare metal, a read of 0x3c3 doesn't always return the * I/O port BAR address. Originally this was coded to return the virtual BAR * address only if the physical register read returns the actual BAR address, * but users have reported greater success if we return the virtual address * unconditionally. */ static uint64_t vfio_ati_3c3_quirk_read(void *opaque, hwaddr addr, unsigned size) { VFIOQuirk *quirk = opaque; VFIOPCIDevice *vdev = quirk->vdev; uint64_t data = vfio_pci_read_config(&vdev->pdev, PCI_BASE_ADDRESS_0 + (4 * 4) + 1, size); trace_vfio_ati_3c3_quirk_read(data); return data; } static const MemoryRegionOps vfio_ati_3c3_quirk = { .read = vfio_ati_3c3_quirk_read, .endianness = DEVICE_LITTLE_ENDIAN, }; static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev) { PCIDevice *pdev = &vdev->pdev; VFIOQuirk *quirk; if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { return; } /* * As long as the BAR is >= 256 bytes it will be aligned such that the * lower byte is always zero. Filter out anything else, if it exists. */ if (!vdev->bars[4].ioport || vdev->bars[4].region.size < 256) { return; } quirk = g_malloc0(sizeof(*quirk)); quirk->vdev = vdev; memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, quirk, "vfio-ati-3c3-quirk", 1); memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, 3 /* offset 3 bytes from 0x3c0 */, &quirk->mem); QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks, quirk, next); trace_vfio_vga_probe_ati_3c3_quirk(vdev->vbasedev.name); } /* * Newer ATI/AMD devices, including HD5450 and HD7850, have a window to PCI * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access * the MMIO space directly, but a window to this space is provided through * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the * data register. When the address is programmed to a range of 0x4000-0x4fff * PCI configuration space is available. Experimentation seems to indicate * that only read-only access is provided, but we drop writes when the window * is enabled to config space nonetheless. */ static void vfio_probe_ati_bar4_window_quirk(VFIOPCIDevice *vdev, int nr) { PCIDevice *pdev = &vdev->pdev; VFIOQuirk *quirk; if (!vdev->has_vga || nr != 4 || pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { return; } quirk = g_malloc0(sizeof(*quirk)); quirk->vdev = vdev; quirk->data.address_size = 4; quirk->data.data_offset = 4; quirk->data.data_size = 4; quirk->data.address_match = 0x4000; quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1; quirk->data.bar = nr; quirk->data.read_flags = quirk->data.write_flags = 1; memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_window_quirk, quirk, "vfio-ati-bar4-window-quirk", 8); memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, quirk->data.base_offset, &quirk->mem, 1); QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); trace_vfio_probe_ati_bar4_window_quirk(vdev->vbasedev.name); } #define PCI_VENDOR_ID_REALTEK 0x10ec /* * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2 * offset 0x70 there is a dword data register, offset 0x74 is a dword address * register. According to the Linux r8169 driver, the MSI-X table is addressed * when the "type" portion of the address register is set to 0x1. This appears * to be bits 16:30. Bit 31 is both a write indicator and some sort of * "address latched" indicator. Bits 12:15 are a mask field, which we can * ignore because the MSI-X table should always be accessed as a dword (full * mask). Bits 0:11 is offset within the type. * * Example trace: * * Read from MSI-X table offset 0 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data * * Write 0xfee00000 to MSI-X table offset 0 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete */ static uint64_t vfio_rtl8168_window_quirk_read(void *opaque, hwaddr addr, unsigned size) { VFIOQuirk *quirk = opaque; VFIOPCIDevice *vdev = quirk->vdev; switch (addr) { case 4: /* address */ if (quirk->data.flags) { trace_vfio_rtl8168_window_quirk_read_fake( memory_region_name(&quirk->mem), vdev->vbasedev.name); return quirk->data.address_match ^ 0x10000000U; } break; case 0: /* data */ if (quirk->data.flags) { uint64_t val; trace_vfio_rtl8168_window_quirk_read_table( memory_region_name(&quirk->mem), vdev->vbasedev.name); if (!(vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) { return 0; } memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, (hwaddr)(quirk->data.address_match & 0xfff), &val, size, MEMTXATTRS_UNSPECIFIED); return val; } } trace_vfio_rtl8168_window_quirk_read_direct(memory_region_name(&quirk->mem), vdev->vbasedev.name); return vfio_region_read(&vdev->bars[quirk->data.bar].region, addr + 0x70, size); } static void vfio_rtl8168_window_quirk_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOQuirk *quirk = opaque; VFIOPCIDevice *vdev = quirk->vdev; switch (addr) { case 4: /* address */ if ((data & 0x7fff0000) == 0x10000) { if (data & 0x10000000U && vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) { trace_vfio_rtl8168_window_quirk_write_table( memory_region_name(&quirk->mem), vdev->vbasedev.name); memory_region_dispatch_write(&vdev->pdev.msix_table_mmio, (hwaddr)(quirk->data.address_match & 0xfff), data, size, MEMTXATTRS_UNSPECIFIED); } quirk->data.flags = 1; quirk->data.address_match = data; return; } quirk->data.flags = 0; break; case 0: /* data */ quirk->data.address_mask = data; break; } trace_vfio_rtl8168_window_quirk_write_direct( memory_region_name(&quirk->mem), vdev->vbasedev.name); vfio_region_write(&vdev->bars[quirk->data.bar].region, addr + 0x70, data, size); } static const MemoryRegionOps vfio_rtl8168_window_quirk = { .read = vfio_rtl8168_window_quirk_read, .write = vfio_rtl8168_window_quirk_write, .valid = { .min_access_size = 4, .max_access_size = 4, .unaligned = false, }, .endianness = DEVICE_LITTLE_ENDIAN, }; static void vfio_probe_rtl8168_bar2_window_quirk(VFIOPCIDevice *vdev, int nr) { PCIDevice *pdev = &vdev->pdev; VFIOQuirk *quirk; if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_REALTEK || pci_get_word(pdev->config + PCI_DEVICE_ID) != 0x8168 || nr != 2) { return; } quirk = g_malloc0(sizeof(*quirk)); quirk->vdev = vdev; quirk->data.bar = nr; memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_rtl8168_window_quirk, quirk, "vfio-rtl8168-window-quirk", 8); memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 0x70, &quirk->mem, 1); QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); trace_vfio_probe_rtl8168_bar2_window_quirk(vdev->vbasedev.name); } /* * Trap the BAR2 MMIO window to config space as well. */ static void vfio_probe_ati_bar2_4000_quirk(VFIOPCIDevice *vdev, int nr) { PCIDevice *pdev = &vdev->pdev; VFIOQuirk *quirk; /* Only enable on newer devices where BAR2 is 64bit */ if (!vdev->has_vga || nr != 2 || !vdev->bars[2].mem64 || pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { return; } quirk = g_malloc0(sizeof(*quirk)); quirk->vdev = vdev; quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1; quirk->data.address_match = 0x4000; quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1; quirk->data.bar = nr; memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk, "vfio-ati-bar2-4000-quirk", TARGET_PAGE_ALIGN(quirk->data.address_mask + 1)); memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, quirk->data.address_match & TARGET_PAGE_MASK, &quirk->mem, 1); QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); trace_vfio_probe_ati_bar2_4000_quirk(vdev->vbasedev.name); } /* * Older ATI/AMD cards like the X550 have a similar window to that above. * I/O port BAR1 provides a window to a mirror of PCI config space located * in BAR2 at offset 0xf00. We don't care to support such older cards, but * note it for future reference. */ #define PCI_VENDOR_ID_NVIDIA 0x10de /* * Nvidia has several different methods to get to config space, the * nouveu project has several of these documented here: * https://github.com/pathscale/envytools/tree/master/hwdocs * * The first quirk is actually not documented in envytools and is found * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access * the mirror of PCI config space found at BAR0 offset 0x1800. The access * sequence first writes 0x338 to I/O port 0x3d4. The target offset is * then written to 0x3d0. Finally 0x538 is written for a read and 0x738 * is written for a write to 0x3d4. The BAR0 offset is then accessible * through 0x3d0. This quirk doesn't seem to be necessary on newer cards * that use the I/O port BAR5 window but it doesn't hurt to leave it. */ enum { NV_3D0_NONE = 0, NV_3D0_SELECT, NV_3D0_WINDOW, NV_3D0_READ, NV_3D0_WRITE, }; static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque, hwaddr addr, unsigned size) { VFIOQuirk *quirk = opaque; VFIOPCIDevice *vdev = quirk->vdev; PCIDevice *pdev = &vdev->pdev; uint64_t data = vfio_vga_read(&vdev->vga.region[QEMU_PCI_VGA_IO_HI], addr + quirk->data.base_offset, size); if (quirk->data.flags == NV_3D0_READ && addr == quirk->data.data_offset) { data = vfio_pci_read_config(pdev, quirk->data.address_val, size); trace_vfio_nvidia_3d0_quirk_read(size, data); } quirk->data.flags = NV_3D0_NONE; return data; } static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOQuirk *quirk = opaque; VFIOPCIDevice *vdev = quirk->vdev; PCIDevice *pdev = &vdev->pdev; switch (quirk->data.flags) { case NV_3D0_NONE: if (addr == quirk->data.address_offset && data == 0x338) { quirk->data.flags = NV_3D0_SELECT; } break; case NV_3D0_SELECT: quirk->data.flags = NV_3D0_NONE; if (addr == quirk->data.data_offset && (data & ~quirk->data.address_mask) == quirk->data.address_match) { quirk->data.flags = NV_3D0_WINDOW; quirk->data.address_val = data & quirk->data.address_mask; } break; case NV_3D0_WINDOW: quirk->data.flags = NV_3D0_NONE; if (addr == quirk->data.address_offset) { if (data == 0x538) { quirk->data.flags = NV_3D0_READ; } else if (data == 0x738) { quirk->data.flags = NV_3D0_WRITE; } } break; case NV_3D0_WRITE: quirk->data.flags = NV_3D0_NONE; if (addr == quirk->data.data_offset) { vfio_pci_write_config(pdev, quirk->data.address_val, data, size); trace_vfio_nvidia_3d0_quirk_write(data, size); return; } break; } vfio_vga_write(&vdev->vga.region[QEMU_PCI_VGA_IO_HI], addr + quirk->data.base_offset, data, size); } static const MemoryRegionOps vfio_nvidia_3d0_quirk = { .read = vfio_nvidia_3d0_quirk_read, .write = vfio_nvidia_3d0_quirk_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev) { PCIDevice *pdev = &vdev->pdev; VFIOQuirk *quirk; if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA || !vdev->bars[1].region.size) { return; } quirk = g_malloc0(sizeof(*quirk)); quirk->vdev = vdev; quirk->data.base_offset = 0x10; quirk->data.address_offset = 4; quirk->data.address_size = 2; quirk->data.address_match = 0x1800; quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1; quirk->data.data_offset = 0; quirk->data.data_size = 4; memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_3d0_quirk, quirk, "vfio-nvidia-3d0-quirk", 6); memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, quirk->data.base_offset, &quirk->mem); QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks, quirk, next); trace_vfio_vga_probe_nvidia_3d0_quirk(vdev->vbasedev.name); } /* * The second quirk is documented in envytools. The I/O port BAR5 is just * a set of address/data ports to the MMIO BARs. The BAR we care about is * again BAR0. This backdoor is apparently a bit newer than the one above * so we need to not only trap 256 bytes @0x1800, but all of PCI config * space, including extended space is available at the 4k @0x88000. */ enum { NV_BAR5_ADDRESS = 0x1, NV_BAR5_ENABLE = 0x2, NV_BAR5_MASTER = 0x4, NV_BAR5_VALID = 0x7, }; static void vfio_nvidia_bar5_window_quirk_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOQuirk *quirk = opaque; switch (addr) { case 0x0: if (data & 0x1) { quirk->data.flags |= NV_BAR5_MASTER; } else { quirk->data.flags &= ~NV_BAR5_MASTER; } break; case 0x4: if (data & 0x1) { quirk->data.flags |= NV_BAR5_ENABLE; } else { quirk->data.flags &= ~NV_BAR5_ENABLE; } break; case 0x8: if (quirk->data.flags & NV_BAR5_MASTER) { if ((data & ~0xfff) == 0x88000) { quirk->data.flags |= NV_BAR5_ADDRESS; quirk->data.address_val = data & 0xfff; } else if ((data & ~0xff) == 0x1800) { quirk->data.flags |= NV_BAR5_ADDRESS; quirk->data.address_val = data & 0xff; } else { quirk->data.flags &= ~NV_BAR5_ADDRESS; } } break; } vfio_generic_window_quirk_write(opaque, addr, data, size); } static const MemoryRegionOps vfio_nvidia_bar5_window_quirk = { .read = vfio_generic_window_quirk_read, .write = vfio_nvidia_bar5_window_quirk_write, .valid.min_access_size = 4, .endianness = DEVICE_LITTLE_ENDIAN, }; static void vfio_probe_nvidia_bar5_window_quirk(VFIOPCIDevice *vdev, int nr) { PCIDevice *pdev = &vdev->pdev; VFIOQuirk *quirk; if (!vdev->has_vga || nr != 5 || pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) { return; } quirk = g_malloc0(sizeof(*quirk)); quirk->vdev = vdev; quirk->data.read_flags = quirk->data.write_flags = NV_BAR5_VALID; quirk->data.address_offset = 0x8; quirk->data.address_size = 0; /* actually 4, but avoids generic code */ quirk->data.data_offset = 0xc; quirk->data.data_size = 4; quirk->data.bar = nr; memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_bar5_window_quirk, quirk, "vfio-nvidia-bar5-window-quirk", 16); memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, 0, &quirk->mem, 1); QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); trace_vfio_probe_nvidia_bar5_window_quirk(vdev->vbasedev.name); } static void vfio_nvidia_88000_quirk_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOQuirk *quirk = opaque; VFIOPCIDevice *vdev = quirk->vdev; PCIDevice *pdev = &vdev->pdev; hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK; vfio_generic_quirk_write(opaque, addr, data, size); /* * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the * MSI capability ID register. Both the ID and next register are * read-only, so we allow writes covering either of those to real hw. * NB - only fixed for the 0x88000 MMIO window. */ if ((pdev->cap_present & QEMU_PCI_CAP_MSI) && vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) { vfio_region_write(&vdev->bars[quirk->data.bar].region, addr + base, data, size); } } static const MemoryRegionOps vfio_nvidia_88000_quirk = { .read = vfio_generic_quirk_read, .write = vfio_nvidia_88000_quirk_write, .endianness = DEVICE_LITTLE_ENDIAN, }; /* * Finally, BAR0 itself. We want to redirect any accesses to either * 0x1800 or 0x88000 through the PCI config space access functions. * * NB - quirk at a page granularity or else they don't seem to work when * BARs are mmap'd * * Here's offset 0x88000... */ static void vfio_probe_nvidia_bar0_88000_quirk(VFIOPCIDevice *vdev, int nr) { PCIDevice *pdev = &vdev->pdev; VFIOQuirk *quirk; uint16_t vendor, class; vendor = pci_get_word(pdev->config + PCI_VENDOR_ID); class = pci_get_word(pdev->config + PCI_CLASS_DEVICE); if (nr != 0 || vendor != PCI_VENDOR_ID_NVIDIA || class != PCI_CLASS_DISPLAY_VGA) { return; } quirk = g_malloc0(sizeof(*quirk)); quirk->vdev = vdev; quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1; quirk->data.address_match = 0x88000; quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1; quirk->data.bar = nr; memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_88000_quirk, quirk, "vfio-nvidia-bar0-88000-quirk", TARGET_PAGE_ALIGN(quirk->data.address_mask + 1)); memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, quirk->data.address_match & TARGET_PAGE_MASK, &quirk->mem, 1); QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); trace_vfio_probe_nvidia_bar0_88000_quirk(vdev->vbasedev.name); } /* * And here's the same for BAR0 offset 0x1800... */ static void vfio_probe_nvidia_bar0_1800_quirk(VFIOPCIDevice *vdev, int nr) { PCIDevice *pdev = &vdev->pdev; VFIOQuirk *quirk; if (!vdev->has_vga || nr != 0 || pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) { return; } /* Log the chipset ID */ trace_vfio_probe_nvidia_bar0_1800_quirk_id( (unsigned int)(vfio_region_read(&vdev->bars[0].region, 0, 4) >> 20) & 0xff); quirk = g_malloc0(sizeof(*quirk)); quirk->vdev = vdev; quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1; quirk->data.address_match = 0x1800; quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1; quirk->data.bar = nr; memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk, "vfio-nvidia-bar0-1800-quirk", TARGET_PAGE_ALIGN(quirk->data.address_mask + 1)); memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem, quirk->data.address_match & TARGET_PAGE_MASK, &quirk->mem, 1); QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); trace_vfio_probe_nvidia_bar0_1800_quirk(vdev->vbasedev.name); } /* * TODO - Some Nvidia devices provide config access to their companion HDA * device and even to their parent bridge via these config space mirrors. * Add quirks for those regions. */ /* * Common quirk probe entry points. */ static void vfio_vga_quirk_setup(VFIOPCIDevice *vdev) { vfio_vga_probe_ati_3c3_quirk(vdev); vfio_vga_probe_nvidia_3d0_quirk(vdev); } static void vfio_vga_quirk_teardown(VFIOPCIDevice *vdev) { VFIOQuirk *quirk; int i; for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) { QLIST_FOREACH(quirk, &vdev->vga.region[i].quirks, next) { memory_region_del_subregion(&vdev->vga.region[i].mem, &quirk->mem); } } } static void vfio_vga_quirk_free(VFIOPCIDevice *vdev) { int i; for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) { while (!QLIST_EMPTY(&vdev->vga.region[i].quirks)) { VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga.region[i].quirks); object_unparent(OBJECT(&quirk->mem)); QLIST_REMOVE(quirk, next); g_free(quirk); } } } static void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr) { vfio_probe_ati_bar4_window_quirk(vdev, nr); vfio_probe_ati_bar2_4000_quirk(vdev, nr); vfio_probe_nvidia_bar5_window_quirk(vdev, nr); vfio_probe_nvidia_bar0_88000_quirk(vdev, nr); vfio_probe_nvidia_bar0_1800_quirk(vdev, nr); vfio_probe_rtl8168_bar2_window_quirk(vdev, nr); } static void vfio_bar_quirk_teardown(VFIOPCIDevice *vdev, int nr) { VFIOBAR *bar = &vdev->bars[nr]; VFIOQuirk *quirk; QLIST_FOREACH(quirk, &bar->quirks, next) { memory_region_del_subregion(&bar->region.mem, &quirk->mem); } } static void vfio_bar_quirk_free(VFIOPCIDevice *vdev, int nr) { VFIOBAR *bar = &vdev->bars[nr]; while (!QLIST_EMPTY(&bar->quirks)) { VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks); object_unparent(OBJECT(&quirk->mem)); QLIST_REMOVE(quirk, next); g_free(quirk); } } /* * PCI config space */ static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len) { VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val; memcpy(&emu_bits, vdev->emulated_config_bits + addr, len); emu_bits = le32_to_cpu(emu_bits); if (emu_bits) { emu_val = pci_default_read_config(pdev, addr, len); } if (~emu_bits & (0xffffffffU >> (32 - len * 8))) { ssize_t ret; ret = pread(vdev->vbasedev.fd, &phys_val, len, vdev->config_offset + addr); if (ret != len) { error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x) failed: %m", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, addr, len); return -errno; } phys_val = le32_to_cpu(phys_val); } val = (emu_val & emu_bits) | (phys_val & ~emu_bits); trace_vfio_pci_read_config(vdev->vbasedev.name, addr, len, val); return val; } static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr, uint32_t val, int len) { VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); uint32_t val_le = cpu_to_le32(val); trace_vfio_pci_write_config(vdev->vbasedev.name, addr, val, len); /* Write everything to VFIO, let it filter out what we can't write */ if (pwrite(vdev->vbasedev.fd, &val_le, len, vdev->config_offset + addr) != len) { error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x, 0x%x) failed: %m", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, addr, val, len); } /* MSI/MSI-X Enabling/Disabling */ if (pdev->cap_present & QEMU_PCI_CAP_MSI && ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) { int is_enabled, was_enabled = msi_enabled(pdev); pci_default_write_config(pdev, addr, val, len); is_enabled = msi_enabled(pdev); if (!was_enabled) { if (is_enabled) { vfio_enable_msi(vdev); } } else { if (!is_enabled) { vfio_disable_msi(vdev); } else { vfio_update_msi(vdev); } } } else if (pdev->cap_present & QEMU_PCI_CAP_MSIX && ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) { int is_enabled, was_enabled = msix_enabled(pdev); pci_default_write_config(pdev, addr, val, len); is_enabled = msix_enabled(pdev); if (!was_enabled && is_enabled) { vfio_enable_msix(vdev); } else if (was_enabled && !is_enabled) { vfio_disable_msix(vdev); } } else { /* Write everything to QEMU to keep emulated bits correct */ pci_default_write_config(pdev, addr, val, len); } } /* * Interrupt setup */ static void vfio_disable_interrupts(VFIOPCIDevice *vdev) { /* * More complicated than it looks. Disabling MSI/X transitions the * device to INTx mode (if supported). Therefore we need to first * disable MSI/X and then cleanup by disabling INTx. */ if (vdev->interrupt == VFIO_INT_MSIX) { vfio_disable_msix(vdev); } else if (vdev->interrupt == VFIO_INT_MSI) { vfio_disable_msi(vdev); } if (vdev->interrupt == VFIO_INT_INTx) { vfio_disable_intx(vdev); } } static int vfio_setup_msi(VFIOPCIDevice *vdev, int pos) { uint16_t ctrl; bool msi_64bit, msi_maskbit; int ret, entries; if (pread(vdev->vbasedev.fd, &ctrl, sizeof(ctrl), vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { return -errno; } ctrl = le16_to_cpu(ctrl); msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT); msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT); entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1); trace_vfio_setup_msi(vdev->vbasedev.name, pos); ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit); if (ret < 0) { if (ret == -ENOTSUP) { return 0; } error_report("vfio: msi_init failed"); return ret; } vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0); return 0; } /* * We don't have any control over how pci_add_capability() inserts * capabilities into the chain. In order to setup MSI-X we need a * MemoryRegion for the BAR. In order to setup the BAR and not * attempt to mmap the MSI-X table area, which VFIO won't allow, we * need to first look for where the MSI-X table lives. So we * unfortunately split MSI-X setup across two functions. */ static int vfio_early_setup_msix(VFIOPCIDevice *vdev) { uint8_t pos; uint16_t ctrl; uint32_t table, pba; int fd = vdev->vbasedev.fd; pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX); if (!pos) { return 0; } if (pread(fd, &ctrl, sizeof(ctrl), vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { return -errno; } if (pread(fd, &table, sizeof(table), vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) { return -errno; } if (pread(fd, &pba, sizeof(pba), vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) { return -errno; } ctrl = le16_to_cpu(ctrl); table = le32_to_cpu(table); pba = le32_to_cpu(pba); vdev->msix = g_malloc0(sizeof(*(vdev->msix))); vdev->msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK; vdev->msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK; vdev->msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK; vdev->msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK; vdev->msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; trace_vfio_early_setup_msix(vdev->vbasedev.name, pos, vdev->msix->table_bar, vdev->msix->table_offset, vdev->msix->entries); return 0; } static int vfio_setup_msix(VFIOPCIDevice *vdev, int pos) { int ret; ret = msix_init(&vdev->pdev, vdev->msix->entries, &vdev->bars[vdev->msix->table_bar].region.mem, vdev->msix->table_bar, vdev->msix->table_offset, &vdev->bars[vdev->msix->pba_bar].region.mem, vdev->msix->pba_bar, vdev->msix->pba_offset, pos); if (ret < 0) { if (ret == -ENOTSUP) { return 0; } error_report("vfio: msix_init failed"); return ret; } return 0; } static void vfio_teardown_msi(VFIOPCIDevice *vdev) { msi_uninit(&vdev->pdev); if (vdev->msix) { msix_uninit(&vdev->pdev, &vdev->bars[vdev->msix->table_bar].region.mem, &vdev->bars[vdev->msix->pba_bar].region.mem); } } /* * Resource setup */ static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled) { int i; for (i = 0; i < PCI_ROM_SLOT; i++) { VFIOBAR *bar = &vdev->bars[i]; if (!bar->region.size) { continue; } memory_region_set_enabled(&bar->region.mmap_mem, enabled); if (vdev->msix && vdev->msix->table_bar == i) { memory_region_set_enabled(&vdev->msix->mmap_mem, enabled); } } } static void vfio_unregister_bar(VFIOPCIDevice *vdev, int nr) { VFIOBAR *bar = &vdev->bars[nr]; if (!bar->region.size) { return; } vfio_bar_quirk_teardown(vdev, nr); memory_region_del_subregion(&bar->region.mem, &bar->region.mmap_mem); if (vdev->msix && vdev->msix->table_bar == nr) { memory_region_del_subregion(&bar->region.mem, &vdev->msix->mmap_mem); } } static void vfio_unmap_bar(VFIOPCIDevice *vdev, int nr) { VFIOBAR *bar = &vdev->bars[nr]; if (!bar->region.size) { return; } vfio_bar_quirk_free(vdev, nr); munmap(bar->region.mmap, memory_region_size(&bar->region.mmap_mem)); if (vdev->msix && vdev->msix->table_bar == nr) { munmap(vdev->msix->mmap, memory_region_size(&vdev->msix->mmap_mem)); } } static void vfio_map_bar(VFIOPCIDevice *vdev, int nr) { VFIOBAR *bar = &vdev->bars[nr]; uint64_t size = bar->region.size; char name[64]; uint32_t pci_bar; uint8_t type; int ret; /* Skip both unimplemented BARs and the upper half of 64bit BARS. */ if (!size) { return; } snprintf(name, sizeof(name), "VFIO %04x:%02x:%02x.%x BAR %d", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, nr); /* Determine what type of BAR this is for registration */ ret = pread(vdev->vbasedev.fd, &pci_bar, sizeof(pci_bar), vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr)); if (ret != sizeof(pci_bar)) { error_report("vfio: Failed to read BAR %d (%m)", nr); return; } pci_bar = le32_to_cpu(pci_bar); bar->ioport = (pci_bar & PCI_BASE_ADDRESS_SPACE_IO); bar->mem64 = bar->ioport ? 0 : (pci_bar & PCI_BASE_ADDRESS_MEM_TYPE_64); type = pci_bar & (bar->ioport ? ~PCI_BASE_ADDRESS_IO_MASK : ~PCI_BASE_ADDRESS_MEM_MASK); /* A "slow" read/write mapping underlies all BARs */ memory_region_init_io(&bar->region.mem, OBJECT(vdev), &vfio_region_ops, bar, name, size); pci_register_bar(&vdev->pdev, nr, type, &bar->region.mem); /* * We can't mmap areas overlapping the MSIX vector table, so we * potentially insert a direct-mapped subregion before and after it. */ if (vdev->msix && vdev->msix->table_bar == nr) { size = vdev->msix->table_offset & qemu_host_page_mask; } strncat(name, " mmap", sizeof(name) - strlen(name) - 1); if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem, &bar->region.mmap_mem, &bar->region.mmap, size, 0, name)) { error_report("%s unsupported. Performance may be slow", name); } if (vdev->msix && vdev->msix->table_bar == nr) { uint64_t start; start = HOST_PAGE_ALIGN(vdev->msix->table_offset + (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE)); size = start < bar->region.size ? bar->region.size - start : 0; strncat(name, " msix-hi", sizeof(name) - strlen(name) - 1); /* VFIOMSIXInfo contains another MemoryRegion for this mapping */ if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem, &vdev->msix->mmap_mem, &vdev->msix->mmap, size, start, name)) { error_report("%s unsupported. Performance may be slow", name); } } vfio_bar_quirk_setup(vdev, nr); } static void vfio_map_bars(VFIOPCIDevice *vdev) { int i; for (i = 0; i < PCI_ROM_SLOT; i++) { vfio_map_bar(vdev, i); } if (vdev->has_vga) { memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_MEM].mem, OBJECT(vdev), &vfio_vga_ops, &vdev->vga.region[QEMU_PCI_VGA_MEM], "vfio-vga-mmio@0xa0000", QEMU_PCI_VGA_MEM_SIZE); memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem, OBJECT(vdev), &vfio_vga_ops, &vdev->vga.region[QEMU_PCI_VGA_IO_LO], "vfio-vga-io@0x3b0", QEMU_PCI_VGA_IO_LO_SIZE); memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, OBJECT(vdev), &vfio_vga_ops, &vdev->vga.region[QEMU_PCI_VGA_IO_HI], "vfio-vga-io@0x3c0", QEMU_PCI_VGA_IO_HI_SIZE); pci_register_vga(&vdev->pdev, &vdev->vga.region[QEMU_PCI_VGA_MEM].mem, &vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem, &vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem); vfio_vga_quirk_setup(vdev); } } static void vfio_unregister_bars(VFIOPCIDevice *vdev) { int i; for (i = 0; i < PCI_ROM_SLOT; i++) { vfio_unregister_bar(vdev, i); } if (vdev->has_vga) { vfio_vga_quirk_teardown(vdev); pci_unregister_vga(&vdev->pdev); } } static void vfio_unmap_bars(VFIOPCIDevice *vdev) { int i; for (i = 0; i < PCI_ROM_SLOT; i++) { vfio_unmap_bar(vdev, i); } if (vdev->has_vga) { vfio_vga_quirk_free(vdev); } } /* * General setup */ static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos) { uint8_t tmp, next = 0xff; for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp; tmp = pdev->config[tmp + 1]) { if (tmp > pos && tmp < next) { next = tmp; } } return next - pos; } static void vfio_set_word_bits(uint8_t *buf, uint16_t val, uint16_t mask) { pci_set_word(buf, (pci_get_word(buf) & ~mask) | val); } static void vfio_add_emulated_word(VFIOPCIDevice *vdev, int pos, uint16_t val, uint16_t mask) { vfio_set_word_bits(vdev->pdev.config + pos, val, mask); vfio_set_word_bits(vdev->pdev.wmask + pos, ~mask, mask); vfio_set_word_bits(vdev->emulated_config_bits + pos, mask, mask); } static void vfio_set_long_bits(uint8_t *buf, uint32_t val, uint32_t mask) { pci_set_long(buf, (pci_get_long(buf) & ~mask) | val); } static void vfio_add_emulated_long(VFIOPCIDevice *vdev, int pos, uint32_t val, uint32_t mask) { vfio_set_long_bits(vdev->pdev.config + pos, val, mask); vfio_set_long_bits(vdev->pdev.wmask + pos, ~mask, mask); vfio_set_long_bits(vdev->emulated_config_bits + pos, mask, mask); } static int vfio_setup_pcie_cap(VFIOPCIDevice *vdev, int pos, uint8_t size) { uint16_t flags; uint8_t type; flags = pci_get_word(vdev->pdev.config + pos + PCI_CAP_FLAGS); type = (flags & PCI_EXP_FLAGS_TYPE) >> 4; if (type != PCI_EXP_TYPE_ENDPOINT && type != PCI_EXP_TYPE_LEG_END && type != PCI_EXP_TYPE_RC_END) { error_report("vfio: Assignment of PCIe type 0x%x " "devices is not currently supported", type); return -EINVAL; } if (!pci_bus_is_express(vdev->pdev.bus)) { /* * Use express capability as-is on PCI bus. It doesn't make much * sense to even expose, but some drivers (ex. tg3) depend on it * and guests don't seem to be particular about it. We'll need * to revist this or force express devices to express buses if we * ever expose an IOMMU to the guest. */ } else if (pci_bus_is_root(vdev->pdev.bus)) { /* * On a Root Complex bus Endpoints become Root Complex Integrated * Endpoints, which changes the type and clears the LNK & LNK2 fields. */ if (type == PCI_EXP_TYPE_ENDPOINT) { vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, PCI_EXP_TYPE_RC_END << 4, PCI_EXP_FLAGS_TYPE); /* Link Capabilities, Status, and Control goes away */ if (size > PCI_EXP_LNKCTL) { vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 0, ~0); vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 0, ~0); #ifndef PCI_EXP_LNKCAP2 #define PCI_EXP_LNKCAP2 44 #endif #ifndef PCI_EXP_LNKSTA2 #define PCI_EXP_LNKSTA2 50 #endif /* Link 2 Capabilities, Status, and Control goes away */ if (size > PCI_EXP_LNKCAP2) { vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP2, 0, ~0); vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL2, 0, ~0); vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA2, 0, ~0); } } } else if (type == PCI_EXP_TYPE_LEG_END) { /* * Legacy endpoints don't belong on the root complex. Windows * seems to be happier with devices if we skip the capability. */ return 0; } } else { /* * Convert Root Complex Integrated Endpoints to regular endpoints. * These devices don't support LNK/LNK2 capabilities, so make them up. */ if (type == PCI_EXP_TYPE_RC_END) { vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, PCI_EXP_TYPE_ENDPOINT << 4, PCI_EXP_FLAGS_TYPE); vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, PCI_EXP_LNK_MLW_1 | PCI_EXP_LNK_LS_25, ~0); vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); } /* Mark the Link Status bits as emulated to allow virtual negotiation */ vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, pci_get_word(vdev->pdev.config + pos + PCI_EXP_LNKSTA), PCI_EXP_LNKCAP_MLW | PCI_EXP_LNKCAP_SLS); } pos = pci_add_capability(&vdev->pdev, PCI_CAP_ID_EXP, pos, size); if (pos >= 0) { vdev->pdev.exp.exp_cap = pos; } return pos; } static void vfio_check_pcie_flr(VFIOPCIDevice *vdev, uint8_t pos) { uint32_t cap = pci_get_long(vdev->pdev.config + pos + PCI_EXP_DEVCAP); if (cap & PCI_EXP_DEVCAP_FLR) { trace_vfio_check_pcie_flr(vdev->vbasedev.name); vdev->has_flr = true; } } static void vfio_check_pm_reset(VFIOPCIDevice *vdev, uint8_t pos) { uint16_t csr = pci_get_word(vdev->pdev.config + pos + PCI_PM_CTRL); if (!(csr & PCI_PM_CTRL_NO_SOFT_RESET)) { trace_vfio_check_pm_reset(vdev->vbasedev.name); vdev->has_pm_reset = true; } } static void vfio_check_af_flr(VFIOPCIDevice *vdev, uint8_t pos) { uint8_t cap = pci_get_byte(vdev->pdev.config + pos + PCI_AF_CAP); if ((cap & PCI_AF_CAP_TP) && (cap & PCI_AF_CAP_FLR)) { trace_vfio_check_af_flr(vdev->vbasedev.name); vdev->has_flr = true; } } static int vfio_add_std_cap(VFIOPCIDevice *vdev, uint8_t pos) { PCIDevice *pdev = &vdev->pdev; uint8_t cap_id, next, size; int ret; cap_id = pdev->config[pos]; next = pdev->config[pos + 1]; /* * If it becomes important to configure capabilities to their actual * size, use this as the default when it's something we don't recognize. * Since QEMU doesn't actually handle many of the config accesses, * exact size doesn't seem worthwhile. */ size = vfio_std_cap_max_size(pdev, pos); /* * pci_add_capability always inserts the new capability at the head * of the chain. Therefore to end up with a chain that matches the * physical device, we insert from the end by making this recursive. * This is also why we pre-caclulate size above as cached config space * will be changed as we unwind the stack. */ if (next) { ret = vfio_add_std_cap(vdev, next); if (ret) { return ret; } } else { /* Begin the rebuild, use QEMU emulated list bits */ pdev->config[PCI_CAPABILITY_LIST] = 0; vdev->emulated_config_bits[PCI_CAPABILITY_LIST] = 0xff; vdev->emulated_config_bits[PCI_STATUS] |= PCI_STATUS_CAP_LIST; } /* Use emulated next pointer to allow dropping caps */ pci_set_byte(vdev->emulated_config_bits + pos + 1, 0xff); switch (cap_id) { case PCI_CAP_ID_MSI: ret = vfio_setup_msi(vdev, pos); break; case PCI_CAP_ID_EXP: vfio_check_pcie_flr(vdev, pos); ret = vfio_setup_pcie_cap(vdev, pos, size); break; case PCI_CAP_ID_MSIX: ret = vfio_setup_msix(vdev, pos); break; case PCI_CAP_ID_PM: vfio_check_pm_reset(vdev, pos); vdev->pm_cap = pos; ret = pci_add_capability(pdev, cap_id, pos, size); break; case PCI_CAP_ID_AF: vfio_check_af_flr(vdev, pos); ret = pci_add_capability(pdev, cap_id, pos, size); break; default: ret = pci_add_capability(pdev, cap_id, pos, size); break; } if (ret < 0) { error_report("vfio: %04x:%02x:%02x.%x Error adding PCI capability " "0x%x[0x%x]@0x%x: %d", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, cap_id, size, pos, ret); return ret; } return 0; } static int vfio_add_capabilities(VFIOPCIDevice *vdev) { PCIDevice *pdev = &vdev->pdev; if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) || !pdev->config[PCI_CAPABILITY_LIST]) { return 0; /* Nothing to add */ } return vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST]); } static void vfio_pci_pre_reset(VFIOPCIDevice *vdev) { PCIDevice *pdev = &vdev->pdev; uint16_t cmd; vfio_disable_interrupts(vdev); /* Make sure the device is in D0 */ if (vdev->pm_cap) { uint16_t pmcsr; uint8_t state; pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2); state = pmcsr & PCI_PM_CTRL_STATE_MASK; if (state) { pmcsr &= ~PCI_PM_CTRL_STATE_MASK; vfio_pci_write_config(pdev, vdev->pm_cap + PCI_PM_CTRL, pmcsr, 2); /* vfio handles the necessary delay here */ pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2); state = pmcsr & PCI_PM_CTRL_STATE_MASK; if (state) { error_report("vfio: Unable to power on device, stuck in D%d", state); } } } /* * Stop any ongoing DMA by disconecting I/O, MMIO, and bus master. * Also put INTx Disable in known state. */ cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2); cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INTX_DISABLE); vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2); } static void vfio_pci_post_reset(VFIOPCIDevice *vdev) { vfio_enable_intx(vdev); } static bool vfio_pci_host_match(PCIHostDeviceAddress *host1, PCIHostDeviceAddress *host2) { return (host1->domain == host2->domain && host1->bus == host2->bus && host1->slot == host2->slot && host1->function == host2->function); } static int vfio_pci_hot_reset(VFIOPCIDevice *vdev, bool single) { VFIOGroup *group; struct vfio_pci_hot_reset_info *info; struct vfio_pci_dependent_device *devices; struct vfio_pci_hot_reset *reset; int32_t *fds; int ret, i, count; bool multi = false; trace_vfio_pci_hot_reset(vdev->vbasedev.name, single ? "one" : "multi"); vfio_pci_pre_reset(vdev); vdev->vbasedev.needs_reset = false; info = g_malloc0(sizeof(*info)); info->argsz = sizeof(*info); ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info); if (ret && errno != ENOSPC) { ret = -errno; if (!vdev->has_pm_reset) { error_report("vfio: Cannot reset device %04x:%02x:%02x.%x, " "no available reset mechanism.", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); } goto out_single; } count = info->count; info = g_realloc(info, sizeof(*info) + (count * sizeof(*devices))); info->argsz = sizeof(*info) + (count * sizeof(*devices)); devices = &info->devices[0]; ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info); if (ret) { ret = -errno; error_report("vfio: hot reset info failed: %m"); goto out_single; } trace_vfio_pci_hot_reset_has_dep_devices(vdev->vbasedev.name); /* Verify that we have all the groups required */ for (i = 0; i < info->count; i++) { PCIHostDeviceAddress host; VFIOPCIDevice *tmp; VFIODevice *vbasedev_iter; host.domain = devices[i].segment; host.bus = devices[i].bus; host.slot = PCI_SLOT(devices[i].devfn); host.function = PCI_FUNC(devices[i].devfn); trace_vfio_pci_hot_reset_dep_devices(host.domain, host.bus, host.slot, host.function, devices[i].group_id); if (vfio_pci_host_match(&host, &vdev->host)) { continue; } QLIST_FOREACH(group, &vfio_group_list, next) { if (group->groupid == devices[i].group_id) { break; } } if (!group) { if (!vdev->has_pm_reset) { error_report("vfio: Cannot reset device %s, " "depends on group %d which is not owned.", vdev->vbasedev.name, devices[i].group_id); } ret = -EPERM; goto out; } /* Prep dependent devices for reset and clear our marker. */ QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) { continue; } tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev); if (vfio_pci_host_match(&host, &tmp->host)) { if (single) { ret = -EINVAL; goto out_single; } vfio_pci_pre_reset(tmp); tmp->vbasedev.needs_reset = false; multi = true; break; } } } if (!single && !multi) { ret = -EINVAL; goto out_single; } /* Determine how many group fds need to be passed */ count = 0; QLIST_FOREACH(group, &vfio_group_list, next) { for (i = 0; i < info->count; i++) { if (group->groupid == devices[i].group_id) { count++; break; } } } reset = g_malloc0(sizeof(*reset) + (count * sizeof(*fds))); reset->argsz = sizeof(*reset) + (count * sizeof(*fds)); fds = &reset->group_fds[0]; /* Fill in group fds */ QLIST_FOREACH(group, &vfio_group_list, next) { for (i = 0; i < info->count; i++) { if (group->groupid == devices[i].group_id) { fds[reset->count++] = group->fd; break; } } } /* Bus reset! */ ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_PCI_HOT_RESET, reset); g_free(reset); trace_vfio_pci_hot_reset_result(vdev->vbasedev.name, ret ? "%m" : "Success"); out: /* Re-enable INTx on affected devices */ for (i = 0; i < info->count; i++) { PCIHostDeviceAddress host; VFIOPCIDevice *tmp; VFIODevice *vbasedev_iter; host.domain = devices[i].segment; host.bus = devices[i].bus; host.slot = PCI_SLOT(devices[i].devfn); host.function = PCI_FUNC(devices[i].devfn); if (vfio_pci_host_match(&host, &vdev->host)) { continue; } QLIST_FOREACH(group, &vfio_group_list, next) { if (group->groupid == devices[i].group_id) { break; } } if (!group) { break; } QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) { continue; } tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev); if (vfio_pci_host_match(&host, &tmp->host)) { vfio_pci_post_reset(tmp); break; } } } out_single: vfio_pci_post_reset(vdev); g_free(info); return ret; } /* * We want to differentiate hot reset of mulitple in-use devices vs hot reset * of a single in-use device. VFIO_DEVICE_RESET will already handle the case * of doing hot resets when there is only a single device per bus. The in-use * here refers to how many VFIODevices are affected. A hot reset that affects * multiple devices, but only a single in-use device, means that we can call * it from our bus ->reset() callback since the extent is effectively a single * device. This allows us to make use of it in the hotplug path. When there * are multiple in-use devices, we can only trigger the hot reset during a * system reset and thus from our reset handler. We separate _one vs _multi * here so that we don't overlap and do a double reset on the system reset * path where both our reset handler and ->reset() callback are used. Calling * _one() will only do a hot reset for the one in-use devices case, calling * _multi() will do nothing if a _one() would have been sufficient. */ static int vfio_pci_hot_reset_one(VFIOPCIDevice *vdev) { return vfio_pci_hot_reset(vdev, true); } static int vfio_pci_hot_reset_multi(VFIODevice *vbasedev) { VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); return vfio_pci_hot_reset(vdev, false); } static void vfio_pci_compute_needs_reset(VFIODevice *vbasedev) { VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); if (!vbasedev->reset_works || (!vdev->has_flr && vdev->has_pm_reset)) { vbasedev->needs_reset = true; } } static VFIODeviceOps vfio_pci_ops = { .vfio_compute_needs_reset = vfio_pci_compute_needs_reset, .vfio_hot_reset_multi = vfio_pci_hot_reset_multi, .vfio_eoi = vfio_eoi, }; static int vfio_populate_device(VFIOPCIDevice *vdev) { VFIODevice *vbasedev = &vdev->vbasedev; struct vfio_region_info reg_info = { .argsz = sizeof(reg_info) }; struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info) }; int i, ret = -1; /* Sanity check device */ if (!(vbasedev->flags & VFIO_DEVICE_FLAGS_PCI)) { error_report("vfio: Um, this isn't a PCI device"); goto error; } if (vbasedev->num_regions < VFIO_PCI_CONFIG_REGION_INDEX + 1) { error_report("vfio: unexpected number of io regions %u", vbasedev->num_regions); goto error; } if (vbasedev->num_irqs < VFIO_PCI_MSIX_IRQ_INDEX + 1) { error_report("vfio: unexpected number of irqs %u", vbasedev->num_irqs); goto error; } for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) { reg_info.index = i; ret = ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, ®_info); if (ret) { error_report("vfio: Error getting region %d info: %m", i); goto error; } trace_vfio_populate_device_region(vbasedev->name, i, (unsigned long)reg_info.size, (unsigned long)reg_info.offset, (unsigned long)reg_info.flags); vdev->bars[i].region.vbasedev = vbasedev; vdev->bars[i].region.flags = reg_info.flags; vdev->bars[i].region.size = reg_info.size; vdev->bars[i].region.fd_offset = reg_info.offset; vdev->bars[i].region.nr = i; QLIST_INIT(&vdev->bars[i].quirks); } reg_info.index = VFIO_PCI_CONFIG_REGION_INDEX; ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, ®_info); if (ret) { error_report("vfio: Error getting config info: %m"); goto error; } trace_vfio_populate_device_config(vdev->vbasedev.name, (unsigned long)reg_info.size, (unsigned long)reg_info.offset, (unsigned long)reg_info.flags); vdev->config_size = reg_info.size; if (vdev->config_size == PCI_CONFIG_SPACE_SIZE) { vdev->pdev.cap_present &= ~QEMU_PCI_CAP_EXPRESS; } vdev->config_offset = reg_info.offset; if ((vdev->features & VFIO_FEATURE_ENABLE_VGA) && vbasedev->num_regions > VFIO_PCI_VGA_REGION_INDEX) { struct vfio_region_info vga_info = { .argsz = sizeof(vga_info), .index = VFIO_PCI_VGA_REGION_INDEX, }; ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &vga_info); if (ret) { error_report( "vfio: Device does not support requested feature x-vga"); goto error; } if (!(vga_info.flags & VFIO_REGION_INFO_FLAG_READ) || !(vga_info.flags & VFIO_REGION_INFO_FLAG_WRITE) || vga_info.size < 0xbffff + 1) { error_report("vfio: Unexpected VGA info, flags 0x%lx, size 0x%lx", (unsigned long)vga_info.flags, (unsigned long)vga_info.size); goto error; } vdev->vga.fd_offset = vga_info.offset; vdev->vga.fd = vdev->vbasedev.fd; vdev->vga.region[QEMU_PCI_VGA_MEM].offset = QEMU_PCI_VGA_MEM_BASE; vdev->vga.region[QEMU_PCI_VGA_MEM].nr = QEMU_PCI_VGA_MEM; QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_MEM].quirks); vdev->vga.region[QEMU_PCI_VGA_IO_LO].offset = QEMU_PCI_VGA_IO_LO_BASE; vdev->vga.region[QEMU_PCI_VGA_IO_LO].nr = QEMU_PCI_VGA_IO_LO; QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].quirks); vdev->vga.region[QEMU_PCI_VGA_IO_HI].offset = QEMU_PCI_VGA_IO_HI_BASE; vdev->vga.region[QEMU_PCI_VGA_IO_HI].nr = QEMU_PCI_VGA_IO_HI; QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks); vdev->has_vga = true; } irq_info.index = VFIO_PCI_ERR_IRQ_INDEX; ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info); if (ret) { /* This can fail for an old kernel or legacy PCI dev */ trace_vfio_populate_device_get_irq_info_failure(); ret = 0; } else if (irq_info.count == 1) { vdev->pci_aer = true; } else { error_report("vfio: %s " "Could not enable error recovery for the device", vbasedev->name); } error: return ret; } static void vfio_put_device(VFIOPCIDevice *vdev) { g_free(vdev->vbasedev.name); if (vdev->msix) { object_unparent(OBJECT(&vdev->msix->mmap_mem)); g_free(vdev->msix); vdev->msix = NULL; } vfio_put_base_device(&vdev->vbasedev); } static void vfio_err_notifier_handler(void *opaque) { VFIOPCIDevice *vdev = opaque; if (!event_notifier_test_and_clear(&vdev->err_notifier)) { return; } /* * TBD. Retrieve the error details and decide what action * needs to be taken. One of the actions could be to pass * the error to the guest and have the guest driver recover * from the error. This requires that PCIe capabilities be * exposed to the guest. For now, we just terminate the * guest to contain the error. */ error_report("%s(%04x:%02x:%02x.%x) Unrecoverable error detected. " "Please collect any data possible and then kill the guest", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); vm_stop(RUN_STATE_INTERNAL_ERROR); } /* * Registers error notifier for devices supporting error recovery. * If we encounter a failure in this function, we report an error * and continue after disabling error recovery support for the * device. */ static void vfio_register_err_notifier(VFIOPCIDevice *vdev) { int ret; int argsz; struct vfio_irq_set *irq_set; int32_t *pfd; if (!vdev->pci_aer) { return; } if (event_notifier_init(&vdev->err_notifier, 0)) { error_report("vfio: Unable to init event notifier for error detection"); vdev->pci_aer = false; return; } argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_ERR_IRQ_INDEX; irq_set->start = 0; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = event_notifier_get_fd(&vdev->err_notifier); qemu_set_fd_handler(*pfd, vfio_err_notifier_handler, NULL, vdev); ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); if (ret) { error_report("vfio: Failed to set up error notification"); qemu_set_fd_handler(*pfd, NULL, NULL, vdev); event_notifier_cleanup(&vdev->err_notifier); vdev->pci_aer = false; } g_free(irq_set); } static void vfio_unregister_err_notifier(VFIOPCIDevice *vdev) { int argsz; struct vfio_irq_set *irq_set; int32_t *pfd; int ret; if (!vdev->pci_aer) { return; } argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_ERR_IRQ_INDEX; irq_set->start = 0; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = -1; ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); if (ret) { error_report("vfio: Failed to de-assign error fd: %m"); } g_free(irq_set); qemu_set_fd_handler(event_notifier_get_fd(&vdev->err_notifier), NULL, NULL, vdev); event_notifier_cleanup(&vdev->err_notifier); } static void vfio_req_notifier_handler(void *opaque) { VFIOPCIDevice *vdev = opaque; if (!event_notifier_test_and_clear(&vdev->req_notifier)) { return; } qdev_unplug(&vdev->pdev.qdev, NULL); } static void vfio_register_req_notifier(VFIOPCIDevice *vdev) { struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info), .index = VFIO_PCI_REQ_IRQ_INDEX }; int argsz; struct vfio_irq_set *irq_set; int32_t *pfd; if (!(vdev->features & VFIO_FEATURE_ENABLE_REQ)) { return; } if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info) < 0 || irq_info.count < 1) { return; } if (event_notifier_init(&vdev->req_notifier, 0)) { error_report("vfio: Unable to init event notifier for device request"); return; } argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_REQ_IRQ_INDEX; irq_set->start = 0; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = event_notifier_get_fd(&vdev->req_notifier); qemu_set_fd_handler(*pfd, vfio_req_notifier_handler, NULL, vdev); if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) { error_report("vfio: Failed to set up device request notification"); qemu_set_fd_handler(*pfd, NULL, NULL, vdev); event_notifier_cleanup(&vdev->req_notifier); } else { vdev->req_enabled = true; } g_free(irq_set); } static void vfio_unregister_req_notifier(VFIOPCIDevice *vdev) { int argsz; struct vfio_irq_set *irq_set; int32_t *pfd; if (!vdev->req_enabled) { return; } argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_REQ_IRQ_INDEX; irq_set->start = 0; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = -1; if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) { error_report("vfio: Failed to de-assign device request fd: %m"); } g_free(irq_set); qemu_set_fd_handler(event_notifier_get_fd(&vdev->req_notifier), NULL, NULL, vdev); event_notifier_cleanup(&vdev->req_notifier); vdev->req_enabled = false; } static int vfio_initfn(PCIDevice *pdev) { VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); VFIODevice *vbasedev_iter; VFIOGroup *group; char path[PATH_MAX], iommu_group_path[PATH_MAX], *group_name; ssize_t len; struct stat st; int groupid; int ret; /* Check that the host device exists */ snprintf(path, sizeof(path), "/sys/bus/pci/devices/%04x:%02x:%02x.%01x/", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); if (stat(path, &st) < 0) { error_report("vfio: error: no such host device: %s", path); return -errno; } vdev->vbasedev.ops = &vfio_pci_ops; vdev->vbasedev.type = VFIO_DEVICE_TYPE_PCI; vdev->vbasedev.name = g_strdup_printf("%04x:%02x:%02x.%01x", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); strncat(path, "iommu_group", sizeof(path) - strlen(path) - 1); len = readlink(path, iommu_group_path, sizeof(path)); if (len <= 0 || len >= sizeof(path)) { error_report("vfio: error no iommu_group for device"); return len < 0 ? -errno : ENAMETOOLONG; } iommu_group_path[len] = 0; group_name = basename(iommu_group_path); if (sscanf(group_name, "%d", &groupid) != 1) { error_report("vfio: error reading %s: %m", path); return -errno; } trace_vfio_initfn(vdev->vbasedev.name, groupid); group = vfio_get_group(groupid, pci_device_iommu_address_space(pdev)); if (!group) { error_report("vfio: failed to get group %d", groupid); return -ENOENT; } snprintf(path, sizeof(path), "%04x:%02x:%02x.%01x", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { if (strcmp(vbasedev_iter->name, vdev->vbasedev.name) == 0) { error_report("vfio: error: device %s is already attached", path); vfio_put_group(group); return -EBUSY; } } ret = vfio_get_device(group, path, &vdev->vbasedev); if (ret) { error_report("vfio: failed to get device %s", path); vfio_put_group(group); return ret; } ret = vfio_populate_device(vdev); if (ret) { return ret; } /* Get a copy of config space */ ret = pread(vdev->vbasedev.fd, vdev->pdev.config, MIN(pci_config_size(&vdev->pdev), vdev->config_size), vdev->config_offset); if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) { ret = ret < 0 ? -errno : -EFAULT; error_report("vfio: Failed to read device config space"); return ret; } /* vfio emulates a lot for us, but some bits need extra love */ vdev->emulated_config_bits = g_malloc0(vdev->config_size); /* QEMU can choose to expose the ROM or not */ memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4); /* QEMU can change multi-function devices to single function, or reverse */ vdev->emulated_config_bits[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_MULTI_FUNCTION; /* Restore or clear multifunction, this is always controlled by QEMU */ if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION; } else { vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION; } /* * Clear host resource mapping info. If we choose not to register a * BAR, such as might be the case with the option ROM, we can get * confusing, unwritable, residual addresses from the host here. */ memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24); memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4); vfio_pci_size_rom(vdev); ret = vfio_early_setup_msix(vdev); if (ret) { return ret; } vfio_map_bars(vdev); ret = vfio_add_capabilities(vdev); if (ret) { goto out_teardown; } /* QEMU emulates all of MSI & MSIX */ if (pdev->cap_present & QEMU_PCI_CAP_MSIX) { memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff, MSIX_CAP_LENGTH); } if (pdev->cap_present & QEMU_PCI_CAP_MSI) { memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff, vdev->msi_cap_size); } if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) { vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, vfio_intx_mmap_enable, vdev); pci_device_set_intx_routing_notifier(&vdev->pdev, vfio_update_irq); ret = vfio_enable_intx(vdev); if (ret) { goto out_teardown; } } vfio_register_err_notifier(vdev); vfio_register_req_notifier(vdev); return 0; out_teardown: pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); vfio_teardown_msi(vdev); vfio_unregister_bars(vdev); return ret; } static void vfio_instance_finalize(Object *obj) { PCIDevice *pci_dev = PCI_DEVICE(obj); VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pci_dev); VFIOGroup *group = vdev->vbasedev.group; vfio_unmap_bars(vdev); g_free(vdev->emulated_config_bits); g_free(vdev->rom); vfio_put_device(vdev); vfio_put_group(group); } static void vfio_exitfn(PCIDevice *pdev) { VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); vfio_unregister_req_notifier(vdev); vfio_unregister_err_notifier(vdev); pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); vfio_disable_interrupts(vdev); if (vdev->intx.mmap_timer) { timer_free(vdev->intx.mmap_timer); } vfio_teardown_msi(vdev); vfio_unregister_bars(vdev); } static void vfio_pci_reset(DeviceState *dev) { PCIDevice *pdev = DO_UPCAST(PCIDevice, qdev, dev); VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); trace_vfio_pci_reset(vdev->vbasedev.name); vfio_pci_pre_reset(vdev); if (vdev->vbasedev.reset_works && (vdev->has_flr || !vdev->has_pm_reset) && !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) { trace_vfio_pci_reset_flr(vdev->vbasedev.name); goto post_reset; } /* See if we can do our own bus reset */ if (!vfio_pci_hot_reset_one(vdev)) { goto post_reset; } /* If nothing else works and the device supports PM reset, use it */ if (vdev->vbasedev.reset_works && vdev->has_pm_reset && !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) { trace_vfio_pci_reset_pm(vdev->vbasedev.name); goto post_reset; } post_reset: vfio_pci_post_reset(vdev); } static void vfio_instance_init(Object *obj) { PCIDevice *pci_dev = PCI_DEVICE(obj); VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, PCI_DEVICE(obj)); device_add_bootindex_property(obj, &vdev->bootindex, "bootindex", NULL, &pci_dev->qdev, NULL); } static Property vfio_pci_dev_properties[] = { DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIOPCIDevice, host), DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIOPCIDevice, intx.mmap_timeout, 1100), DEFINE_PROP_BIT("x-vga", VFIOPCIDevice, features, VFIO_FEATURE_ENABLE_VGA_BIT, false), DEFINE_PROP_BIT("x-req", VFIOPCIDevice, features, VFIO_FEATURE_ENABLE_REQ_BIT, true), DEFINE_PROP_INT32("bootindex", VFIOPCIDevice, bootindex, -1), DEFINE_PROP_BOOL("x-mmap", VFIOPCIDevice, vbasedev.allow_mmap, true), /* * TODO - support passed fds... is this necessary? * DEFINE_PROP_STRING("vfiofd", VFIOPCIDevice, vfiofd_name), * DEFINE_PROP_STRING("vfiogroupfd, VFIOPCIDevice, vfiogroupfd_name), */ DEFINE_PROP_END_OF_LIST(), }; static const VMStateDescription vfio_pci_vmstate = { .name = "vfio-pci", .unmigratable = 1, }; static void vfio_pci_dev_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass); dc->reset = vfio_pci_reset; dc->props = vfio_pci_dev_properties; dc->vmsd = &vfio_pci_vmstate; dc->desc = "VFIO-based PCI device assignment"; set_bit(DEVICE_CATEGORY_MISC, dc->categories); pdc->init = vfio_initfn; pdc->exit = vfio_exitfn; pdc->config_read = vfio_pci_read_config; pdc->config_write = vfio_pci_write_config; pdc->is_express = 1; /* We might be */ } static const TypeInfo vfio_pci_dev_info = { .name = "vfio-pci", .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(VFIOPCIDevice), .class_init = vfio_pci_dev_class_init, .instance_init = vfio_instance_init, .instance_finalize = vfio_instance_finalize, }; static void register_vfio_pci_dev_type(void) { type_register_static(&vfio_pci_dev_info); } type_init(register_vfio_pci_dev_type)