/* * QEMU educational PCI device * * Copyright (c) 2012-2015 Jiri Slaby * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "hw/pci/pci.h" #include "hw/hw.h" #include "hw/pci/msi.h" #include "qemu/timer.h" #include "qom/object.h" #include "qemu/main-loop.h" /* iothread mutex */ #include "qemu/module.h" #include "qapi/visitor.h" #define TYPE_PCI_EDU_DEVICE "edu" typedef struct EduState EduState; DECLARE_INSTANCE_CHECKER(EduState, EDU, TYPE_PCI_EDU_DEVICE) #define FACT_IRQ 0x00000001 #define DMA_IRQ 0x00000100 #define DMA_START 0x40000 #define DMA_SIZE 4096 struct EduState { PCIDevice pdev; MemoryRegion mmio; QemuThread thread; QemuMutex thr_mutex; QemuCond thr_cond; bool stopping; uint32_t addr4; uint32_t fact; #define EDU_STATUS_COMPUTING 0x01 #define EDU_STATUS_IRQFACT 0x80 uint32_t status; uint32_t irq_status; #define EDU_DMA_RUN 0x1 #define EDU_DMA_DIR(cmd) (((cmd) & 0x2) >> 1) # define EDU_DMA_FROM_PCI 0 # define EDU_DMA_TO_PCI 1 #define EDU_DMA_IRQ 0x4 struct dma_state { dma_addr_t src; dma_addr_t dst; dma_addr_t cnt; dma_addr_t cmd; } dma; QEMUTimer dma_timer; char dma_buf[DMA_SIZE]; uint64_t dma_mask; }; static bool edu_msi_enabled(EduState *edu) { return msi_enabled(&edu->pdev); } static void edu_raise_irq(EduState *edu, uint32_t val) { edu->irq_status |= val; if (edu->irq_status) { if (edu_msi_enabled(edu)) { msi_notify(&edu->pdev, 0); } else { pci_set_irq(&edu->pdev, 1); } } } static void edu_lower_irq(EduState *edu, uint32_t val) { edu->irq_status &= ~val; if (!edu->irq_status && !edu_msi_enabled(edu)) { pci_set_irq(&edu->pdev, 0); } } static bool within(uint64_t addr, uint64_t start, uint64_t end) { return start <= addr && addr < end; } static void edu_check_range(uint64_t addr, uint64_t size1, uint64_t start, uint64_t size2) { uint64_t end1 = addr + size1; uint64_t end2 = start + size2; if (within(addr, start, end2) && end1 > addr && end1 <= end2) { return; } hw_error("EDU: DMA range 0x%016"PRIx64"-0x%016"PRIx64 " out of bounds (0x%016"PRIx64"-0x%016"PRIx64")!", addr, end1 - 1, start, end2 - 1); } static dma_addr_t edu_clamp_addr(const EduState *edu, dma_addr_t addr) { dma_addr_t res = addr & edu->dma_mask; if (addr != res) { printf("EDU: clamping DMA %#.16"PRIx64" to %#.16"PRIx64"!\n", addr, res); } return res; } static void edu_dma_timer(void *opaque) { EduState *edu = opaque; bool raise_irq = false; if (!(edu->dma.cmd & EDU_DMA_RUN)) { return; } if (EDU_DMA_DIR(edu->dma.cmd) == EDU_DMA_FROM_PCI) { uint64_t dst = edu->dma.dst; edu_check_range(dst, edu->dma.cnt, DMA_START, DMA_SIZE); dst -= DMA_START; pci_dma_read(&edu->pdev, edu_clamp_addr(edu, edu->dma.src), edu->dma_buf + dst, edu->dma.cnt); } else { uint64_t src = edu->dma.src; edu_check_range(src, edu->dma.cnt, DMA_START, DMA_SIZE); src -= DMA_START; pci_dma_write(&edu->pdev, edu_clamp_addr(edu, edu->dma.dst), edu->dma_buf + src, edu->dma.cnt); } edu->dma.cmd &= ~EDU_DMA_RUN; if (edu->dma.cmd & EDU_DMA_IRQ) { raise_irq = true; } if (raise_irq) { edu_raise_irq(edu, DMA_IRQ); } } static void dma_rw(EduState *edu, bool write, dma_addr_t *val, dma_addr_t *dma, bool timer) { if (write && (edu->dma.cmd & EDU_DMA_RUN)) { return; } if (write) { *dma = *val; } else { *val = *dma; } if (timer) { timer_mod(&edu->dma_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 100); } } static uint64_t edu_mmio_read(void *opaque, hwaddr addr, unsigned size) { EduState *edu = opaque; uint64_t val = ~0ULL; if (addr < 0x80 && size != 4) { return val; } if (addr >= 0x80 && size != 4 && size != 8) { return val; } switch (addr) { case 0x00: val = 0x010000edu; break; case 0x04: val = edu->addr4; break; case 0x08: qemu_mutex_lock(&edu->thr_mutex); val = edu->fact; qemu_mutex_unlock(&edu->thr_mutex); break; case 0x20: val = qatomic_read(&edu->status); break; case 0x24: val = edu->irq_status; break; case 0x80: dma_rw(edu, false, &val, &edu->dma.src, false); break; case 0x88: dma_rw(edu, false, &val, &edu->dma.dst, false); break; case 0x90: dma_rw(edu, false, &val, &edu->dma.cnt, false); break; case 0x98: dma_rw(edu, false, &val, &edu->dma.cmd, false); break; } return val; } static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { EduState *edu = opaque; if (addr < 0x80 && size != 4) { return; } if (addr >= 0x80 && size != 4 && size != 8) { return; } switch (addr) { case 0x04: edu->addr4 = ~val; break; case 0x08: if (qatomic_read(&edu->status) & EDU_STATUS_COMPUTING) { break; } /* EDU_STATUS_COMPUTING cannot go 0->1 concurrently, because it is only * set in this function and it is under the iothread mutex. */ qemu_mutex_lock(&edu->thr_mutex); edu->fact = val; qatomic_or(&edu->status, EDU_STATUS_COMPUTING); qemu_cond_signal(&edu->thr_cond); qemu_mutex_unlock(&edu->thr_mutex); break; case 0x20: if (val & EDU_STATUS_IRQFACT) { qatomic_or(&edu->status, EDU_STATUS_IRQFACT); /* Order check of the COMPUTING flag after setting IRQFACT. */ smp_mb__after_rmw(); } else { qatomic_and(&edu->status, ~EDU_STATUS_IRQFACT); } break; case 0x60: edu_raise_irq(edu, val); break; case 0x64: edu_lower_irq(edu, val); break; case 0x80: dma_rw(edu, true, &val, &edu->dma.src, false); break; case 0x88: dma_rw(edu, true, &val, &edu->dma.dst, false); break; case 0x90: dma_rw(edu, true, &val, &edu->dma.cnt, false); break; case 0x98: if (!(val & EDU_DMA_RUN)) { break; } dma_rw(edu, true, &val, &edu->dma.cmd, true); break; } } static const MemoryRegionOps edu_mmio_ops = { .read = edu_mmio_read, .write = edu_mmio_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 8, }, .impl = { .min_access_size = 4, .max_access_size = 8, }, }; /* * We purposely use a thread, so that users are forced to wait for the status * register. */ static void *edu_fact_thread(void *opaque) { EduState *edu = opaque; while (1) { uint32_t val, ret = 1; qemu_mutex_lock(&edu->thr_mutex); while ((qatomic_read(&edu->status) & EDU_STATUS_COMPUTING) == 0 && !edu->stopping) { qemu_cond_wait(&edu->thr_cond, &edu->thr_mutex); } if (edu->stopping) { qemu_mutex_unlock(&edu->thr_mutex); break; } val = edu->fact; qemu_mutex_unlock(&edu->thr_mutex); while (val > 0) { ret *= val--; } /* * We should sleep for a random period here, so that students are * forced to check the status properly. */ qemu_mutex_lock(&edu->thr_mutex); edu->fact = ret; qemu_mutex_unlock(&edu->thr_mutex); qatomic_and(&edu->status, ~EDU_STATUS_COMPUTING); /* Clear COMPUTING flag before checking IRQFACT. */ smp_mb__after_rmw(); if (qatomic_read(&edu->status) & EDU_STATUS_IRQFACT) { qemu_mutex_lock_iothread(); edu_raise_irq(edu, FACT_IRQ); qemu_mutex_unlock_iothread(); } } return NULL; } static void pci_edu_realize(PCIDevice *pdev, Error **errp) { EduState *edu = EDU(pdev); uint8_t *pci_conf = pdev->config; pci_config_set_interrupt_pin(pci_conf, 1); if (msi_init(pdev, 0, 1, true, false, errp)) { return; } timer_init_ms(&edu->dma_timer, QEMU_CLOCK_VIRTUAL, edu_dma_timer, edu); qemu_mutex_init(&edu->thr_mutex); qemu_cond_init(&edu->thr_cond); qemu_thread_create(&edu->thread, "edu", edu_fact_thread, edu, QEMU_THREAD_JOINABLE); memory_region_init_io(&edu->mmio, OBJECT(edu), &edu_mmio_ops, edu, "edu-mmio", 1 * MiB); pci_register_bar(pdev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &edu->mmio); } static void pci_edu_uninit(PCIDevice *pdev) { EduState *edu = EDU(pdev); qemu_mutex_lock(&edu->thr_mutex); edu->stopping = true; qemu_mutex_unlock(&edu->thr_mutex); qemu_cond_signal(&edu->thr_cond); qemu_thread_join(&edu->thread); qemu_cond_destroy(&edu->thr_cond); qemu_mutex_destroy(&edu->thr_mutex); timer_del(&edu->dma_timer); msi_uninit(pdev); } static void edu_instance_init(Object *obj) { EduState *edu = EDU(obj); edu->dma_mask = (1UL << 28) - 1; object_property_add_uint64_ptr(obj, "dma_mask", &edu->dma_mask, OBJ_PROP_FLAG_READWRITE); } static void edu_class_init(ObjectClass *class, void *data) { DeviceClass *dc = DEVICE_CLASS(class); PCIDeviceClass *k = PCI_DEVICE_CLASS(class); k->realize = pci_edu_realize; k->exit = pci_edu_uninit; k->vendor_id = PCI_VENDOR_ID_QEMU; k->device_id = 0x11e8; k->revision = 0x10; k->class_id = PCI_CLASS_OTHERS; set_bit(DEVICE_CATEGORY_MISC, dc->categories); } static void pci_edu_register_types(void) { static InterfaceInfo interfaces[] = { { INTERFACE_CONVENTIONAL_PCI_DEVICE }, { }, }; static const TypeInfo edu_info = { .name = TYPE_PCI_EDU_DEVICE, .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(EduState), .instance_init = edu_instance_init, .class_init = edu_class_init, .interfaces = interfaces, }; type_register_static(&edu_info); } type_init(pci_edu_register_types)