/* * PowerPC emulation helpers for qemu. * * Copyright (c) 2003-2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "exec.h" #include "helper_regs.h" #include "op_helper.h" #define MEMSUFFIX _raw #include "op_helper.h" #include "op_helper_mem.h" #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_helper.h" #include "op_helper_mem.h" #define MEMSUFFIX _kernel #include "op_helper.h" #include "op_helper_mem.h" #if defined(TARGET_PPC64H) #define MEMSUFFIX _hypv #include "op_helper.h" #include "op_helper_mem.h" #endif #endif //#define DEBUG_OP //#define DEBUG_EXCEPTIONS //#define DEBUG_SOFTWARE_TLB /*****************************************************************************/ /* Exceptions processing helpers */ void do_raise_exception_err (uint32_t exception, int error_code) { #if 0 printf("Raise exception %3x code : %d\n", exception, error_code); #endif env->exception_index = exception; env->error_code = error_code; cpu_loop_exit(); } void do_raise_exception (uint32_t exception) { do_raise_exception_err(exception, 0); } void cpu_dump_EA (target_ulong EA); void do_print_mem_EA (target_ulong EA) { cpu_dump_EA(EA); } /*****************************************************************************/ /* Registers load and stores */ void do_load_cr (void) { T0 = (env->crf[0] << 28) | (env->crf[1] << 24) | (env->crf[2] << 20) | (env->crf[3] << 16) | (env->crf[4] << 12) | (env->crf[5] << 8) | (env->crf[6] << 4) | (env->crf[7] << 0); } void do_store_cr (uint32_t mask) { int i, sh; for (i = 0, sh = 7; i < 8; i++, sh--) { if (mask & (1 << sh)) env->crf[i] = (T0 >> (sh * 4)) & 0xFUL; } } #if defined(TARGET_PPC64) void do_store_pri (int prio) { env->spr[SPR_PPR] &= ~0x001C000000000000ULL; env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50; } #endif target_ulong ppc_load_dump_spr (int sprn) { if (loglevel != 0) { fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n", sprn, sprn, env->spr[sprn]); } return env->spr[sprn]; } void ppc_store_dump_spr (int sprn, target_ulong val) { if (loglevel != 0) { fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n", sprn, sprn, env->spr[sprn], val); } env->spr[sprn] = val; } /*****************************************************************************/ /* Fixed point operations helpers */ void do_adde (void) { T2 = T0; T0 += T1 + xer_ca; if (likely(!((uint32_t)T0 < (uint32_t)T2 || (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) { xer_ca = 0; } else { xer_ca = 1; } } #if defined(TARGET_PPC64) void do_adde_64 (void) { T2 = T0; T0 += T1 + xer_ca; if (likely(!((uint64_t)T0 < (uint64_t)T2 || (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) { xer_ca = 0; } else { xer_ca = 1; } } #endif void do_addmeo (void) { T1 = T0; T0 += xer_ca + (-1); if (likely(!((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0) & (1UL << 31)))) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } if (likely(T1 != 0)) xer_ca = 1; } #if defined(TARGET_PPC64) void do_addmeo_64 (void) { T1 = T0; T0 += xer_ca + (-1); if (likely(!((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0) & (1ULL << 63)))) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } if (likely(T1 != 0)) xer_ca = 1; } #endif void do_divwo (void) { if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0))) { xer_ov = 0; T0 = (int32_t)T0 / (int32_t)T1; } else { xer_ov = 1; xer_so = 1; T0 = (-1) * ((uint32_t)T0 >> 31); } } #if defined(TARGET_PPC64) void do_divdo (void) { if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == -1ULL) || (int64_t)T1 == 0))) { xer_ov = 0; T0 = (int64_t)T0 / (int64_t)T1; } else { xer_ov = 1; xer_so = 1; T0 = (-1ULL) * ((uint64_t)T0 >> 63); } } #endif void do_divwuo (void) { if (likely((uint32_t)T1 != 0)) { xer_ov = 0; T0 = (uint32_t)T0 / (uint32_t)T1; } else { xer_ov = 1; xer_so = 1; T0 = 0; } } #if defined(TARGET_PPC64) void do_divduo (void) { if (likely((uint64_t)T1 != 0)) { xer_ov = 0; T0 = (uint64_t)T0 / (uint64_t)T1; } else { xer_ov = 1; xer_so = 1; T0 = 0; } } #endif void do_mullwo (void) { int64_t res = (int64_t)T0 * (int64_t)T1; if (likely((int32_t)res == res)) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } T0 = (int32_t)res; } #if defined(TARGET_PPC64) void do_mulldo (void) { int64_t th; uint64_t tl; muls64(&tl, &th, T0, T1); /* If th != 0 && th != -1, then we had an overflow */ if (likely((th + 1) <= 1)) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } T0 = (int64_t)tl; } #endif void do_nego (void) { if (likely((int32_t)T0 != INT32_MIN)) { xer_ov = 0; T0 = -(int32_t)T0; } else { xer_ov = 1; xer_so = 1; } } #if defined(TARGET_PPC64) void do_nego_64 (void) { if (likely((int64_t)T0 != INT64_MIN)) { xer_ov = 0; T0 = -(int64_t)T0; } else { xer_ov = 1; xer_so = 1; } } #endif void do_subfe (void) { T0 = T1 + ~T0 + xer_ca; if (likely((uint32_t)T0 >= (uint32_t)T1 && (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) { xer_ca = 0; } else { xer_ca = 1; } } #if defined(TARGET_PPC64) void do_subfe_64 (void) { T0 = T1 + ~T0 + xer_ca; if (likely((uint64_t)T0 >= (uint64_t)T1 && (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) { xer_ca = 0; } else { xer_ca = 1; } } #endif void do_subfmeo (void) { T1 = T0; T0 = ~T0 + xer_ca - 1; if (likely(!((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0) & (1UL << 31)))) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } if (likely((uint32_t)T1 != UINT32_MAX)) xer_ca = 1; } #if defined(TARGET_PPC64) void do_subfmeo_64 (void) { T1 = T0; T0 = ~T0 + xer_ca - 1; if (likely(!((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0) & (1ULL << 63)))) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } if (likely((uint64_t)T1 != UINT64_MAX)) xer_ca = 1; } #endif void do_subfzeo (void) { T1 = T0; T0 = ~T0 + xer_ca; if (likely(!(((uint32_t)~T1 ^ UINT32_MAX) & ((uint32_t)(~T1) ^ (uint32_t)T0) & (1UL << 31)))) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } if (likely((uint32_t)T0 >= (uint32_t)~T1)) { xer_ca = 0; } else { xer_ca = 1; } } #if defined(TARGET_PPC64) void do_subfzeo_64 (void) { T1 = T0; T0 = ~T0 + xer_ca; if (likely(!(((uint64_t)~T1 ^ UINT64_MAX) & ((uint64_t)(~T1) ^ (uint64_t)T0) & (1ULL << 63)))) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } if (likely((uint64_t)T0 >= (uint64_t)~T1)) { xer_ca = 0; } else { xer_ca = 1; } } #endif /* shift right arithmetic helper */ void do_sraw (void) { int32_t ret; if (likely(!(T1 & 0x20UL))) { if (likely((uint32_t)T1 != 0)) { ret = (int32_t)T0 >> (T1 & 0x1fUL); if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) { xer_ca = 0; } else { xer_ca = 1; } } else { ret = T0; xer_ca = 0; } } else { ret = (-1) * ((uint32_t)T0 >> 31); if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) { xer_ca = 0; } else { xer_ca = 1; } } T0 = ret; } #if defined(TARGET_PPC64) void do_srad (void) { int64_t ret; if (likely(!(T1 & 0x40UL))) { if (likely((uint64_t)T1 != 0)) { ret = (int64_t)T0 >> (T1 & 0x3FUL); if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) { xer_ca = 0; } else { xer_ca = 1; } } else { ret = T0; xer_ca = 0; } } else { ret = (-1) * ((uint64_t)T0 >> 63); if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) { xer_ca = 0; } else { xer_ca = 1; } } T0 = ret; } #endif static always_inline int popcnt (uint32_t val) { int i; for (i = 0; val != 0;) val = val ^ (val - 1); return i; } void do_popcntb (void) { uint32_t ret; int i; ret = 0; for (i = 0; i < 32; i += 8) ret |= popcnt((T0 >> i) & 0xFF) << i; T0 = ret; } #if defined(TARGET_PPC64) void do_popcntb_64 (void) { uint64_t ret; int i; ret = 0; for (i = 0; i < 64; i += 8) ret |= popcnt((T0 >> i) & 0xFF) << i; T0 = ret; } #endif /*****************************************************************************/ /* Floating point operations helpers */ static inline int fpisneg (float64 f) { union { float64 f; uint64_t u; } u; u.f = f; return u.u >> 63 != 0; } static inline int isden (float f) { union { float64 f; uint64_t u; } u; u.f = f; return ((u.u >> 52) & 0x7FF) == 0; } static inline int iszero (float64 f) { union { float64 f; uint64_t u; } u; u.f = f; return (u.u & ~0x8000000000000000ULL) == 0; } static inline int isinfinity (float64 f) { union { float64 f; uint64_t u; } u; u.f = f; return ((u.u >> 52) & 0x3FF) == 0x3FF && (u.u & 0x000FFFFFFFFFFFFFULL) == 0; } void do_compute_fprf (int set_fprf) { int isneg; isneg = fpisneg(FT0); if (unlikely(float64_is_nan(FT0))) { if (float64_is_signaling_nan(FT0)) { /* Signaling NaN: flags are undefined */ T0 = 0x00; } else { /* Quiet NaN */ T0 = 0x11; } } else if (unlikely(isinfinity(FT0))) { /* +/- infinity */ if (isneg) T0 = 0x09; else T0 = 0x05; } else { if (iszero(FT0)) { /* +/- zero */ if (isneg) T0 = 0x12; else T0 = 0x02; } else { if (isden(FT0)) { /* Denormalized numbers */ T0 = 0x10; } else { /* Normalized numbers */ T0 = 0x00; } if (isneg) { T0 |= 0x08; } else { T0 |= 0x04; } } } if (set_fprf) { /* We update FPSCR_FPRF */ env->fpscr &= ~(0x1F << FPSCR_FPRF); env->fpscr |= T0 << FPSCR_FPRF; } /* We just need fpcc to update Rc1 */ T0 &= 0xF; } /* Floating-point invalid operations exception */ static always_inline void fload_invalid_op_excp (int op) { int ve; ve = fpscr_ve; if (op & POWERPC_EXCP_FP_VXSNAN) { /* Operation on signaling NaN */ env->fpscr |= 1 << FPSCR_VXSNAN; } if (op & POWERPC_EXCP_FP_VXSOFT) { /* Software-defined condition */ env->fpscr |= 1 << FPSCR_VXSOFT; } switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) { case POWERPC_EXCP_FP_VXISI: /* Magnitude subtraction of infinities */ env->fpscr |= 1 << FPSCR_VXISI; goto update_arith; case POWERPC_EXCP_FP_VXIDI: /* Division of infinity by infinity */ env->fpscr |= 1 << FPSCR_VXIDI; goto update_arith; case POWERPC_EXCP_FP_VXZDZ: /* Division of zero by zero */ env->fpscr |= 1 << FPSCR_VXZDZ; goto update_arith; case POWERPC_EXCP_FP_VXIMZ: /* Multiplication of zero by infinity */ env->fpscr |= 1 << FPSCR_VXIMZ; goto update_arith; case POWERPC_EXCP_FP_VXVC: /* Ordered comparison of NaN */ env->fpscr |= 1 << FPSCR_VXVC; env->fpscr &= ~(0xF << FPSCR_FPCC); env->fpscr |= 0x11 << FPSCR_FPCC; /* We must update the target FPR before raising the exception */ if (ve != 0) { env->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; /* Exception is differed */ ve = 0; } break; case POWERPC_EXCP_FP_VXSQRT: /* Square root of a negative number */ env->fpscr |= 1 << FPSCR_VXSQRT; update_arith: env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); if (ve == 0) { /* Set the result to quiet NaN */ FT0 = (uint64_t)-1; env->fpscr &= ~(0xF << FPSCR_FPCC); env->fpscr |= 0x11 << FPSCR_FPCC; } break; case POWERPC_EXCP_FP_VXCVI: /* Invalid conversion */ env->fpscr |= 1 << FPSCR_VXCVI; env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); if (ve == 0) { /* Set the result to quiet NaN */ FT0 = (uint64_t)-1; env->fpscr &= ~(0xF << FPSCR_FPCC); env->fpscr |= 0x11 << FPSCR_FPCC; } break; } /* Update the floating-point invalid operation summary */ env->fpscr |= 1 << FPSCR_VX; /* Update the floating-point exception summary */ env->fpscr |= 1 << FPSCR_FX; if (ve != 0) { /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; if (msr_fe0 != 0 || msr_fe1 != 0) do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op); } } static always_inline void float_zero_divide_excp (void) { union { float64 f; uint64_t u; } u0, u1; env->fpscr |= 1 << FPSCR_ZX; env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); /* Update the floating-point exception summary */ env->fpscr |= 1 << FPSCR_FX; if (fpscr_ze != 0) { /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; if (msr_fe0 != 0 || msr_fe1 != 0) { do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); } } else { /* Set the result to infinity */ u0.f = FT0; u1.f = FT1; u0.u = ((u0.u ^ u1.u) & 0x8000000000000000ULL); u0.u |= 0x3FFULL << 52; FT0 = u0.f; } } static always_inline void float_overflow_excp (void) { env->fpscr |= 1 << FPSCR_OX; /* Update the floating-point exception summary */ env->fpscr |= 1 << FPSCR_FX; if (fpscr_oe != 0) { /* XXX: should adjust the result */ /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; /* We must update the target FPR before raising the exception */ env->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; } else { env->fpscr |= 1 << FPSCR_XX; env->fpscr |= 1 << FPSCR_FI; } } static always_inline void float_underflow_excp (void) { env->fpscr |= 1 << FPSCR_UX; /* Update the floating-point exception summary */ env->fpscr |= 1 << FPSCR_FX; if (fpscr_ue != 0) { /* XXX: should adjust the result */ /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; /* We must update the target FPR before raising the exception */ env->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; } } static always_inline void float_inexact_excp (void) { env->fpscr |= 1 << FPSCR_XX; /* Update the floating-point exception summary */ env->fpscr |= 1 << FPSCR_FX; if (fpscr_xe != 0) { /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; /* We must update the target FPR before raising the exception */ env->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; } } static always_inline void fpscr_set_rounding_mode (void) { int rnd_type; /* Set rounding mode */ switch (fpscr_rn) { case 0: /* Best approximation (round to nearest) */ rnd_type = float_round_nearest_even; break; case 1: /* Smaller magnitude (round toward zero) */ rnd_type = float_round_to_zero; break; case 2: /* Round toward +infinite */ rnd_type = float_round_up; break; default: case 3: /* Round toward -infinite */ rnd_type = float_round_down; break; } set_float_rounding_mode(rnd_type, &env->fp_status); } void do_fpscr_setbit (int bit) { int prev; prev = (env->fpscr >> bit) & 1; env->fpscr |= 1 << bit; if (prev == 0) { switch (bit) { case FPSCR_VX: env->fpscr |= 1 << FPSCR_FX; if (fpscr_ve) goto raise_ve; case FPSCR_OX: env->fpscr |= 1 << FPSCR_FX; if (fpscr_oe) goto raise_oe; break; case FPSCR_UX: env->fpscr |= 1 << FPSCR_FX; if (fpscr_ue) goto raise_ue; break; case FPSCR_ZX: env->fpscr |= 1 << FPSCR_FX; if (fpscr_ze) goto raise_ze; break; case FPSCR_XX: env->fpscr |= 1 << FPSCR_FX; if (fpscr_xe) goto raise_xe; break; case FPSCR_VXSNAN: case FPSCR_VXISI: case FPSCR_VXIDI: case FPSCR_VXZDZ: case FPSCR_VXIMZ: case FPSCR_VXVC: case FPSCR_VXSOFT: case FPSCR_VXSQRT: case FPSCR_VXCVI: env->fpscr |= 1 << FPSCR_VX; env->fpscr |= 1 << FPSCR_FX; if (fpscr_ve != 0) goto raise_ve; break; case FPSCR_VE: if (fpscr_vx != 0) { raise_ve: env->error_code = POWERPC_EXCP_FP; if (fpscr_vxsnan) env->error_code |= POWERPC_EXCP_FP_VXSNAN; if (fpscr_vxisi) env->error_code |= POWERPC_EXCP_FP_VXISI; if (fpscr_vxidi) env->error_code |= POWERPC_EXCP_FP_VXIDI; if (fpscr_vxzdz) env->error_code |= POWERPC_EXCP_FP_VXZDZ; if (fpscr_vximz) env->error_code |= POWERPC_EXCP_FP_VXIMZ; if (fpscr_vxvc) env->error_code |= POWERPC_EXCP_FP_VXVC; if (fpscr_vxsoft) env->error_code |= POWERPC_EXCP_FP_VXSOFT; if (fpscr_vxsqrt) env->error_code |= POWERPC_EXCP_FP_VXSQRT; if (fpscr_vxcvi) env->error_code |= POWERPC_EXCP_FP_VXCVI; goto raise_excp; } break; case FPSCR_OE: if (fpscr_ox != 0) { raise_oe: env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; goto raise_excp; } break; case FPSCR_UE: if (fpscr_ux != 0) { raise_ue: env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; goto raise_excp; } break; case FPSCR_ZE: if (fpscr_zx != 0) { raise_ze: env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; goto raise_excp; } break; case FPSCR_XE: if (fpscr_xx != 0) { raise_xe: env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; goto raise_excp; } break; case FPSCR_RN1: case FPSCR_RN: fpscr_set_rounding_mode(); break; default: break; raise_excp: /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; /* We have to update Rc1 before raising the exception */ env->exception_index = POWERPC_EXCP_PROGRAM; break; } } } #if defined(WORDS_BIGENDIAN) #define WORD0 0 #define WORD1 1 #else #define WORD0 1 #define WORD1 0 #endif void do_store_fpscr (uint32_t mask) { /* * We use only the 32 LSB of the incoming fpr */ union { double d; struct { uint32_t u[2]; } s; } u; uint32_t prev, new; int i; u.d = FT0; prev = env->fpscr; new = u.s.u[WORD1]; new &= ~0x90000000; new |= prev & 0x90000000; for (i = 0; i < 7; i++) { if (mask & (1 << i)) { env->fpscr &= ~(0xF << (4 * i)); env->fpscr |= new & (0xF << (4 * i)); } } /* Update VX and FEX */ if (fpscr_ix != 0) env->fpscr |= 1 << FPSCR_VX; if ((fpscr_ex & fpscr_eex) != 0) { env->fpscr |= 1 << FPSCR_FEX; env->exception_index = POWERPC_EXCP_PROGRAM; /* XXX: we should compute it properly */ env->error_code = POWERPC_EXCP_FP; } fpscr_set_rounding_mode(); } #undef WORD0 #undef WORD1 #ifdef CONFIG_SOFTFLOAT void do_float_check_status (void) { if (env->exception_index == POWERPC_EXCP_PROGRAM && (env->error_code & POWERPC_EXCP_FP)) { /* Differred floating-point exception after target FPR update */ if (msr_fe0 != 0 || msr_fe1 != 0) do_raise_exception_err(env->exception_index, env->error_code); } else if (env->fp_status.float_exception_flags & float_flag_overflow) { float_overflow_excp(); } else if (env->fp_status.float_exception_flags & float_flag_underflow) { float_underflow_excp(); } else if (env->fp_status.float_exception_flags & float_flag_inexact) { float_inexact_excp(); } } #endif #if USE_PRECISE_EMULATION void do_fadd (void) { if (unlikely(float64_is_signaling_nan(FT0) || float64_is_signaling_nan(FT1))) { /* sNaN addition */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else if (likely(isfinite(FT0) || isfinite(FT1) || fpisneg(FT0) == fpisneg(FT1))) { FT0 = float64_add(FT0, FT1, &env->fp_status); } else { /* Magnitude subtraction of infinities */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); } } void do_fsub (void) { if (unlikely(float64_is_signaling_nan(FT0) || float64_is_signaling_nan(FT1))) { /* sNaN subtraction */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else if (likely(isfinite(FT0) || isfinite(FT1) || fpisneg(FT0) != fpisneg(FT1))) { FT0 = float64_sub(FT0, FT1, &env->fp_status); } else { /* Magnitude subtraction of infinities */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); } } void do_fmul (void) { if (unlikely(float64_is_signaling_nan(FT0) || float64_is_signaling_nan(FT1))) { /* sNaN multiplication */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else if (unlikely((isinfinity(FT0) && iszero(FT1)) || (iszero(FT0) && isinfinity(FT1)))) { /* Multiplication of zero by infinity */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); } else { FT0 = float64_mul(FT0, FT1, &env->fp_status); } } void do_fdiv (void) { if (unlikely(float64_is_signaling_nan(FT0) || float64_is_signaling_nan(FT1))) { /* sNaN division */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) { /* Division of infinity by infinity */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI); } else if (unlikely(iszero(FT1))) { if (iszero(FT0)) { /* Division of zero by zero */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ); } else { /* Division by zero */ float_zero_divide_excp(); } } else { FT0 = float64_div(FT0, FT1, &env->fp_status); } } #endif /* USE_PRECISE_EMULATION */ void do_fctiw (void) { union { double d; uint64_t i; } p; if (unlikely(float64_is_signaling_nan(FT0))) { /* sNaN conversion */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { /* qNan / infinity conversion */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); } else { p.i = float64_to_int32(FT0, &env->fp_status); #if USE_PRECISE_EMULATION /* XXX: higher bits are not supposed to be significant. * to make tests easier, return the same as a real PowerPC 750 */ p.i |= 0xFFF80000ULL << 32; #endif FT0 = p.d; } } void do_fctiwz (void) { union { double d; uint64_t i; } p; if (unlikely(float64_is_signaling_nan(FT0))) { /* sNaN conversion */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { /* qNan / infinity conversion */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); } else { p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status); #if USE_PRECISE_EMULATION /* XXX: higher bits are not supposed to be significant. * to make tests easier, return the same as a real PowerPC 750 */ p.i |= 0xFFF80000ULL << 32; #endif FT0 = p.d; } } #if defined(TARGET_PPC64) void do_fcfid (void) { union { double d; uint64_t i; } p; p.d = FT0; FT0 = int64_to_float64(p.i, &env->fp_status); } void do_fctid (void) { union { double d; uint64_t i; } p; if (unlikely(float64_is_signaling_nan(FT0))) { /* sNaN conversion */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { /* qNan / infinity conversion */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); } else { p.i = float64_to_int64(FT0, &env->fp_status); FT0 = p.d; } } void do_fctidz (void) { union { double d; uint64_t i; } p; if (unlikely(float64_is_signaling_nan(FT0))) { /* sNaN conversion */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { /* qNan / infinity conversion */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); } else { p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status); FT0 = p.d; } } #endif static always_inline void do_fri (int rounding_mode) { if (unlikely(float64_is_signaling_nan(FT0))) { /* sNaN round */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { /* qNan / infinity round */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); } else { set_float_rounding_mode(rounding_mode, &env->fp_status); FT0 = float64_round_to_int(FT0, &env->fp_status); /* Restore rounding mode from FPSCR */ fpscr_set_rounding_mode(); } } void do_frin (void) { do_fri(float_round_nearest_even); } void do_friz (void) { do_fri(float_round_to_zero); } void do_frip (void) { do_fri(float_round_up); } void do_frim (void) { do_fri(float_round_down); } #if USE_PRECISE_EMULATION void do_fmadd (void) { if (unlikely(float64_is_signaling_nan(FT0) || float64_is_signaling_nan(FT1) || float64_is_signaling_nan(FT2))) { /* sNaN operation */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else { #ifdef FLOAT128 /* This is the way the PowerPC specification defines it */ float128 ft0_128, ft1_128; ft0_128 = float64_to_float128(FT0, &env->fp_status); ft1_128 = float64_to_float128(FT1, &env->fp_status); ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); ft1_128 = float64_to_float128(FT2, &env->fp_status); ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); FT0 = float128_to_float64(ft0_128, &env->fp_status); #else /* This is OK on x86 hosts */ FT0 = (FT0 * FT1) + FT2; #endif } } void do_fmsub (void) { if (unlikely(float64_is_signaling_nan(FT0) || float64_is_signaling_nan(FT1) || float64_is_signaling_nan(FT2))) { /* sNaN operation */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else { #ifdef FLOAT128 /* This is the way the PowerPC specification defines it */ float128 ft0_128, ft1_128; ft0_128 = float64_to_float128(FT0, &env->fp_status); ft1_128 = float64_to_float128(FT1, &env->fp_status); ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); ft1_128 = float64_to_float128(FT2, &env->fp_status); ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); FT0 = float128_to_float64(ft0_128, &env->fp_status); #else /* This is OK on x86 hosts */ FT0 = (FT0 * FT1) - FT2; #endif } } #endif /* USE_PRECISE_EMULATION */ void do_fnmadd (void) { if (unlikely(float64_is_signaling_nan(FT0) || float64_is_signaling_nan(FT1) || float64_is_signaling_nan(FT2))) { /* sNaN operation */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else { #if USE_PRECISE_EMULATION #ifdef FLOAT128 /* This is the way the PowerPC specification defines it */ float128 ft0_128, ft1_128; ft0_128 = float64_to_float128(FT0, &env->fp_status); ft1_128 = float64_to_float128(FT1, &env->fp_status); ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); ft1_128 = float64_to_float128(FT2, &env->fp_status); ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); FT0 = float128_to_float64(ft0_128, &env->fp_status); #else /* This is OK on x86 hosts */ FT0 = (FT0 * FT1) + FT2; #endif #else FT0 = float64_mul(FT0, FT1, &env->fp_status); FT0 = float64_add(FT0, FT2, &env->fp_status); #endif if (likely(!isnan(FT0))) FT0 = float64_chs(FT0); } } void do_fnmsub (void) { if (unlikely(float64_is_signaling_nan(FT0) || float64_is_signaling_nan(FT1) || float64_is_signaling_nan(FT2))) { /* sNaN operation */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else { #if USE_PRECISE_EMULATION #ifdef FLOAT128 /* This is the way the PowerPC specification defines it */ float128 ft0_128, ft1_128; ft0_128 = float64_to_float128(FT0, &env->fp_status); ft1_128 = float64_to_float128(FT1, &env->fp_status); ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); ft1_128 = float64_to_float128(FT2, &env->fp_status); ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); FT0 = float128_to_float64(ft0_128, &env->fp_status); #else /* This is OK on x86 hosts */ FT0 = (FT0 * FT1) - FT2; #endif #else FT0 = float64_mul(FT0, FT1, &env->fp_status); FT0 = float64_sub(FT0, FT2, &env->fp_status); #endif if (likely(!isnan(FT0))) FT0 = float64_chs(FT0); } } #if USE_PRECISE_EMULATION void do_frsp (void) { if (unlikely(float64_is_signaling_nan(FT0))) { /* sNaN square root */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else { FT0 = float64_to_float32(FT0, &env->fp_status); } } #endif /* USE_PRECISE_EMULATION */ void do_fsqrt (void) { if (unlikely(float64_is_signaling_nan(FT0))) { /* sNaN square root */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) { /* Square root of a negative nonzero number */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); } else { FT0 = float64_sqrt(FT0, &env->fp_status); } } void do_fre (void) { union { double d; uint64_t i; } p; if (unlikely(float64_is_signaling_nan(FT0))) { /* sNaN reciprocal */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else if (unlikely(iszero(FT0))) { /* Zero reciprocal */ float_zero_divide_excp(); } else if (likely(isnormal(FT0))) { FT0 = float64_div(1.0, FT0, &env->fp_status); } else { p.d = FT0; if (p.i == 0x8000000000000000ULL) { p.i = 0xFFF0000000000000ULL; } else if (p.i == 0x0000000000000000ULL) { p.i = 0x7FF0000000000000ULL; } else if (isnan(FT0)) { p.i = 0x7FF8000000000000ULL; } else if (fpisneg(FT0)) { p.i = 0x8000000000000000ULL; } else { p.i = 0x0000000000000000ULL; } FT0 = p.d; } } void do_fres (void) { union { double d; uint64_t i; } p; if (unlikely(float64_is_signaling_nan(FT0))) { /* sNaN reciprocal */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else if (unlikely(iszero(FT0))) { /* Zero reciprocal */ float_zero_divide_excp(); } else if (likely(isnormal(FT0))) { #if USE_PRECISE_EMULATION FT0 = float64_div(1.0, FT0, &env->fp_status); FT0 = float64_to_float32(FT0, &env->fp_status); #else FT0 = float32_div(1.0, FT0, &env->fp_status); #endif } else { p.d = FT0; if (p.i == 0x8000000000000000ULL) { p.i = 0xFFF0000000000000ULL; } else if (p.i == 0x0000000000000000ULL) { p.i = 0x7FF0000000000000ULL; } else if (isnan(FT0)) { p.i = 0x7FF8000000000000ULL; } else if (fpisneg(FT0)) { p.i = 0x8000000000000000ULL; } else { p.i = 0x0000000000000000ULL; } FT0 = p.d; } } void do_frsqrte (void) { union { double d; uint64_t i; } p; if (unlikely(float64_is_signaling_nan(FT0))) { /* sNaN reciprocal square root */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) { /* Reciprocal square root of a negative nonzero number */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); } else if (likely(isnormal(FT0))) { FT0 = float64_sqrt(FT0, &env->fp_status); FT0 = float32_div(1.0, FT0, &env->fp_status); } else { p.d = FT0; if (p.i == 0x8000000000000000ULL) { p.i = 0xFFF0000000000000ULL; } else if (p.i == 0x0000000000000000ULL) { p.i = 0x7FF0000000000000ULL; } else if (isnan(FT0)) { p.i |= 0x000FFFFFFFFFFFFFULL; } else if (fpisneg(FT0)) { p.i = 0x7FF8000000000000ULL; } else { p.i = 0x0000000000000000ULL; } FT0 = p.d; } } void do_fsel (void) { if (!fpisneg(FT0) || iszero(FT0)) FT0 = FT1; else FT0 = FT2; } void do_fcmpu (void) { if (unlikely(float64_is_signaling_nan(FT0) || float64_is_signaling_nan(FT1))) { /* sNaN comparison */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); } else { if (float64_lt(FT0, FT1, &env->fp_status)) { T0 = 0x08UL; } else if (!float64_le(FT0, FT1, &env->fp_status)) { T0 = 0x04UL; } else { T0 = 0x02UL; } } env->fpscr &= ~(0x0F << FPSCR_FPRF); env->fpscr |= T0 << FPSCR_FPRF; } void do_fcmpo (void) { if (unlikely(float64_is_nan(FT0) || float64_is_nan(FT1))) { if (float64_is_signaling_nan(FT0) || float64_is_signaling_nan(FT1)) { /* sNaN comparison */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXVC); } else { /* qNaN comparison */ fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC); } } else { if (float64_lt(FT0, FT1, &env->fp_status)) { T0 = 0x08UL; } else if (!float64_le(FT0, FT1, &env->fp_status)) { T0 = 0x04UL; } else { T0 = 0x02UL; } } env->fpscr &= ~(0x0F << FPSCR_FPRF); env->fpscr |= T0 << FPSCR_FPRF; } #if !defined (CONFIG_USER_ONLY) void cpu_dump_rfi (target_ulong RA, target_ulong msr); void do_store_msr (void) { T0 = hreg_store_msr(env, T0); if (T0 != 0) { env->interrupt_request |= CPU_INTERRUPT_EXITTB; do_raise_exception(T0); } } static always_inline void __do_rfi (target_ulong nip, target_ulong msr, target_ulong msrm, int keep_msrh) { #if defined(TARGET_PPC64) if (msr & (1ULL << MSR_SF)) { nip = (uint64_t)nip; msr &= (uint64_t)msrm; } else { nip = (uint32_t)nip; msr = (uint32_t)(msr & msrm); if (keep_msrh) msr |= env->msr & ~((uint64_t)0xFFFFFFFF); } #else nip = (uint32_t)nip; msr &= (uint32_t)msrm; #endif /* XXX: beware: this is false if VLE is supported */ env->nip = nip & ~((target_ulong)0x00000003); hreg_store_msr(env, msr); #if defined (DEBUG_OP) cpu_dump_rfi(env->nip, env->msr); #endif /* No need to raise an exception here, * as rfi is always the last insn of a TB */ env->interrupt_request |= CPU_INTERRUPT_EXITTB; } void do_rfi (void) { __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], ~((target_ulong)0xFFFF0000), 1); } #if defined(TARGET_PPC64) void do_rfid (void) { __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], ~((target_ulong)0xFFFF0000), 0); } #endif #if defined(TARGET_PPC64H) void do_hrfid (void) { __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1], ~((target_ulong)0xFFFF0000), 0); } #endif #endif void do_tw (int flags) { if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) || ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) || ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) || ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) || ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) { do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); } } #if defined(TARGET_PPC64) void do_td (int flags) { if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) || ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) || ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) || ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) || ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01))))) do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); } #endif /*****************************************************************************/ /* PowerPC 601 specific instructions (POWER bridge) */ void do_POWER_abso (void) { if ((uint32_t)T0 == INT32_MIN) { T0 = INT32_MAX; xer_ov = 1; xer_so = 1; } else { T0 = -T0; xer_ov = 0; } } void do_POWER_clcs (void) { switch (T0) { case 0x0CUL: /* Instruction cache line size */ T0 = env->icache_line_size; break; case 0x0DUL: /* Data cache line size */ T0 = env->dcache_line_size; break; case 0x0EUL: /* Minimum cache line size */ T0 = env->icache_line_size < env->dcache_line_size ? env->icache_line_size : env->dcache_line_size; break; case 0x0FUL: /* Maximum cache line size */ T0 = env->icache_line_size > env->dcache_line_size ? env->icache_line_size : env->dcache_line_size; break; default: /* Undefined */ break; } } void do_POWER_div (void) { uint64_t tmp; if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) { T0 = (long)((-1) * (T0 >> 31)); env->spr[SPR_MQ] = 0; } else { tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; env->spr[SPR_MQ] = tmp % T1; T0 = tmp / (int32_t)T1; } } void do_POWER_divo (void) { int64_t tmp; if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) { T0 = (long)((-1) * (T0 >> 31)); env->spr[SPR_MQ] = 0; xer_ov = 1; xer_so = 1; } else { tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ]; env->spr[SPR_MQ] = tmp % T1; tmp /= (int32_t)T1; if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) { xer_ov = 1; xer_so = 1; } else { xer_ov = 0; } T0 = tmp; } } void do_POWER_divs (void) { if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) { T0 = (long)((-1) * (T0 >> 31)); env->spr[SPR_MQ] = 0; } else { env->spr[SPR_MQ] = T0 % T1; T0 = (int32_t)T0 / (int32_t)T1; } } void do_POWER_divso (void) { if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) { T0 = (long)((-1) * (T0 >> 31)); env->spr[SPR_MQ] = 0; xer_ov = 1; xer_so = 1; } else { T0 = (int32_t)T0 / (int32_t)T1; env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1; xer_ov = 0; } } void do_POWER_dozo (void) { if ((int32_t)T1 > (int32_t)T0) { T2 = T0; T0 = T1 - T0; if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) & ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) { xer_ov = 1; xer_so = 1; } else { xer_ov = 0; } } else { T0 = 0; xer_ov = 0; } } void do_POWER_maskg (void) { uint32_t ret; if ((uint32_t)T0 == (uint32_t)(T1 + 1)) { ret = -1; } else { ret = (((uint32_t)(-1)) >> ((uint32_t)T0)) ^ (((uint32_t)(-1) >> ((uint32_t)T1)) >> 1); if ((uint32_t)T0 > (uint32_t)T1) ret = ~ret; } T0 = ret; } void do_POWER_mulo (void) { uint64_t tmp; tmp = (uint64_t)T0 * (uint64_t)T1; env->spr[SPR_MQ] = tmp >> 32; T0 = tmp; if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) { xer_ov = 1; xer_so = 1; } else { xer_ov = 0; } } #if !defined (CONFIG_USER_ONLY) void do_POWER_rac (void) { #if 0 mmu_ctx_t ctx; /* We don't have to generate many instances of this instruction, * as rac is supervisor only. */ if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT, 1) == 0) T0 = ctx.raddr; #endif } void do_POWER_rfsvc (void) { __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0); } /* PowerPC 601 BAT management helper */ void do_store_601_batu (int nr) { do_store_ibatu(env, nr, (uint32_t)T0); env->DBAT[0][nr] = env->IBAT[0][nr]; env->DBAT[1][nr] = env->IBAT[1][nr]; } #endif /*****************************************************************************/ /* 602 specific instructions */ /* mfrom is the most crazy instruction ever seen, imho ! */ /* Real implementation uses a ROM table. Do the same */ #define USE_MFROM_ROM_TABLE void do_op_602_mfrom (void) { if (likely(T0 < 602)) { #if defined(USE_MFROM_ROM_TABLE) #include "mfrom_table.c" T0 = mfrom_ROM_table[T0]; #else double d; /* Extremly decomposed: * -T0 / 256 * T0 = 256 * log10(10 + 1.0) + 0.5 */ d = T0; d = float64_div(d, 256, &env->fp_status); d = float64_chs(d); d = exp10(d); // XXX: use float emulation function d = float64_add(d, 1.0, &env->fp_status); d = log10(d); // XXX: use float emulation function d = float64_mul(d, 256, &env->fp_status); d = float64_add(d, 0.5, &env->fp_status); T0 = float64_round_to_int(d, &env->fp_status); #endif } else { T0 = 0; } } /*****************************************************************************/ /* Embedded PowerPC specific helpers */ void do_405_check_ov (void) { if (likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) || !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } } void do_405_check_sat (void) { if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) || !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) { /* Saturate result */ if (T2 >> 31) { T0 = INT32_MIN; } else { T0 = INT32_MAX; } } } /* XXX: to be improved to check access rights when in user-mode */ void do_load_dcr (void) { target_ulong val; if (unlikely(env->dcr_env == NULL)) { if (loglevel != 0) { fprintf(logfile, "No DCR environment\n"); } do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) { if (loglevel != 0) { fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0); } do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); } else { T0 = val; } } void do_store_dcr (void) { if (unlikely(env->dcr_env == NULL)) { if (loglevel != 0) { fprintf(logfile, "No DCR environment\n"); } do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) { if (loglevel != 0) { fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0); } do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); } } #if !defined(CONFIG_USER_ONLY) void do_40x_rfci (void) { __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3], ~((target_ulong)0xFFFF0000), 0); } void do_rfci (void) { __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1, ~((target_ulong)0x3FFF0000), 0); } void do_rfdi (void) { __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1, ~((target_ulong)0x3FFF0000), 0); } void do_rfmci (void) { __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1, ~((target_ulong)0x3FFF0000), 0); } void do_load_403_pb (int num) { T0 = env->pb[num]; } void do_store_403_pb (int num) { if (likely(env->pb[num] != T0)) { env->pb[num] = T0; /* Should be optimized */ tlb_flush(env, 1); } } #endif /* 440 specific */ void do_440_dlmzb (void) { target_ulong mask; int i; i = 1; for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { if ((T0 & mask) == 0) goto done; i++; } for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { if ((T1 & mask) == 0) break; i++; } done: T0 = i; } #if defined(TARGET_PPCEMB) /* SPE extension helpers */ /* Use a table to make this quicker */ static uint8_t hbrev[16] = { 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, }; static always_inline uint8_t byte_reverse (uint8_t val) { return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); } static always_inline uint32_t word_reverse (uint32_t val) { return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); } #define MASKBITS 16 // Random value - to be fixed void do_brinc (void) { uint32_t a, b, d, mask; mask = (uint32_t)(-1UL) >> MASKBITS; b = T1_64 & mask; a = T0_64 & mask; d = word_reverse(1 + word_reverse(a | ~mask)); T0_64 = (T0_64 & ~mask) | (d & mask); } #define DO_SPE_OP2(name) \ void do_ev##name (void) \ { \ T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \ (uint64_t)_do_e##name(T0_64, T1_64); \ } #define DO_SPE_OP1(name) \ void do_ev##name (void) \ { \ T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \ (uint64_t)_do_e##name(T0_64); \ } /* Fixed-point vector arithmetic */ static always_inline uint32_t _do_eabs (uint32_t val) { if (val != 0x80000000) val &= ~0x80000000; return val; } static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2) { return op1 + op2; } static always_inline int _do_ecntlsw (uint32_t val) { if (val & 0x80000000) return _do_cntlzw(~val); else return _do_cntlzw(val); } static always_inline int _do_ecntlzw (uint32_t val) { return _do_cntlzw(val); } static always_inline uint32_t _do_eneg (uint32_t val) { if (val != 0x80000000) val ^= 0x80000000; return val; } static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2) { return rotl32(op1, op2); } static always_inline uint32_t _do_erndw (uint32_t val) { return (val + 0x000080000000) & 0xFFFF0000; } static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2) { /* No error here: 6 bits are used */ return op1 << (op2 & 0x3F); } static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2) { /* No error here: 6 bits are used */ return op1 >> (op2 & 0x3F); } static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2) { /* No error here: 6 bits are used */ return op1 >> (op2 & 0x3F); } static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2) { return op2 - op1; } /* evabs */ DO_SPE_OP1(abs); /* evaddw */ DO_SPE_OP2(addw); /* evcntlsw */ DO_SPE_OP1(cntlsw); /* evcntlzw */ DO_SPE_OP1(cntlzw); /* evneg */ DO_SPE_OP1(neg); /* evrlw */ DO_SPE_OP2(rlw); /* evrnd */ DO_SPE_OP1(rndw); /* evslw */ DO_SPE_OP2(slw); /* evsrws */ DO_SPE_OP2(srws); /* evsrwu */ DO_SPE_OP2(srwu); /* evsubfw */ DO_SPE_OP2(subfw); /* evsel is a little bit more complicated... */ static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n) { if (n) return op1; else return op2; } void do_evsel (void) { T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) | (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1); } /* Fixed-point vector comparisons */ #define DO_SPE_CMP(name) \ void do_ev##name (void) \ { \ T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \ T1_64 >> 32) << 32, \ _do_e##name(T0_64, T1_64)); \ } static always_inline uint32_t _do_evcmp_merge (int t0, int t1) { return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); } static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2) { return op1 == op2 ? 1 : 0; } static always_inline int _do_ecmpgts (int32_t op1, int32_t op2) { return op1 > op2 ? 1 : 0; } static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2) { return op1 > op2 ? 1 : 0; } static always_inline int _do_ecmplts (int32_t op1, int32_t op2) { return op1 < op2 ? 1 : 0; } static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2) { return op1 < op2 ? 1 : 0; } /* evcmpeq */ DO_SPE_CMP(cmpeq); /* evcmpgts */ DO_SPE_CMP(cmpgts); /* evcmpgtu */ DO_SPE_CMP(cmpgtu); /* evcmplts */ DO_SPE_CMP(cmplts); /* evcmpltu */ DO_SPE_CMP(cmpltu); /* Single precision floating-point conversions from/to integer */ static always_inline uint32_t _do_efscfsi (int32_t val) { union { uint32_t u; float32 f; } u; u.f = int32_to_float32(val, &env->spe_status); return u.u; } static always_inline uint32_t _do_efscfui (uint32_t val) { union { uint32_t u; float32 f; } u; u.f = uint32_to_float32(val, &env->spe_status); return u.u; } static always_inline int32_t _do_efsctsi (uint32_t val) { union { int32_t u; float32 f; } u; u.u = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(isnan(u.f))) return 0; return float32_to_int32(u.f, &env->spe_status); } static always_inline uint32_t _do_efsctui (uint32_t val) { union { int32_t u; float32 f; } u; u.u = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(isnan(u.f))) return 0; return float32_to_uint32(u.f, &env->spe_status); } static always_inline int32_t _do_efsctsiz (uint32_t val) { union { int32_t u; float32 f; } u; u.u = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(isnan(u.f))) return 0; return float32_to_int32_round_to_zero(u.f, &env->spe_status); } static always_inline uint32_t _do_efsctuiz (uint32_t val) { union { int32_t u; float32 f; } u; u.u = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(isnan(u.f))) return 0; return float32_to_uint32_round_to_zero(u.f, &env->spe_status); } void do_efscfsi (void) { T0_64 = _do_efscfsi(T0_64); } void do_efscfui (void) { T0_64 = _do_efscfui(T0_64); } void do_efsctsi (void) { T0_64 = _do_efsctsi(T0_64); } void do_efsctui (void) { T0_64 = _do_efsctui(T0_64); } void do_efsctsiz (void) { T0_64 = _do_efsctsiz(T0_64); } void do_efsctuiz (void) { T0_64 = _do_efsctuiz(T0_64); } /* Single precision floating-point conversion to/from fractional */ static always_inline uint32_t _do_efscfsf (uint32_t val) { union { uint32_t u; float32 f; } u; float32 tmp; u.f = int32_to_float32(val, &env->spe_status); tmp = int64_to_float32(1ULL << 32, &env->spe_status); u.f = float32_div(u.f, tmp, &env->spe_status); return u.u; } static always_inline uint32_t _do_efscfuf (uint32_t val) { union { uint32_t u; float32 f; } u; float32 tmp; u.f = uint32_to_float32(val, &env->spe_status); tmp = uint64_to_float32(1ULL << 32, &env->spe_status); u.f = float32_div(u.f, tmp, &env->spe_status); return u.u; } static always_inline int32_t _do_efsctsf (uint32_t val) { union { int32_t u; float32 f; } u; float32 tmp; u.u = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(isnan(u.f))) return 0; tmp = uint64_to_float32(1ULL << 32, &env->spe_status); u.f = float32_mul(u.f, tmp, &env->spe_status); return float32_to_int32(u.f, &env->spe_status); } static always_inline uint32_t _do_efsctuf (uint32_t val) { union { int32_t u; float32 f; } u; float32 tmp; u.u = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(isnan(u.f))) return 0; tmp = uint64_to_float32(1ULL << 32, &env->spe_status); u.f = float32_mul(u.f, tmp, &env->spe_status); return float32_to_uint32(u.f, &env->spe_status); } static always_inline int32_t _do_efsctsfz (uint32_t val) { union { int32_t u; float32 f; } u; float32 tmp; u.u = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(isnan(u.f))) return 0; tmp = uint64_to_float32(1ULL << 32, &env->spe_status); u.f = float32_mul(u.f, tmp, &env->spe_status); return float32_to_int32_round_to_zero(u.f, &env->spe_status); } static always_inline uint32_t _do_efsctufz (uint32_t val) { union { int32_t u; float32 f; } u; float32 tmp; u.u = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(isnan(u.f))) return 0; tmp = uint64_to_float32(1ULL << 32, &env->spe_status); u.f = float32_mul(u.f, tmp, &env->spe_status); return float32_to_uint32_round_to_zero(u.f, &env->spe_status); } void do_efscfsf (void) { T0_64 = _do_efscfsf(T0_64); } void do_efscfuf (void) { T0_64 = _do_efscfuf(T0_64); } void do_efsctsf (void) { T0_64 = _do_efsctsf(T0_64); } void do_efsctuf (void) { T0_64 = _do_efsctuf(T0_64); } void do_efsctsfz (void) { T0_64 = _do_efsctsfz(T0_64); } void do_efsctufz (void) { T0_64 = _do_efsctufz(T0_64); } /* Double precision floating point helpers */ static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return _do_efdtstlt(op1, op2); } static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return _do_efdtstgt(op1, op2); } static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return _do_efdtsteq(op1, op2); } void do_efdcmplt (void) { T0 = _do_efdcmplt(T0_64, T1_64); } void do_efdcmpgt (void) { T0 = _do_efdcmpgt(T0_64, T1_64); } void do_efdcmpeq (void) { T0 = _do_efdcmpeq(T0_64, T1_64); } /* Double precision floating-point conversion to/from integer */ static always_inline uint64_t _do_efdcfsi (int64_t val) { union { uint64_t u; float64 f; } u; u.f = int64_to_float64(val, &env->spe_status); return u.u; } static always_inline uint64_t _do_efdcfui (uint64_t val) { union { uint64_t u; float64 f; } u; u.f = uint64_to_float64(val, &env->spe_status); return u.u; } static always_inline int64_t _do_efdctsi (uint64_t val) { union { int64_t u; float64 f; } u; u.u = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(isnan(u.f))) return 0; return float64_to_int64(u.f, &env->spe_status); } static always_inline uint64_t _do_efdctui (uint64_t val) { union { int64_t u; float64 f; } u; u.u = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(isnan(u.f))) return 0; return float64_to_uint64(u.f, &env->spe_status); } static always_inline int64_t _do_efdctsiz (uint64_t val) { union { int64_t u; float64 f; } u; u.u = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(isnan(u.f))) return 0; return float64_to_int64_round_to_zero(u.f, &env->spe_status); } static always_inline uint64_t _do_efdctuiz (uint64_t val) { union { int64_t u; float64 f; } u; u.u = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(isnan(u.f))) return 0; return float64_to_uint64_round_to_zero(u.f, &env->spe_status); } void do_efdcfsi (void) { T0_64 = _do_efdcfsi(T0_64); } void do_efdcfui (void) { T0_64 = _do_efdcfui(T0_64); } void do_efdctsi (void) { T0_64 = _do_efdctsi(T0_64); } void do_efdctui (void) { T0_64 = _do_efdctui(T0_64); } void do_efdctsiz (void) { T0_64 = _do_efdctsiz(T0_64); } void do_efdctuiz (void) { T0_64 = _do_efdctuiz(T0_64); } /* Double precision floating-point conversion to/from fractional */ static always_inline uint64_t _do_efdcfsf (int64_t val) { union { uint64_t u; float64 f; } u; float64 tmp; u.f = int32_to_float64(val, &env->spe_status); tmp = int64_to_float64(1ULL << 32, &env->spe_status); u.f = float64_div(u.f, tmp, &env->spe_status); return u.u; } static always_inline uint64_t _do_efdcfuf (uint64_t val) { union { uint64_t u; float64 f; } u; float64 tmp; u.f = uint32_to_float64(val, &env->spe_status); tmp = int64_to_float64(1ULL << 32, &env->spe_status); u.f = float64_div(u.f, tmp, &env->spe_status); return u.u; } static always_inline int64_t _do_efdctsf (uint64_t val) { union { int64_t u; float64 f; } u; float64 tmp; u.u = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(isnan(u.f))) return 0; tmp = uint64_to_float64(1ULL << 32, &env->spe_status); u.f = float64_mul(u.f, tmp, &env->spe_status); return float64_to_int32(u.f, &env->spe_status); } static always_inline uint64_t _do_efdctuf (uint64_t val) { union { int64_t u; float64 f; } u; float64 tmp; u.u = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(isnan(u.f))) return 0; tmp = uint64_to_float64(1ULL << 32, &env->spe_status); u.f = float64_mul(u.f, tmp, &env->spe_status); return float64_to_uint32(u.f, &env->spe_status); } static always_inline int64_t _do_efdctsfz (uint64_t val) { union { int64_t u; float64 f; } u; float64 tmp; u.u = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(isnan(u.f))) return 0; tmp = uint64_to_float64(1ULL << 32, &env->spe_status); u.f = float64_mul(u.f, tmp, &env->spe_status); return float64_to_int32_round_to_zero(u.f, &env->spe_status); } static always_inline uint64_t _do_efdctufz (uint64_t val) { union { int64_t u; float64 f; } u; float64 tmp; u.u = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(isnan(u.f))) return 0; tmp = uint64_to_float64(1ULL << 32, &env->spe_status); u.f = float64_mul(u.f, tmp, &env->spe_status); return float64_to_uint32_round_to_zero(u.f, &env->spe_status); } void do_efdcfsf (void) { T0_64 = _do_efdcfsf(T0_64); } void do_efdcfuf (void) { T0_64 = _do_efdcfuf(T0_64); } void do_efdctsf (void) { T0_64 = _do_efdctsf(T0_64); } void do_efdctuf (void) { T0_64 = _do_efdctuf(T0_64); } void do_efdctsfz (void) { T0_64 = _do_efdctsfz(T0_64); } void do_efdctufz (void) { T0_64 = _do_efdctufz(T0_64); } /* Floating point conversion between single and double precision */ static always_inline uint32_t _do_efscfd (uint64_t val) { union { uint64_t u; float64 f; } u1; union { uint32_t u; float32 f; } u2; u1.u = val; u2.f = float64_to_float32(u1.f, &env->spe_status); return u2.u; } static always_inline uint64_t _do_efdcfs (uint32_t val) { union { uint64_t u; float64 f; } u2; union { uint32_t u; float32 f; } u1; u1.u = val; u2.f = float32_to_float64(u1.f, &env->spe_status); return u2.u; } void do_efscfd (void) { T0_64 = _do_efscfd(T0_64); } void do_efdcfs (void) { T0_64 = _do_efdcfs(T0_64); } /* Single precision fixed-point vector arithmetic */ /* evfsabs */ DO_SPE_OP1(fsabs); /* evfsnabs */ DO_SPE_OP1(fsnabs); /* evfsneg */ DO_SPE_OP1(fsneg); /* evfsadd */ DO_SPE_OP2(fsadd); /* evfssub */ DO_SPE_OP2(fssub); /* evfsmul */ DO_SPE_OP2(fsmul); /* evfsdiv */ DO_SPE_OP2(fsdiv); /* Single-precision floating-point comparisons */ static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return _do_efststlt(op1, op2); } static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return _do_efststgt(op1, op2); } static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return _do_efststeq(op1, op2); } void do_efscmplt (void) { T0 = _do_efscmplt(T0_64, T1_64); } void do_efscmpgt (void) { T0 = _do_efscmpgt(T0_64, T1_64); } void do_efscmpeq (void) { T0 = _do_efscmpeq(T0_64, T1_64); } /* Single-precision floating-point vector comparisons */ /* evfscmplt */ DO_SPE_CMP(fscmplt); /* evfscmpgt */ DO_SPE_CMP(fscmpgt); /* evfscmpeq */ DO_SPE_CMP(fscmpeq); /* evfststlt */ DO_SPE_CMP(fststlt); /* evfststgt */ DO_SPE_CMP(fststgt); /* evfststeq */ DO_SPE_CMP(fststeq); /* Single-precision floating-point vector conversions */ /* evfscfsi */ DO_SPE_OP1(fscfsi); /* evfscfui */ DO_SPE_OP1(fscfui); /* evfscfuf */ DO_SPE_OP1(fscfuf); /* evfscfsf */ DO_SPE_OP1(fscfsf); /* evfsctsi */ DO_SPE_OP1(fsctsi); /* evfsctui */ DO_SPE_OP1(fsctui); /* evfsctsiz */ DO_SPE_OP1(fsctsiz); /* evfsctuiz */ DO_SPE_OP1(fsctuiz); /* evfsctsf */ DO_SPE_OP1(fsctsf); /* evfsctuf */ DO_SPE_OP1(fsctuf); #endif /* defined(TARGET_PPCEMB) */ /*****************************************************************************/ /* Softmmu support */ #if !defined (CONFIG_USER_ONLY) #define MMUSUFFIX _mmu #define GETPC() (__builtin_return_address(0)) #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) { TranslationBlock *tb; CPUState *saved_env; target_phys_addr_t pc; int ret; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); if (unlikely(ret != 0)) { if (likely(retaddr)) { /* now we have a real cpu fault */ pc = (target_phys_addr_t)(unsigned long)retaddr; tb = tb_find_pc(pc); if (likely(tb)) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, NULL); } } do_raise_exception_err(env->exception_index, env->error_code); } env = saved_env; } /* Software driven TLBs management */ /* PowerPC 602/603 software TLB load instructions helpers */ void do_load_6xx_tlb (int is_code) { target_ulong RPN, CMP, EPN; int way; RPN = env->spr[SPR_RPA]; if (is_code) { CMP = env->spr[SPR_ICMP]; EPN = env->spr[SPR_IMISS]; } else { CMP = env->spr[SPR_DCMP]; EPN = env->spr[SPR_DMISS]; } way = (env->spr[SPR_SRR1] >> 17) & 1; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n", __func__, (unsigned long)T0, (unsigned long)EPN, (unsigned long)CMP, (unsigned long)RPN, way); } #endif /* Store this TLB */ ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK), way, is_code, CMP, RPN); } void do_load_74xx_tlb (int is_code) { target_ulong RPN, CMP, EPN; int way; RPN = env->spr[SPR_PTELO]; CMP = env->spr[SPR_PTEHI]; EPN = env->spr[SPR_TLBMISS] & ~0x3; way = env->spr[SPR_TLBMISS] & 0x3; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n", __func__, (unsigned long)T0, (unsigned long)EPN, (unsigned long)CMP, (unsigned long)RPN, way); } #endif /* Store this TLB */ ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK), way, is_code, CMP, RPN); } static target_ulong booke_tlb_to_page_size (int size) { return 1024 << (2 * size); } static int booke_page_size_to_tlb (target_ulong page_size) { int size; switch (page_size) { case 0x00000400UL: size = 0x0; break; case 0x00001000UL: size = 0x1; break; case 0x00004000UL: size = 0x2; break; case 0x00010000UL: size = 0x3; break; case 0x00040000UL: size = 0x4; break; case 0x00100000UL: size = 0x5; break; case 0x00400000UL: size = 0x6; break; case 0x01000000UL: size = 0x7; break; case 0x04000000UL: size = 0x8; break; case 0x10000000UL: size = 0x9; break; case 0x40000000UL: size = 0xA; break; #if defined (TARGET_PPC64) case 0x000100000000ULL: size = 0xB; break; case 0x000400000000ULL: size = 0xC; break; case 0x001000000000ULL: size = 0xD; break; case 0x004000000000ULL: size = 0xE; break; case 0x010000000000ULL: size = 0xF; break; #endif default: size = -1; break; } return size; } /* Helpers for 4xx TLB management */ void do_4xx_tlbre_lo (void) { ppcemb_tlb_t *tlb; int size; T0 &= 0x3F; tlb = &env->tlb[T0].tlbe; T0 = tlb->EPN; if (tlb->prot & PAGE_VALID) T0 |= 0x400; size = booke_page_size_to_tlb(tlb->size); if (size < 0 || size > 0x7) size = 1; T0 |= size << 7; env->spr[SPR_40x_PID] = tlb->PID; } void do_4xx_tlbre_hi (void) { ppcemb_tlb_t *tlb; T0 &= 0x3F; tlb = &env->tlb[T0].tlbe; T0 = tlb->RPN; if (tlb->prot & PAGE_EXEC) T0 |= 0x200; if (tlb->prot & PAGE_WRITE) T0 |= 0x100; } void do_4xx_tlbwe_hi (void) { ppcemb_tlb_t *tlb; target_ulong page, end; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1); } #endif T0 &= 0x3F; tlb = &env->tlb[T0].tlbe; /* Invalidate previous TLB (if it's valid) */ if (tlb->prot & PAGE_VALID) { end = tlb->EPN + tlb->size; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); } #endif for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) tlb_flush_page(env, page); } tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7); /* We cannot handle TLB size < TARGET_PAGE_SIZE. * If this ever occurs, one should use the ppcemb target instead * of the ppc or ppc64 one */ if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) { cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u " "are not supported (%d)\n", tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7)); } tlb->EPN = T1 & ~(tlb->size - 1); if (T1 & 0x40) tlb->prot |= PAGE_VALID; else tlb->prot &= ~PAGE_VALID; if (T1 & 0x20) { /* XXX: TO BE FIXED */ cpu_abort(env, "Little-endian TLB entries are not supported by now\n"); } tlb->PID = env->spr[SPR_40x_PID]; /* PID */ tlb->attr = T1 & 0xFF; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, (int)T0, tlb->RPN, tlb->EPN, tlb->size, tlb->prot & PAGE_READ ? 'r' : '-', tlb->prot & PAGE_WRITE ? 'w' : '-', tlb->prot & PAGE_EXEC ? 'x' : '-', tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); } #endif /* Invalidate new TLB (if valid) */ if (tlb->prot & PAGE_VALID) { end = tlb->EPN + tlb->size; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s: invalidate TLB %d start " ADDRX " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); } #endif for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) tlb_flush_page(env, page); } } void do_4xx_tlbwe_lo (void) { ppcemb_tlb_t *tlb; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1); } #endif T0 &= 0x3F; tlb = &env->tlb[T0].tlbe; tlb->RPN = T1 & 0xFFFFFC00; tlb->prot = PAGE_READ; if (T1 & 0x200) tlb->prot |= PAGE_EXEC; if (T1 & 0x100) tlb->prot |= PAGE_WRITE; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, (int)T0, tlb->RPN, tlb->EPN, tlb->size, tlb->prot & PAGE_READ ? 'r' : '-', tlb->prot & PAGE_WRITE ? 'w' : '-', tlb->prot & PAGE_EXEC ? 'x' : '-', tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); } #endif } /* PowerPC 440 TLB management */ void do_440_tlbwe (int word) { ppcemb_tlb_t *tlb; target_ulong EPN, RPN, size; int do_flush_tlbs; #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "%s word %d T0 " REGX " T1 " REGX "\n", __func__, word, T0, T1); } #endif do_flush_tlbs = 0; T0 &= 0x3F; tlb = &env->tlb[T0].tlbe; switch (word) { default: /* Just here to please gcc */ case 0: EPN = T1 & 0xFFFFFC00; if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN) do_flush_tlbs = 1; tlb->EPN = EPN; size = booke_tlb_to_page_size((T1 >> 4) & 0xF); if ((tlb->prot & PAGE_VALID) && tlb->size < size) do_flush_tlbs = 1; tlb->size = size; tlb->attr &= ~0x1; tlb->attr |= (T1 >> 8) & 1; if (T1 & 0x200) { tlb->prot |= PAGE_VALID; } else { if (tlb->prot & PAGE_VALID) { tlb->prot &= ~PAGE_VALID; do_flush_tlbs = 1; } } tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF; if (do_flush_tlbs) tlb_flush(env, 1); break; case 1: RPN = T1 & 0xFFFFFC0F; if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN) tlb_flush(env, 1); tlb->RPN = RPN; break; case 2: tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00); tlb->prot = tlb->prot & PAGE_VALID; if (T1 & 0x1) tlb->prot |= PAGE_READ << 4; if (T1 & 0x2) tlb->prot |= PAGE_WRITE << 4; if (T1 & 0x4) tlb->prot |= PAGE_EXEC << 4; if (T1 & 0x8) tlb->prot |= PAGE_READ; if (T1 & 0x10) tlb->prot |= PAGE_WRITE; if (T1 & 0x20) tlb->prot |= PAGE_EXEC; break; } } void do_440_tlbre (int word) { ppcemb_tlb_t *tlb; int size; T0 &= 0x3F; tlb = &env->tlb[T0].tlbe; switch (word) { default: /* Just here to please gcc */ case 0: T0 = tlb->EPN; size = booke_page_size_to_tlb(tlb->size); if (size < 0 || size > 0xF) size = 1; T0 |= size << 4; if (tlb->attr & 0x1) T0 |= 0x100; if (tlb->prot & PAGE_VALID) T0 |= 0x200; env->spr[SPR_440_MMUCR] &= ~0x000000FF; env->spr[SPR_440_MMUCR] |= tlb->PID; break; case 1: T0 = tlb->RPN; break; case 2: T0 = tlb->attr & ~0x1; if (tlb->prot & (PAGE_READ << 4)) T0 |= 0x1; if (tlb->prot & (PAGE_WRITE << 4)) T0 |= 0x2; if (tlb->prot & (PAGE_EXEC << 4)) T0 |= 0x4; if (tlb->prot & PAGE_READ) T0 |= 0x8; if (tlb->prot & PAGE_WRITE) T0 |= 0x10; if (tlb->prot & PAGE_EXEC) T0 |= 0x20; break; } } #endif /* !CONFIG_USER_ONLY */