/* * Faraday FTGMAC100 Gigabit Ethernet * * Copyright (C) 2016-2017, IBM Corporation. * * Based on Coldfire Fast Ethernet Controller emulation. * * Copyright (c) 2007 CodeSourcery. * * This code is licensed under the GPL version 2 or later. See the * COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "hw/irq.h" #include "hw/net/ftgmac100.h" #include "sysemu/dma.h" #include "qapi/error.h" #include "qemu/log.h" #include "qemu/module.h" #include "net/checksum.h" #include "net/eth.h" #include "hw/net/mii.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" /* For crc32 */ #include /* * FTGMAC100 registers */ #define FTGMAC100_ISR 0x00 #define FTGMAC100_IER 0x04 #define FTGMAC100_MAC_MADR 0x08 #define FTGMAC100_MAC_LADR 0x0c #define FTGMAC100_MATH0 0x10 #define FTGMAC100_MATH1 0x14 #define FTGMAC100_NPTXPD 0x18 #define FTGMAC100_RXPD 0x1C #define FTGMAC100_NPTXR_BADR 0x20 #define FTGMAC100_RXR_BADR 0x24 #define FTGMAC100_HPTXPD 0x28 #define FTGMAC100_HPTXR_BADR 0x2c #define FTGMAC100_ITC 0x30 #define FTGMAC100_APTC 0x34 #define FTGMAC100_DBLAC 0x38 #define FTGMAC100_REVR 0x40 #define FTGMAC100_FEAR1 0x44 #define FTGMAC100_RBSR 0x4c #define FTGMAC100_TPAFCR 0x48 #define FTGMAC100_MACCR 0x50 #define FTGMAC100_MACSR 0x54 #define FTGMAC100_PHYCR 0x60 #define FTGMAC100_PHYDATA 0x64 #define FTGMAC100_FCR 0x68 /* * Interrupt status register & interrupt enable register */ #define FTGMAC100_INT_RPKT_BUF (1 << 0) #define FTGMAC100_INT_RPKT_FIFO (1 << 1) #define FTGMAC100_INT_NO_RXBUF (1 << 2) #define FTGMAC100_INT_RPKT_LOST (1 << 3) #define FTGMAC100_INT_XPKT_ETH (1 << 4) #define FTGMAC100_INT_XPKT_FIFO (1 << 5) #define FTGMAC100_INT_NO_NPTXBUF (1 << 6) #define FTGMAC100_INT_XPKT_LOST (1 << 7) #define FTGMAC100_INT_AHB_ERR (1 << 8) #define FTGMAC100_INT_PHYSTS_CHG (1 << 9) #define FTGMAC100_INT_NO_HPTXBUF (1 << 10) /* * Automatic polling timer control register */ #define FTGMAC100_APTC_RXPOLL_CNT(x) ((x) & 0xf) #define FTGMAC100_APTC_RXPOLL_TIME_SEL (1 << 4) #define FTGMAC100_APTC_TXPOLL_CNT(x) (((x) >> 8) & 0xf) #define FTGMAC100_APTC_TXPOLL_TIME_SEL (1 << 12) /* * DMA burst length and arbitration control register */ #define FTGMAC100_DBLAC_RXBURST_SIZE(x) (((x) >> 8) & 0x3) #define FTGMAC100_DBLAC_TXBURST_SIZE(x) (((x) >> 10) & 0x3) #define FTGMAC100_DBLAC_RXDES_SIZE(x) ((((x) >> 12) & 0xf) * 8) #define FTGMAC100_DBLAC_TXDES_SIZE(x) ((((x) >> 16) & 0xf) * 8) #define FTGMAC100_DBLAC_IFG_CNT(x) (((x) >> 20) & 0x7) #define FTGMAC100_DBLAC_IFG_INC (1 << 23) /* * PHY control register */ #define FTGMAC100_PHYCR_MIIRD (1 << 26) #define FTGMAC100_PHYCR_MIIWR (1 << 27) #define FTGMAC100_PHYCR_DEV(x) (((x) >> 16) & 0x1f) #define FTGMAC100_PHYCR_REG(x) (((x) >> 21) & 0x1f) /* * PHY data register */ #define FTGMAC100_PHYDATA_MIIWDATA(x) ((x) & 0xffff) #define FTGMAC100_PHYDATA_MIIRDATA(x) (((x) >> 16) & 0xffff) /* * PHY control register - New MDC/MDIO interface */ #define FTGMAC100_PHYCR_NEW_DATA(x) (((x) >> 16) & 0xffff) #define FTGMAC100_PHYCR_NEW_FIRE (1 << 15) #define FTGMAC100_PHYCR_NEW_ST_22 (1 << 12) #define FTGMAC100_PHYCR_NEW_OP(x) (((x) >> 10) & 3) #define FTGMAC100_PHYCR_NEW_OP_WRITE 0x1 #define FTGMAC100_PHYCR_NEW_OP_READ 0x2 #define FTGMAC100_PHYCR_NEW_DEV(x) (((x) >> 5) & 0x1f) #define FTGMAC100_PHYCR_NEW_REG(x) ((x) & 0x1f) /* * Feature Register */ #define FTGMAC100_REVR_NEW_MDIO_INTERFACE (1 << 31) /* * MAC control register */ #define FTGMAC100_MACCR_TXDMA_EN (1 << 0) #define FTGMAC100_MACCR_RXDMA_EN (1 << 1) #define FTGMAC100_MACCR_TXMAC_EN (1 << 2) #define FTGMAC100_MACCR_RXMAC_EN (1 << 3) #define FTGMAC100_MACCR_RM_VLAN (1 << 4) #define FTGMAC100_MACCR_HPTXR_EN (1 << 5) #define FTGMAC100_MACCR_LOOP_EN (1 << 6) #define FTGMAC100_MACCR_ENRX_IN_HALFTX (1 << 7) #define FTGMAC100_MACCR_FULLDUP (1 << 8) #define FTGMAC100_MACCR_GIGA_MODE (1 << 9) #define FTGMAC100_MACCR_CRC_APD (1 << 10) /* not needed */ #define FTGMAC100_MACCR_RX_RUNT (1 << 12) #define FTGMAC100_MACCR_JUMBO_LF (1 << 13) #define FTGMAC100_MACCR_RX_ALL (1 << 14) #define FTGMAC100_MACCR_HT_MULTI_EN (1 << 15) #define FTGMAC100_MACCR_RX_MULTIPKT (1 << 16) #define FTGMAC100_MACCR_RX_BROADPKT (1 << 17) #define FTGMAC100_MACCR_DISCARD_CRCERR (1 << 18) #define FTGMAC100_MACCR_FAST_MODE (1 << 19) #define FTGMAC100_MACCR_SW_RST (1 << 31) /* * Transmit descriptor */ #define FTGMAC100_TXDES0_TXBUF_SIZE(x) ((x) & 0x3fff) #define FTGMAC100_TXDES0_EDOTR (1 << 15) #define FTGMAC100_TXDES0_CRC_ERR (1 << 19) #define FTGMAC100_TXDES0_LTS (1 << 28) #define FTGMAC100_TXDES0_FTS (1 << 29) #define FTGMAC100_TXDES0_EDOTR_ASPEED (1 << 30) #define FTGMAC100_TXDES0_TXDMA_OWN (1 << 31) #define FTGMAC100_TXDES1_VLANTAG_CI(x) ((x) & 0xffff) #define FTGMAC100_TXDES1_INS_VLANTAG (1 << 16) #define FTGMAC100_TXDES1_TCP_CHKSUM (1 << 17) #define FTGMAC100_TXDES1_UDP_CHKSUM (1 << 18) #define FTGMAC100_TXDES1_IP_CHKSUM (1 << 19) #define FTGMAC100_TXDES1_LLC (1 << 22) #define FTGMAC100_TXDES1_TX2FIC (1 << 30) #define FTGMAC100_TXDES1_TXIC (1 << 31) /* * Receive descriptor */ #define FTGMAC100_RXDES0_VDBC 0x3fff #define FTGMAC100_RXDES0_EDORR (1 << 15) #define FTGMAC100_RXDES0_MULTICAST (1 << 16) #define FTGMAC100_RXDES0_BROADCAST (1 << 17) #define FTGMAC100_RXDES0_RX_ERR (1 << 18) #define FTGMAC100_RXDES0_CRC_ERR (1 << 19) #define FTGMAC100_RXDES0_FTL (1 << 20) #define FTGMAC100_RXDES0_RUNT (1 << 21) #define FTGMAC100_RXDES0_RX_ODD_NB (1 << 22) #define FTGMAC100_RXDES0_FIFO_FULL (1 << 23) #define FTGMAC100_RXDES0_PAUSE_OPCODE (1 << 24) #define FTGMAC100_RXDES0_PAUSE_FRAME (1 << 25) #define FTGMAC100_RXDES0_LRS (1 << 28) #define FTGMAC100_RXDES0_FRS (1 << 29) #define FTGMAC100_RXDES0_EDORR_ASPEED (1 << 30) #define FTGMAC100_RXDES0_RXPKT_RDY (1 << 31) #define FTGMAC100_RXDES1_VLANTAG_CI 0xffff #define FTGMAC100_RXDES1_PROT_MASK (0x3 << 20) #define FTGMAC100_RXDES1_PROT_NONIP (0x0 << 20) #define FTGMAC100_RXDES1_PROT_IP (0x1 << 20) #define FTGMAC100_RXDES1_PROT_TCPIP (0x2 << 20) #define FTGMAC100_RXDES1_PROT_UDPIP (0x3 << 20) #define FTGMAC100_RXDES1_LLC (1 << 22) #define FTGMAC100_RXDES1_DF (1 << 23) #define FTGMAC100_RXDES1_VLANTAG_AVAIL (1 << 24) #define FTGMAC100_RXDES1_TCP_CHKSUM_ERR (1 << 25) #define FTGMAC100_RXDES1_UDP_CHKSUM_ERR (1 << 26) #define FTGMAC100_RXDES1_IP_CHKSUM_ERR (1 << 27) /* * Receive and transmit Buffer Descriptor */ typedef struct { uint32_t des0; uint32_t des1; uint32_t des2; /* not used by HW */ uint32_t des3; } FTGMAC100Desc; #define FTGMAC100_DESC_ALIGNMENT 16 /* * Specific RTL8211E MII Registers */ #define RTL8211E_MII_PHYCR 16 /* PHY Specific Control */ #define RTL8211E_MII_PHYSR 17 /* PHY Specific Status */ #define RTL8211E_MII_INER 18 /* Interrupt Enable */ #define RTL8211E_MII_INSR 19 /* Interrupt Status */ #define RTL8211E_MII_RXERC 24 /* Receive Error Counter */ #define RTL8211E_MII_LDPSR 27 /* Link Down Power Saving */ #define RTL8211E_MII_EPAGSR 30 /* Extension Page Select */ #define RTL8211E_MII_PAGSEL 31 /* Page Select */ /* * RTL8211E Interrupt Status */ #define PHY_INT_AUTONEG_ERROR (1 << 15) #define PHY_INT_PAGE_RECV (1 << 12) #define PHY_INT_AUTONEG_COMPLETE (1 << 11) #define PHY_INT_LINK_STATUS (1 << 10) #define PHY_INT_ERROR (1 << 9) #define PHY_INT_DOWN (1 << 8) #define PHY_INT_JABBER (1 << 0) /* * Max frame size for the receiving buffer */ #define FTGMAC100_MAX_FRAME_SIZE 9220 /* * Limits depending on the type of the frame * * 9216 for Jumbo frames (+ 4 for VLAN) * 1518 for other frames (+ 4 for VLAN) */ static int ftgmac100_max_frame_size(FTGMAC100State *s, uint16_t proto) { int max = (s->maccr & FTGMAC100_MACCR_JUMBO_LF ? 9216 : 1518); return max + (proto == ETH_P_VLAN ? 4 : 0); } static void ftgmac100_update_irq(FTGMAC100State *s) { qemu_set_irq(s->irq, s->isr & s->ier); } /* * The MII phy could raise a GPIO to the processor which in turn * could be handled as an interrpt by the OS. * For now we don't handle any GPIO/interrupt line, so the OS will * have to poll for the PHY status. */ static void phy_update_irq(FTGMAC100State *s) { ftgmac100_update_irq(s); } static void phy_update_link(FTGMAC100State *s) { /* Autonegotiation status mirrors link status. */ if (qemu_get_queue(s->nic)->link_down) { s->phy_status &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP); s->phy_int |= PHY_INT_DOWN; } else { s->phy_status |= (MII_BMSR_LINK_ST | MII_BMSR_AN_COMP); s->phy_int |= PHY_INT_AUTONEG_COMPLETE; } phy_update_irq(s); } static void ftgmac100_set_link(NetClientState *nc) { phy_update_link(FTGMAC100(qemu_get_nic_opaque(nc))); } static void phy_reset(FTGMAC100State *s) { s->phy_status = (MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD | MII_BMSR_10T_HD | MII_BMSR_EXTSTAT | MII_BMSR_MFPS | MII_BMSR_AN_COMP | MII_BMSR_AUTONEG | MII_BMSR_LINK_ST | MII_BMSR_EXTCAP); s->phy_control = (MII_BMCR_AUTOEN | MII_BMCR_FD | MII_BMCR_SPEED1000); s->phy_advertise = (MII_ANAR_PAUSE_ASYM | MII_ANAR_PAUSE | MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 | MII_ANAR_CSMACD); s->phy_int_mask = 0; s->phy_int = 0; } static uint16_t do_phy_read(FTGMAC100State *s, uint8_t reg) { uint16_t val; switch (reg) { case MII_BMCR: /* Basic Control */ val = s->phy_control; break; case MII_BMSR: /* Basic Status */ val = s->phy_status; break; case MII_PHYID1: /* ID1 */ val = RTL8211E_PHYID1; break; case MII_PHYID2: /* ID2 */ val = RTL8211E_PHYID2; break; case MII_ANAR: /* Auto-neg advertisement */ val = s->phy_advertise; break; case MII_ANLPAR: /* Auto-neg Link Partner Ability */ val = (MII_ANLPAR_ACK | MII_ANLPAR_PAUSE | MII_ANLPAR_TXFD | MII_ANLPAR_TX | MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD); break; case MII_ANER: /* Auto-neg Expansion */ val = MII_ANER_NWAY; break; case MII_CTRL1000: /* 1000BASE-T control */ val = (MII_CTRL1000_HALF | MII_CTRL1000_FULL); break; case MII_STAT1000: /* 1000BASE-T status */ val = MII_STAT1000_FULL; break; case RTL8211E_MII_INSR: /* Interrupt status. */ val = s->phy_int; s->phy_int = 0; phy_update_irq(s); break; case RTL8211E_MII_INER: /* Interrupt enable */ val = s->phy_int_mask; break; case RTL8211E_MII_PHYCR: case RTL8211E_MII_PHYSR: case RTL8211E_MII_RXERC: case RTL8211E_MII_LDPSR: case RTL8211E_MII_EPAGSR: case RTL8211E_MII_PAGSEL: qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n", __func__, reg); val = 0; break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n", __func__, reg); val = 0; break; } return val; } #define MII_BMCR_MASK (MII_BMCR_LOOPBACK | MII_BMCR_SPEED100 | \ MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_PDOWN | \ MII_BMCR_FD | MII_BMCR_CTST) #define MII_ANAR_MASK 0x2d7f static void do_phy_write(FTGMAC100State *s, uint8_t reg, uint16_t val) { switch (reg) { case MII_BMCR: /* Basic Control */ if (val & MII_BMCR_RESET) { phy_reset(s); } else { s->phy_control = val & MII_BMCR_MASK; /* Complete autonegotiation immediately. */ if (val & MII_BMCR_AUTOEN) { s->phy_status |= MII_BMSR_AN_COMP; } } break; case MII_ANAR: /* Auto-neg advertisement */ s->phy_advertise = (val & MII_ANAR_MASK) | MII_ANAR_TX; break; case RTL8211E_MII_INER: /* Interrupt enable */ s->phy_int_mask = val & 0xff; phy_update_irq(s); break; case RTL8211E_MII_PHYCR: case RTL8211E_MII_PHYSR: case RTL8211E_MII_RXERC: case RTL8211E_MII_LDPSR: case RTL8211E_MII_EPAGSR: case RTL8211E_MII_PAGSEL: qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n", __func__, reg); break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n", __func__, reg); break; } } static void do_phy_new_ctl(FTGMAC100State *s) { uint8_t reg; uint16_t data; if (!(s->phycr & FTGMAC100_PHYCR_NEW_ST_22)) { qemu_log_mask(LOG_UNIMP, "%s: unsupported ST code\n", __func__); return; } /* Nothing to do */ if (!(s->phycr & FTGMAC100_PHYCR_NEW_FIRE)) { return; } reg = FTGMAC100_PHYCR_NEW_REG(s->phycr); data = FTGMAC100_PHYCR_NEW_DATA(s->phycr); switch (FTGMAC100_PHYCR_NEW_OP(s->phycr)) { case FTGMAC100_PHYCR_NEW_OP_WRITE: do_phy_write(s, reg, data); break; case FTGMAC100_PHYCR_NEW_OP_READ: s->phydata = do_phy_read(s, reg) & 0xffff; break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid OP code %08x\n", __func__, s->phycr); } s->phycr &= ~FTGMAC100_PHYCR_NEW_FIRE; } static void do_phy_ctl(FTGMAC100State *s) { uint8_t reg = FTGMAC100_PHYCR_REG(s->phycr); if (s->phycr & FTGMAC100_PHYCR_MIIWR) { do_phy_write(s, reg, s->phydata & 0xffff); s->phycr &= ~FTGMAC100_PHYCR_MIIWR; } else if (s->phycr & FTGMAC100_PHYCR_MIIRD) { s->phydata = do_phy_read(s, reg) << 16; s->phycr &= ~FTGMAC100_PHYCR_MIIRD; } else { qemu_log_mask(LOG_GUEST_ERROR, "%s: no OP code %08x\n", __func__, s->phycr); } } static int ftgmac100_read_bd(FTGMAC100Desc *bd, dma_addr_t addr) { if (dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd), MEMTXATTRS_UNSPECIFIED)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read descriptor @ 0x%" HWADDR_PRIx "\n", __func__, addr); return -1; } bd->des0 = le32_to_cpu(bd->des0); bd->des1 = le32_to_cpu(bd->des1); bd->des2 = le32_to_cpu(bd->des2); bd->des3 = le32_to_cpu(bd->des3); return 0; } static int ftgmac100_write_bd(FTGMAC100Desc *bd, dma_addr_t addr) { FTGMAC100Desc lebd; lebd.des0 = cpu_to_le32(bd->des0); lebd.des1 = cpu_to_le32(bd->des1); lebd.des2 = cpu_to_le32(bd->des2); lebd.des3 = cpu_to_le32(bd->des3); if (dma_memory_write(&address_space_memory, addr, &lebd, sizeof(lebd), MEMTXATTRS_UNSPECIFIED)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to write descriptor @ 0x%" HWADDR_PRIx "\n", __func__, addr); return -1; } return 0; } static int ftgmac100_insert_vlan(FTGMAC100State *s, int frame_size, uint8_t vlan_tci) { uint8_t *vlan_hdr = s->frame + (ETH_ALEN * 2); uint8_t *payload = vlan_hdr + sizeof(struct vlan_header); if (frame_size < sizeof(struct eth_header)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too small for VLAN insertion : %d bytes\n", __func__, frame_size); s->isr |= FTGMAC100_INT_XPKT_LOST; goto out; } if (frame_size + sizeof(struct vlan_header) > sizeof(s->frame)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %d bytes\n", __func__, frame_size); s->isr |= FTGMAC100_INT_XPKT_LOST; frame_size -= sizeof(struct vlan_header); } memmove(payload, vlan_hdr, frame_size - (ETH_ALEN * 2)); stw_be_p(vlan_hdr, ETH_P_VLAN); stw_be_p(vlan_hdr + 2, vlan_tci); frame_size += sizeof(struct vlan_header); out: return frame_size; } static void ftgmac100_do_tx(FTGMAC100State *s, uint32_t tx_ring, uint32_t tx_descriptor) { int frame_size = 0; uint8_t *ptr = s->frame; uint32_t addr = tx_descriptor; uint32_t flags = 0; while (1) { FTGMAC100Desc bd; int len; if (ftgmac100_read_bd(&bd, addr) || ((bd.des0 & FTGMAC100_TXDES0_TXDMA_OWN) == 0)) { /* Run out of descriptors to transmit. */ s->isr |= FTGMAC100_INT_NO_NPTXBUF; break; } /* * record transmit flags as they are valid only on the first * segment */ if (bd.des0 & FTGMAC100_TXDES0_FTS) { flags = bd.des1; } len = FTGMAC100_TXDES0_TXBUF_SIZE(bd.des0); if (!len) { /* * 0 is an invalid size, however the HW does not raise any * interrupt. Flag an error because the guest is buggy. */ qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid segment size\n", __func__); } if (frame_size + len > sizeof(s->frame)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %d bytes\n", __func__, len); s->isr |= FTGMAC100_INT_XPKT_LOST; len = sizeof(s->frame) - frame_size; } if (dma_memory_read(&address_space_memory, bd.des3, ptr, len, MEMTXATTRS_UNSPECIFIED)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read packet @ 0x%x\n", __func__, bd.des3); s->isr |= FTGMAC100_INT_AHB_ERR; break; } ptr += len; frame_size += len; if (bd.des0 & FTGMAC100_TXDES0_LTS) { int csum = 0; /* Check for VLAN */ if (flags & FTGMAC100_TXDES1_INS_VLANTAG && be16_to_cpu(PKT_GET_ETH_HDR(s->frame)->h_proto) != ETH_P_VLAN) { frame_size = ftgmac100_insert_vlan(s, frame_size, FTGMAC100_TXDES1_VLANTAG_CI(flags)); } if (flags & FTGMAC100_TXDES1_IP_CHKSUM) { csum |= CSUM_IP; } if (flags & FTGMAC100_TXDES1_TCP_CHKSUM) { csum |= CSUM_TCP; } if (flags & FTGMAC100_TXDES1_UDP_CHKSUM) { csum |= CSUM_UDP; } if (csum) { net_checksum_calculate(s->frame, frame_size, csum); } /* Last buffer in frame. */ qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size); ptr = s->frame; frame_size = 0; s->isr |= FTGMAC100_INT_XPKT_ETH; } if (flags & FTGMAC100_TXDES1_TX2FIC) { s->isr |= FTGMAC100_INT_XPKT_FIFO; } bd.des0 &= ~FTGMAC100_TXDES0_TXDMA_OWN; /* Write back the modified descriptor. */ ftgmac100_write_bd(&bd, addr); /* Advance to the next descriptor. */ if (bd.des0 & s->txdes0_edotr) { addr = tx_ring; } else { addr += FTGMAC100_DBLAC_TXDES_SIZE(s->dblac); } } s->tx_descriptor = addr; ftgmac100_update_irq(s); } static bool ftgmac100_can_receive(NetClientState *nc) { FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc)); FTGMAC100Desc bd; if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) != (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) { return false; } if (ftgmac100_read_bd(&bd, s->rx_descriptor)) { return false; } return !(bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY); } /* * This is purely informative. The HW can poll the RW (and RX) ring * buffers for available descriptors but we don't need to trigger a * timer for that in qemu. */ static uint32_t ftgmac100_rxpoll(FTGMAC100State *s) { /* * Polling times : * * Speed TIME_SEL=0 TIME_SEL=1 * * 10 51.2 ms 819.2 ms * 100 5.12 ms 81.92 ms * 1000 1.024 ms 16.384 ms */ static const int div[] = { 20, 200, 1000 }; uint32_t cnt = 1024 * FTGMAC100_APTC_RXPOLL_CNT(s->aptcr); uint32_t speed = (s->maccr & FTGMAC100_MACCR_FAST_MODE) ? 1 : 0; if (s->aptcr & FTGMAC100_APTC_RXPOLL_TIME_SEL) { cnt <<= 4; } if (s->maccr & FTGMAC100_MACCR_GIGA_MODE) { speed = 2; } return cnt / div[speed]; } static void ftgmac100_do_reset(FTGMAC100State *s, bool sw_reset) { /* Reset the FTGMAC100 */ s->isr = 0; s->ier = 0; s->rx_enabled = 0; s->rx_ring = 0; s->rbsr = 0x640; s->rx_descriptor = 0; s->tx_ring = 0; s->tx_descriptor = 0; s->math[0] = 0; s->math[1] = 0; s->itc = 0; s->aptcr = 1; s->dblac = 0x00022f00; s->revr = 0; s->fear1 = 0; s->tpafcr = 0xf1; if (sw_reset) { s->maccr &= FTGMAC100_MACCR_GIGA_MODE | FTGMAC100_MACCR_FAST_MODE; } else { s->maccr = 0; } s->phycr = 0; s->phydata = 0; s->fcr = 0x400; /* and the PHY */ phy_reset(s); } static void ftgmac100_reset(DeviceState *d) { ftgmac100_do_reset(FTGMAC100(d), false); } static uint64_t ftgmac100_read(void *opaque, hwaddr addr, unsigned size) { FTGMAC100State *s = FTGMAC100(opaque); switch (addr & 0xff) { case FTGMAC100_ISR: return s->isr; case FTGMAC100_IER: return s->ier; case FTGMAC100_MAC_MADR: return (s->conf.macaddr.a[0] << 8) | s->conf.macaddr.a[1]; case FTGMAC100_MAC_LADR: return ((uint32_t) s->conf.macaddr.a[2] << 24) | (s->conf.macaddr.a[3] << 16) | (s->conf.macaddr.a[4] << 8) | s->conf.macaddr.a[5]; case FTGMAC100_MATH0: return s->math[0]; case FTGMAC100_MATH1: return s->math[1]; case FTGMAC100_RXR_BADR: return s->rx_ring; case FTGMAC100_NPTXR_BADR: return s->tx_ring; case FTGMAC100_ITC: return s->itc; case FTGMAC100_DBLAC: return s->dblac; case FTGMAC100_REVR: return s->revr; case FTGMAC100_FEAR1: return s->fear1; case FTGMAC100_TPAFCR: return s->tpafcr; case FTGMAC100_FCR: return s->fcr; case FTGMAC100_MACCR: return s->maccr; case FTGMAC100_PHYCR: return s->phycr; case FTGMAC100_PHYDATA: return s->phydata; /* We might want to support these one day */ case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */ case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */ case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */ qemu_log_mask(LOG_UNIMP, "%s: read to unimplemented register 0x%" HWADDR_PRIx "\n", __func__, addr); return 0; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%" HWADDR_PRIx "\n", __func__, addr); return 0; } } static void ftgmac100_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { FTGMAC100State *s = FTGMAC100(opaque); switch (addr & 0xff) { case FTGMAC100_ISR: /* Interrupt status */ s->isr &= ~value; break; case FTGMAC100_IER: /* Interrupt control */ s->ier = value; break; case FTGMAC100_MAC_MADR: /* MAC */ s->conf.macaddr.a[0] = value >> 8; s->conf.macaddr.a[1] = value; break; case FTGMAC100_MAC_LADR: s->conf.macaddr.a[2] = value >> 24; s->conf.macaddr.a[3] = value >> 16; s->conf.macaddr.a[4] = value >> 8; s->conf.macaddr.a[5] = value; break; case FTGMAC100_MATH0: /* Multicast Address Hash Table 0 */ s->math[0] = value; break; case FTGMAC100_MATH1: /* Multicast Address Hash Table 1 */ s->math[1] = value; break; case FTGMAC100_ITC: /* TODO: Interrupt Timer Control */ s->itc = value; break; case FTGMAC100_RXR_BADR: /* Ring buffer address */ if (!QEMU_IS_ALIGNED(value, FTGMAC100_DESC_ALIGNMENT)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad RX buffer alignment 0x%" HWADDR_PRIx "\n", __func__, value); return; } s->rx_ring = value; s->rx_descriptor = s->rx_ring; break; case FTGMAC100_RBSR: /* DMA buffer size */ s->rbsr = value; break; case FTGMAC100_NPTXR_BADR: /* Transmit buffer address */ if (!QEMU_IS_ALIGNED(value, FTGMAC100_DESC_ALIGNMENT)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad TX buffer alignment 0x%" HWADDR_PRIx "\n", __func__, value); return; } s->tx_ring = value; s->tx_descriptor = s->tx_ring; break; case FTGMAC100_NPTXPD: /* Trigger transmit */ if ((s->maccr & (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN)) == (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN)) { /* TODO: high priority tx ring */ ftgmac100_do_tx(s, s->tx_ring, s->tx_descriptor); } if (ftgmac100_can_receive(qemu_get_queue(s->nic))) { qemu_flush_queued_packets(qemu_get_queue(s->nic)); } break; case FTGMAC100_RXPD: /* Receive Poll Demand Register */ if (ftgmac100_can_receive(qemu_get_queue(s->nic))) { qemu_flush_queued_packets(qemu_get_queue(s->nic)); } break; case FTGMAC100_APTC: /* Automatic polling */ s->aptcr = value; if (FTGMAC100_APTC_RXPOLL_CNT(s->aptcr)) { ftgmac100_rxpoll(s); } if (FTGMAC100_APTC_TXPOLL_CNT(s->aptcr)) { qemu_log_mask(LOG_UNIMP, "%s: no transmit polling\n", __func__); } break; case FTGMAC100_MACCR: /* MAC Device control */ s->maccr = value; if (value & FTGMAC100_MACCR_SW_RST) { ftgmac100_do_reset(s, true); } if (ftgmac100_can_receive(qemu_get_queue(s->nic))) { qemu_flush_queued_packets(qemu_get_queue(s->nic)); } break; case FTGMAC100_PHYCR: /* PHY Device control */ s->phycr = value; if (s->revr & FTGMAC100_REVR_NEW_MDIO_INTERFACE) { do_phy_new_ctl(s); } else { do_phy_ctl(s); } break; case FTGMAC100_PHYDATA: s->phydata = value & 0xffff; break; case FTGMAC100_DBLAC: /* DMA Burst Length and Arbitration Control */ if (FTGMAC100_DBLAC_TXDES_SIZE(value) < sizeof(FTGMAC100Desc)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: transmit descriptor too small: %" PRIx64 " bytes\n", __func__, FTGMAC100_DBLAC_TXDES_SIZE(value)); break; } if (FTGMAC100_DBLAC_RXDES_SIZE(value) < sizeof(FTGMAC100Desc)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: receive descriptor too small : %" PRIx64 " bytes\n", __func__, FTGMAC100_DBLAC_RXDES_SIZE(value)); break; } s->dblac = value; break; case FTGMAC100_REVR: /* Feature Register */ s->revr = value; break; case FTGMAC100_FEAR1: /* Feature Register 1 */ s->fear1 = value; break; case FTGMAC100_TPAFCR: /* Transmit Priority Arbitration and FIFO Control */ s->tpafcr = value; break; case FTGMAC100_FCR: /* Flow Control */ s->fcr = value; break; case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */ case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */ case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */ qemu_log_mask(LOG_UNIMP, "%s: write to unimplemented register 0x%" HWADDR_PRIx "\n", __func__, addr); break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%" HWADDR_PRIx "\n", __func__, addr); break; } ftgmac100_update_irq(s); } static int ftgmac100_filter(FTGMAC100State *s, const uint8_t *buf, size_t len) { unsigned mcast_idx; if (s->maccr & FTGMAC100_MACCR_RX_ALL) { return 1; } switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) { case ETH_PKT_BCAST: if (!(s->maccr & FTGMAC100_MACCR_RX_BROADPKT)) { return 0; } break; case ETH_PKT_MCAST: if (!(s->maccr & FTGMAC100_MACCR_RX_MULTIPKT)) { if (!(s->maccr & FTGMAC100_MACCR_HT_MULTI_EN)) { return 0; } mcast_idx = net_crc32_le(buf, ETH_ALEN); mcast_idx = (~(mcast_idx >> 2)) & 0x3f; if (!(s->math[mcast_idx / 32] & (1 << (mcast_idx % 32)))) { return 0; } } break; case ETH_PKT_UCAST: if (memcmp(s->conf.macaddr.a, buf, 6)) { return 0; } break; } return 1; } static ssize_t ftgmac100_receive(NetClientState *nc, const uint8_t *buf, size_t len) { FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc)); FTGMAC100Desc bd; uint32_t flags = 0; uint32_t addr; uint32_t crc; uint32_t buf_addr; uint8_t *crc_ptr; uint32_t buf_len; size_t size = len; uint32_t first = FTGMAC100_RXDES0_FRS; uint16_t proto = be16_to_cpu(PKT_GET_ETH_HDR(buf)->h_proto); int max_frame_size = ftgmac100_max_frame_size(s, proto); if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) != (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) { return -1; } if (!ftgmac100_filter(s, buf, size)) { return size; } crc = cpu_to_be32(crc32(~0, buf, size)); /* Increase size by 4, loop below reads the last 4 bytes from crc_ptr. */ size += 4; crc_ptr = (uint8_t *) &crc; /* Huge frames are truncated. */ if (size > max_frame_size) { qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %zd bytes\n", __func__, size); size = max_frame_size; flags |= FTGMAC100_RXDES0_FTL; } switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) { case ETH_PKT_BCAST: flags |= FTGMAC100_RXDES0_BROADCAST; break; case ETH_PKT_MCAST: flags |= FTGMAC100_RXDES0_MULTICAST; break; case ETH_PKT_UCAST: break; } s->isr |= FTGMAC100_INT_RPKT_FIFO; addr = s->rx_descriptor; while (size > 0) { if (!ftgmac100_can_receive(nc)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected packet\n", __func__); return -1; } if (ftgmac100_read_bd(&bd, addr) || (bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY)) { /* No descriptors available. Bail out. */ qemu_log_mask(LOG_GUEST_ERROR, "%s: Lost end of frame\n", __func__); s->isr |= FTGMAC100_INT_NO_RXBUF; break; } buf_len = (size <= s->rbsr) ? size : s->rbsr; bd.des0 |= buf_len & 0x3fff; size -= buf_len; /* The last 4 bytes are the CRC. */ if (size < 4) { buf_len += size - 4; } buf_addr = bd.des3; if (first && proto == ETH_P_VLAN && buf_len >= 18) { bd.des1 = lduw_be_p(buf + 14) | FTGMAC100_RXDES1_VLANTAG_AVAIL; if (s->maccr & FTGMAC100_MACCR_RM_VLAN) { dma_memory_write(&address_space_memory, buf_addr, buf, 12, MEMTXATTRS_UNSPECIFIED); dma_memory_write(&address_space_memory, buf_addr + 12, buf + 16, buf_len - 16, MEMTXATTRS_UNSPECIFIED); } else { dma_memory_write(&address_space_memory, buf_addr, buf, buf_len, MEMTXATTRS_UNSPECIFIED); } } else { bd.des1 = 0; dma_memory_write(&address_space_memory, buf_addr, buf, buf_len, MEMTXATTRS_UNSPECIFIED); } buf += buf_len; if (size < 4) { dma_memory_write(&address_space_memory, buf_addr + buf_len, crc_ptr, 4 - size, MEMTXATTRS_UNSPECIFIED); crc_ptr += 4 - size; } bd.des0 |= first | FTGMAC100_RXDES0_RXPKT_RDY; first = 0; if (size == 0) { /* Last buffer in frame. */ bd.des0 |= flags | FTGMAC100_RXDES0_LRS; s->isr |= FTGMAC100_INT_RPKT_BUF; } ftgmac100_write_bd(&bd, addr); if (bd.des0 & s->rxdes0_edorr) { addr = s->rx_ring; } else { addr += FTGMAC100_DBLAC_RXDES_SIZE(s->dblac); } } s->rx_descriptor = addr; ftgmac100_update_irq(s); return len; } static const MemoryRegionOps ftgmac100_ops = { .read = ftgmac100_read, .write = ftgmac100_write, .valid.min_access_size = 4, .valid.max_access_size = 4, .endianness = DEVICE_LITTLE_ENDIAN, }; static void ftgmac100_cleanup(NetClientState *nc) { FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc)); s->nic = NULL; } static NetClientInfo net_ftgmac100_info = { .type = NET_CLIENT_DRIVER_NIC, .size = sizeof(NICState), .can_receive = ftgmac100_can_receive, .receive = ftgmac100_receive, .cleanup = ftgmac100_cleanup, .link_status_changed = ftgmac100_set_link, }; static void ftgmac100_realize(DeviceState *dev, Error **errp) { FTGMAC100State *s = FTGMAC100(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); if (s->aspeed) { s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR_ASPEED; s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR_ASPEED; } else { s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR; s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR; } memory_region_init_io(&s->iomem, OBJECT(dev), &ftgmac100_ops, s, TYPE_FTGMAC100, 0x2000); sysbus_init_mmio(sbd, &s->iomem); sysbus_init_irq(sbd, &s->irq); qemu_macaddr_default_if_unset(&s->conf.macaddr); s->nic = qemu_new_nic(&net_ftgmac100_info, &s->conf, object_get_typename(OBJECT(dev)), dev->id, &dev->mem_reentrancy_guard, s); qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); } static const VMStateDescription vmstate_ftgmac100 = { .name = TYPE_FTGMAC100, .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT32(irq_state, FTGMAC100State), VMSTATE_UINT32(isr, FTGMAC100State), VMSTATE_UINT32(ier, FTGMAC100State), VMSTATE_UINT32(rx_enabled, FTGMAC100State), VMSTATE_UINT32(rx_ring, FTGMAC100State), VMSTATE_UINT32(rbsr, FTGMAC100State), VMSTATE_UINT32(tx_ring, FTGMAC100State), VMSTATE_UINT32(rx_descriptor, FTGMAC100State), VMSTATE_UINT32(tx_descriptor, FTGMAC100State), VMSTATE_UINT32_ARRAY(math, FTGMAC100State, 2), VMSTATE_UINT32(itc, FTGMAC100State), VMSTATE_UINT32(aptcr, FTGMAC100State), VMSTATE_UINT32(dblac, FTGMAC100State), VMSTATE_UINT32(revr, FTGMAC100State), VMSTATE_UINT32(fear1, FTGMAC100State), VMSTATE_UINT32(tpafcr, FTGMAC100State), VMSTATE_UINT32(maccr, FTGMAC100State), VMSTATE_UINT32(phycr, FTGMAC100State), VMSTATE_UINT32(phydata, FTGMAC100State), VMSTATE_UINT32(fcr, FTGMAC100State), VMSTATE_UINT32(phy_status, FTGMAC100State), VMSTATE_UINT32(phy_control, FTGMAC100State), VMSTATE_UINT32(phy_advertise, FTGMAC100State), VMSTATE_UINT32(phy_int, FTGMAC100State), VMSTATE_UINT32(phy_int_mask, FTGMAC100State), VMSTATE_UINT32(txdes0_edotr, FTGMAC100State), VMSTATE_UINT32(rxdes0_edorr, FTGMAC100State), VMSTATE_END_OF_LIST() } }; static Property ftgmac100_properties[] = { DEFINE_PROP_BOOL("aspeed", FTGMAC100State, aspeed, false), DEFINE_NIC_PROPERTIES(FTGMAC100State, conf), DEFINE_PROP_END_OF_LIST(), }; static void ftgmac100_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &vmstate_ftgmac100; dc->reset = ftgmac100_reset; device_class_set_props(dc, ftgmac100_properties); set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); dc->realize = ftgmac100_realize; dc->desc = "Faraday FTGMAC100 Gigabit Ethernet emulation"; } static const TypeInfo ftgmac100_info = { .name = TYPE_FTGMAC100, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(FTGMAC100State), .class_init = ftgmac100_class_init, }; /* * AST2600 MII controller */ #define ASPEED_MII_PHYCR_FIRE BIT(31) #define ASPEED_MII_PHYCR_ST_22 BIT(28) #define ASPEED_MII_PHYCR_OP(x) ((x) & (ASPEED_MII_PHYCR_OP_WRITE | \ ASPEED_MII_PHYCR_OP_READ)) #define ASPEED_MII_PHYCR_OP_WRITE BIT(26) #define ASPEED_MII_PHYCR_OP_READ BIT(27) #define ASPEED_MII_PHYCR_DATA(x) (x & 0xffff) #define ASPEED_MII_PHYCR_PHY(x) (((x) >> 21) & 0x1f) #define ASPEED_MII_PHYCR_REG(x) (((x) >> 16) & 0x1f) #define ASPEED_MII_PHYDATA_IDLE BIT(16) static void aspeed_mii_transition(AspeedMiiState *s, bool fire) { if (fire) { s->phycr |= ASPEED_MII_PHYCR_FIRE; s->phydata &= ~ASPEED_MII_PHYDATA_IDLE; } else { s->phycr &= ~ASPEED_MII_PHYCR_FIRE; s->phydata |= ASPEED_MII_PHYDATA_IDLE; } } static void aspeed_mii_do_phy_ctl(AspeedMiiState *s) { uint8_t reg; uint16_t data; if (!(s->phycr & ASPEED_MII_PHYCR_ST_22)) { aspeed_mii_transition(s, !ASPEED_MII_PHYCR_FIRE); qemu_log_mask(LOG_UNIMP, "%s: unsupported ST code\n", __func__); return; } /* Nothing to do */ if (!(s->phycr & ASPEED_MII_PHYCR_FIRE)) { return; } reg = ASPEED_MII_PHYCR_REG(s->phycr); data = ASPEED_MII_PHYCR_DATA(s->phycr); switch (ASPEED_MII_PHYCR_OP(s->phycr)) { case ASPEED_MII_PHYCR_OP_WRITE: do_phy_write(s->nic, reg, data); break; case ASPEED_MII_PHYCR_OP_READ: s->phydata = (s->phydata & ~0xffff) | do_phy_read(s->nic, reg); break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid OP code %08x\n", __func__, s->phycr); } aspeed_mii_transition(s, !ASPEED_MII_PHYCR_FIRE); } static uint64_t aspeed_mii_read(void *opaque, hwaddr addr, unsigned size) { AspeedMiiState *s = ASPEED_MII(opaque); switch (addr) { case 0x0: return s->phycr; case 0x4: return s->phydata; default: g_assert_not_reached(); } } static void aspeed_mii_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { AspeedMiiState *s = ASPEED_MII(opaque); switch (addr) { case 0x0: s->phycr = value & ~(s->phycr & ASPEED_MII_PHYCR_FIRE); break; case 0x4: s->phydata = value & ~(0xffff | ASPEED_MII_PHYDATA_IDLE); break; default: g_assert_not_reached(); } aspeed_mii_transition(s, !!(s->phycr & ASPEED_MII_PHYCR_FIRE)); aspeed_mii_do_phy_ctl(s); } static const MemoryRegionOps aspeed_mii_ops = { .read = aspeed_mii_read, .write = aspeed_mii_write, .valid.min_access_size = 4, .valid.max_access_size = 4, .endianness = DEVICE_LITTLE_ENDIAN, }; static void aspeed_mii_reset(DeviceState *dev) { AspeedMiiState *s = ASPEED_MII(dev); s->phycr = 0; s->phydata = 0; aspeed_mii_transition(s, !!(s->phycr & ASPEED_MII_PHYCR_FIRE)); }; static void aspeed_mii_realize(DeviceState *dev, Error **errp) { AspeedMiiState *s = ASPEED_MII(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); assert(s->nic); memory_region_init_io(&s->iomem, OBJECT(dev), &aspeed_mii_ops, s, TYPE_ASPEED_MII, 0x8); sysbus_init_mmio(sbd, &s->iomem); } static const VMStateDescription vmstate_aspeed_mii = { .name = TYPE_ASPEED_MII, .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT32(phycr, FTGMAC100State), VMSTATE_UINT32(phydata, FTGMAC100State), VMSTATE_END_OF_LIST() } }; static Property aspeed_mii_properties[] = { DEFINE_PROP_LINK("nic", AspeedMiiState, nic, TYPE_FTGMAC100, FTGMAC100State *), DEFINE_PROP_END_OF_LIST(), }; static void aspeed_mii_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &vmstate_aspeed_mii; dc->reset = aspeed_mii_reset; dc->realize = aspeed_mii_realize; dc->desc = "Aspeed MII controller"; device_class_set_props(dc, aspeed_mii_properties); } static const TypeInfo aspeed_mii_info = { .name = TYPE_ASPEED_MII, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(AspeedMiiState), .class_init = aspeed_mii_class_init, }; static void ftgmac100_register_types(void) { type_register_static(&ftgmac100_info); type_register_static(&aspeed_mii_info); } type_init(ftgmac100_register_types)