/* * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the Open Source and Linux Lab nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qapi/error.h" #include "cpu.h" #include "sysemu/sysemu.h" #include "hw/boards.h" #include "hw/loader.h" #include "hw/qdev-properties.h" #include "elf.h" #include "exec/memory.h" #include "hw/char/serial-mm.h" #include "net/net.h" #include "hw/sysbus.h" #include "hw/block/flash.h" #include "chardev/char.h" #include "sysemu/device_tree.h" #include "sysemu/reset.h" #include "sysemu/runstate.h" #include "qemu/error-report.h" #include "qemu/option.h" #include "bootparam.h" #include "xtensa_memory.h" #include "hw/xtensa/mx_pic.h" #include "migration/vmstate.h" typedef struct XtfpgaFlashDesc { hwaddr base; size_t size; size_t boot_base; size_t sector_size; } XtfpgaFlashDesc; typedef struct XtfpgaBoardDesc { const XtfpgaFlashDesc *flash; size_t sram_size; const hwaddr *io; } XtfpgaBoardDesc; typedef struct XtfpgaFpgaState { MemoryRegion iomem; uint32_t freq; uint32_t leds; uint32_t switches; } XtfpgaFpgaState; static void xtfpga_fpga_reset(void *opaque) { XtfpgaFpgaState *s = opaque; s->leds = 0; s->switches = 0; } static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr, unsigned size) { XtfpgaFpgaState *s = opaque; switch (addr) { case 0x0: /*build date code*/ return 0x09272011; case 0x4: /*processor clock frequency, Hz*/ return s->freq; case 0x8: /*LEDs (off = 0, on = 1)*/ return s->leds; case 0xc: /*DIP switches (off = 0, on = 1)*/ return s->switches; } return 0; } static void xtfpga_fpga_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { XtfpgaFpgaState *s = opaque; switch (addr) { case 0x8: /*LEDs (off = 0, on = 1)*/ s->leds = val; break; case 0x10: /*board reset*/ if (val == 0xdead) { qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); } break; } } static const MemoryRegionOps xtfpga_fpga_ops = { .read = xtfpga_fpga_read, .write = xtfpga_fpga_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space, hwaddr base, uint32_t freq) { XtfpgaFpgaState *s = g_new(XtfpgaFpgaState, 1); memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s, "xtfpga.fpga", 0x10000); memory_region_add_subregion(address_space, base, &s->iomem); s->freq = freq; xtfpga_fpga_reset(s); qemu_register_reset(xtfpga_fpga_reset, s); return s; } static void xtfpga_net_init(MemoryRegion *address_space, hwaddr base, hwaddr descriptors, hwaddr buffers, qemu_irq irq) { DeviceState *dev; SysBusDevice *s; MemoryRegion *ram; dev = qemu_create_nic_device("open_eth", true, NULL); if (!dev) { return; } s = SYS_BUS_DEVICE(dev); sysbus_realize_and_unref(s, &error_fatal); sysbus_connect_irq(s, 0, irq); memory_region_add_subregion(address_space, base, sysbus_mmio_get_region(s, 0)); memory_region_add_subregion(address_space, descriptors, sysbus_mmio_get_region(s, 1)); ram = g_malloc(sizeof(*ram)); memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB, &error_fatal); vmstate_register_ram_global(ram); memory_region_add_subregion(address_space, buffers, ram); } static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space, const XtfpgaBoardDesc *board, DriveInfo *dinfo, int be) { SysBusDevice *s; DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo)); qdev_prop_set_uint32(dev, "num-blocks", board->flash->size / board->flash->sector_size); qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size); qdev_prop_set_uint8(dev, "width", 2); qdev_prop_set_bit(dev, "big-endian", be); qdev_prop_set_string(dev, "name", "xtfpga.io.flash"); s = SYS_BUS_DEVICE(dev); sysbus_realize_and_unref(s, &error_fatal); memory_region_add_subregion(address_space, board->flash->base, sysbus_mmio_get_region(s, 0)); return PFLASH_CFI01(dev); } static uint64_t translate_phys_addr(void *opaque, uint64_t addr) { XtensaCPU *cpu = opaque; return cpu_get_phys_page_debug(CPU(cpu), addr); } static void xtfpga_reset(void *opaque) { XtensaCPU *cpu = opaque; cpu_reset(CPU(cpu)); } static uint64_t xtfpga_io_read(void *opaque, hwaddr addr, unsigned size) { return 0; } static void xtfpga_io_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { } static const MemoryRegionOps xtfpga_io_ops = { .read = xtfpga_io_read, .write = xtfpga_io_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine) { MemoryRegion *system_memory = get_system_memory(); XtensaCPU *cpu = NULL; CPUXtensaState *env = NULL; MemoryRegion *system_io; XtensaMxPic *mx_pic = NULL; qemu_irq *extints; DriveInfo *dinfo; PFlashCFI01 *flash = NULL; const char *kernel_filename = machine->kernel_filename; const char *kernel_cmdline = machine->kernel_cmdline; const char *dtb_filename = machine->dtb; const char *initrd_filename = machine->initrd_filename; const unsigned system_io_size = 224 * MiB; uint32_t freq = 10000000; int n; unsigned int smp_cpus = machine->smp.cpus; if (smp_cpus > 1) { mx_pic = xtensa_mx_pic_init(31); qemu_register_reset(xtensa_mx_pic_reset, mx_pic); } for (n = 0; n < smp_cpus; n++) { CPUXtensaState *cenv = NULL; cpu = XTENSA_CPU(cpu_create(machine->cpu_type)); cenv = &cpu->env; if (!env) { env = cenv; freq = env->config->clock_freq_khz * 1000; } if (mx_pic) { MemoryRegion *mx_eri; mx_eri = xtensa_mx_pic_register_cpu(mx_pic, xtensa_get_extints(cenv), xtensa_get_runstall(cenv)); memory_region_add_subregion(xtensa_get_er_region(cenv), 0, mx_eri); } cenv->sregs[PRID] = n; xtensa_select_static_vectors(cenv, n != 0); qemu_register_reset(xtfpga_reset, cpu); /* Need MMU initialized prior to ELF loading, * so that ELF gets loaded into virtual addresses */ cpu_reset(CPU(cpu)); } if (smp_cpus > 1) { extints = xtensa_mx_pic_get_extints(mx_pic); } else { extints = xtensa_get_extints(env); } if (env) { XtensaMemory sysram = env->config->sysram; sysram.location[0].size = machine->ram_size; xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom", system_memory); xtensa_create_memory_regions(&env->config->instram, "xtensa.instram", system_memory); xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom", system_memory); xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram", system_memory); xtensa_create_memory_regions(&sysram, "xtensa.sysram", system_memory); } system_io = g_malloc(sizeof(*system_io)); memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io", system_io_size); memory_region_add_subregion(system_memory, board->io[0], system_io); if (board->io[1]) { MemoryRegion *io = g_malloc(sizeof(*io)); memory_region_init_alias(io, NULL, "xtfpga.io.cached", system_io, 0, system_io_size); memory_region_add_subregion(system_memory, board->io[1], io); } xtfpga_fpga_init(system_io, 0x0d020000, freq); xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000, extints[1]); serial_mm_init(system_io, 0x0d050020, 2, extints[0], 115200, serial_hd(0), DEVICE_NATIVE_ENDIAN); dinfo = drive_get(IF_PFLASH, 0, 0); if (dinfo) { flash = xtfpga_flash_init(system_io, board, dinfo, TARGET_BIG_ENDIAN); } /* Use presence of kernel file name as 'boot from SRAM' switch. */ if (kernel_filename) { uint32_t entry_point = env->pc; size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */ uint32_t tagptr = env->config->sysrom.location[0].addr + board->sram_size; uint32_t cur_tagptr; BpMemInfo memory_location = { .type = tswap32(MEMORY_TYPE_CONVENTIONAL), .start = tswap32(env->config->sysram.location[0].addr), .end = tswap32(env->config->sysram.location[0].addr + machine->ram_size), }; uint32_t lowmem_end = machine->ram_size < 0x08000000 ? machine->ram_size : 0x08000000; uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096); lowmem_end += env->config->sysram.location[0].addr; cur_lowmem += env->config->sysram.location[0].addr; xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom", system_memory); if (kernel_cmdline) { bp_size += get_tag_size(strlen(kernel_cmdline) + 1); } if (dtb_filename) { bp_size += get_tag_size(sizeof(uint32_t)); } if (initrd_filename) { bp_size += get_tag_size(sizeof(BpMemInfo)); } /* Put kernel bootparameters to the end of that SRAM */ tagptr = (tagptr - bp_size) & ~0xff; cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL); cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY, sizeof(memory_location), &memory_location); if (kernel_cmdline) { cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE, strlen(kernel_cmdline) + 1, kernel_cmdline); } if (dtb_filename) { int fdt_size; void *fdt = load_device_tree(dtb_filename, &fdt_size); uint32_t dtb_addr = tswap32(cur_lowmem); if (!fdt) { error_report("could not load DTB '%s'", dtb_filename); exit(EXIT_FAILURE); } cpu_physical_memory_write(cur_lowmem, fdt, fdt_size); cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT, sizeof(dtb_addr), &dtb_addr); cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB); g_free(fdt); } if (initrd_filename) { BpMemInfo initrd_location = { 0 }; int initrd_size = load_ramdisk(initrd_filename, cur_lowmem, lowmem_end - cur_lowmem); if (initrd_size < 0) { initrd_size = load_image_targphys(initrd_filename, cur_lowmem, lowmem_end - cur_lowmem); } if (initrd_size < 0) { error_report("could not load initrd '%s'", initrd_filename); exit(EXIT_FAILURE); } initrd_location.start = tswap32(cur_lowmem); initrd_location.end = tswap32(cur_lowmem + initrd_size); cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD, sizeof(initrd_location), &initrd_location); cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB); } cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL); env->regs[2] = tagptr; uint64_t elf_entry; int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu, &elf_entry, NULL, NULL, NULL, TARGET_BIG_ENDIAN, EM_XTENSA, 0, 0); if (success > 0) { entry_point = elf_entry; } else { hwaddr ep; int is_linux; success = load_uimage(kernel_filename, &ep, NULL, &is_linux, translate_phys_addr, cpu); if (success > 0 && is_linux) { entry_point = ep; } else { error_report("could not load kernel '%s'", kernel_filename); exit(EXIT_FAILURE); } } if (entry_point != env->pc) { uint8_t boot_be[] = { 0x60, 0x00, 0x08, /* j 1f */ 0x00, /* .literal_position */ 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */ 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */ /* 1: */ 0x10, 0xff, 0xfe, /* l32r a0, entry_pc */ 0x12, 0xff, 0xfe, /* l32r a2, entry_a2 */ 0x0a, 0x00, 0x00, /* jx a0 */ }; uint8_t boot_le[] = { 0x06, 0x02, 0x00, /* j 1f */ 0x00, /* .literal_position */ 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */ 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */ /* 1: */ 0x01, 0xfe, 0xff, /* l32r a0, entry_pc */ 0x21, 0xfe, 0xff, /* l32r a2, entry_a2 */ 0xa0, 0x00, 0x00, /* jx a0 */ }; const size_t boot_sz = TARGET_BIG_ENDIAN ? sizeof(boot_be) : sizeof(boot_le); uint8_t *boot = TARGET_BIG_ENDIAN ? boot_be : boot_le; uint32_t entry_pc = tswap32(entry_point); uint32_t entry_a2 = tswap32(tagptr); memcpy(boot + 4, &entry_pc, sizeof(entry_pc)); memcpy(boot + 8, &entry_a2, sizeof(entry_a2)); cpu_physical_memory_write(env->pc, boot, boot_sz); } } else { if (flash) { MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash); MemoryRegion *flash_io = g_malloc(sizeof(*flash_io)); uint32_t size = env->config->sysrom.location[0].size; if (board->flash->size - board->flash->boot_base < size) { size = board->flash->size - board->flash->boot_base; } memory_region_init_alias(flash_io, NULL, "xtfpga.flash", flash_mr, board->flash->boot_base, size); memory_region_add_subregion(system_memory, env->config->sysrom.location[0].addr, flash_io); } else { xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom", system_memory); } } } #define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB) static const hwaddr xtfpga_mmu_io[2] = { 0xf0000000, }; static const hwaddr xtfpga_nommu_io[2] = { 0x90000000, 0x70000000, }; static const XtfpgaFlashDesc lx60_flash = { .base = 0x08000000, .size = 0x00400000, .sector_size = 0x10000, }; static void xtfpga_lx60_init(MachineState *machine) { static const XtfpgaBoardDesc lx60_board = { .flash = &lx60_flash, .sram_size = 0x20000, .io = xtfpga_mmu_io, }; xtfpga_init(&lx60_board, machine); } static void xtfpga_lx60_nommu_init(MachineState *machine) { static const XtfpgaBoardDesc lx60_board = { .flash = &lx60_flash, .sram_size = 0x20000, .io = xtfpga_nommu_io, }; xtfpga_init(&lx60_board, machine); } static const XtfpgaFlashDesc lx200_flash = { .base = 0x08000000, .size = 0x01000000, .sector_size = 0x20000, }; static void xtfpga_lx200_init(MachineState *machine) { static const XtfpgaBoardDesc lx200_board = { .flash = &lx200_flash, .sram_size = 0x2000000, .io = xtfpga_mmu_io, }; xtfpga_init(&lx200_board, machine); } static void xtfpga_lx200_nommu_init(MachineState *machine) { static const XtfpgaBoardDesc lx200_board = { .flash = &lx200_flash, .sram_size = 0x2000000, .io = xtfpga_nommu_io, }; xtfpga_init(&lx200_board, machine); } static const XtfpgaFlashDesc ml605_flash = { .base = 0x08000000, .size = 0x01000000, .sector_size = 0x20000, }; static void xtfpga_ml605_init(MachineState *machine) { static const XtfpgaBoardDesc ml605_board = { .flash = &ml605_flash, .sram_size = 0x2000000, .io = xtfpga_mmu_io, }; xtfpga_init(&ml605_board, machine); } static void xtfpga_ml605_nommu_init(MachineState *machine) { static const XtfpgaBoardDesc ml605_board = { .flash = &ml605_flash, .sram_size = 0x2000000, .io = xtfpga_nommu_io, }; xtfpga_init(&ml605_board, machine); } static const XtfpgaFlashDesc kc705_flash = { .base = 0x00000000, .size = 0x08000000, .boot_base = 0x06000000, .sector_size = 0x20000, }; static void xtfpga_kc705_init(MachineState *machine) { static const XtfpgaBoardDesc kc705_board = { .flash = &kc705_flash, .sram_size = 0x2000000, .io = xtfpga_mmu_io, }; xtfpga_init(&kc705_board, machine); } static void xtfpga_kc705_nommu_init(MachineState *machine) { static const XtfpgaBoardDesc kc705_board = { .flash = &kc705_flash, .sram_size = 0x2000000, .io = xtfpga_nommu_io, }; xtfpga_init(&kc705_board, machine); } static void xtfpga_lx60_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; mc->init = xtfpga_lx60_init; mc->max_cpus = 32; mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE; mc->default_ram_size = 64 * MiB; } static const TypeInfo xtfpga_lx60_type = { .name = MACHINE_TYPE_NAME("lx60"), .parent = TYPE_MACHINE, .class_init = xtfpga_lx60_class_init, }; static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")"; mc->init = xtfpga_lx60_nommu_init; mc->max_cpus = 32; mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE; mc->default_ram_size = 64 * MiB; } static const TypeInfo xtfpga_lx60_nommu_type = { .name = MACHINE_TYPE_NAME("lx60-nommu"), .parent = TYPE_MACHINE, .class_init = xtfpga_lx60_nommu_class_init, }; static void xtfpga_lx200_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; mc->init = xtfpga_lx200_init; mc->max_cpus = 32; mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE; mc->default_ram_size = 96 * MiB; } static const TypeInfo xtfpga_lx200_type = { .name = MACHINE_TYPE_NAME("lx200"), .parent = TYPE_MACHINE, .class_init = xtfpga_lx200_class_init, }; static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")"; mc->init = xtfpga_lx200_nommu_init; mc->max_cpus = 32; mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE; mc->default_ram_size = 96 * MiB; } static const TypeInfo xtfpga_lx200_nommu_type = { .name = MACHINE_TYPE_NAME("lx200-nommu"), .parent = TYPE_MACHINE, .class_init = xtfpga_lx200_nommu_class_init, }; static void xtfpga_ml605_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; mc->init = xtfpga_ml605_init; mc->max_cpus = 32; mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE; mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE; } static const TypeInfo xtfpga_ml605_type = { .name = MACHINE_TYPE_NAME("ml605"), .parent = TYPE_MACHINE, .class_init = xtfpga_ml605_class_init, }; static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")"; mc->init = xtfpga_ml605_nommu_init; mc->max_cpus = 32; mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE; mc->default_ram_size = 256 * MiB; } static const TypeInfo xtfpga_ml605_nommu_type = { .name = MACHINE_TYPE_NAME("ml605-nommu"), .parent = TYPE_MACHINE, .class_init = xtfpga_ml605_nommu_class_init, }; static void xtfpga_kc705_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; mc->init = xtfpga_kc705_init; mc->max_cpus = 32; mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE; mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE; } static const TypeInfo xtfpga_kc705_type = { .name = MACHINE_TYPE_NAME("kc705"), .parent = TYPE_MACHINE, .class_init = xtfpga_kc705_class_init, }; static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")"; mc->init = xtfpga_kc705_nommu_init; mc->max_cpus = 32; mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE; mc->default_ram_size = 256 * MiB; } static const TypeInfo xtfpga_kc705_nommu_type = { .name = MACHINE_TYPE_NAME("kc705-nommu"), .parent = TYPE_MACHINE, .class_init = xtfpga_kc705_nommu_class_init, }; static void xtfpga_machines_init(void) { type_register_static(&xtfpga_lx60_type); type_register_static(&xtfpga_lx200_type); type_register_static(&xtfpga_ml605_type); type_register_static(&xtfpga_kc705_type); type_register_static(&xtfpga_lx60_nommu_type); type_register_static(&xtfpga_lx200_nommu_type); type_register_static(&xtfpga_ml605_nommu_type); type_register_static(&xtfpga_kc705_nommu_type); } type_init(xtfpga_machines_init)