/* A simple I2C slave for returning monitor EDID data via DDC. * * Copyright (c) 2011 Linaro Limited * Written by Peter Maydell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "qemu-common.h" #include "qemu/log.h" #include "hw/i2c/i2c.h" #include "hw/i2c/i2c-ddc.h" #ifndef DEBUG_I2CDDC #define DEBUG_I2CDDC 0 #endif #define DPRINTF(fmt, ...) do { \ if (DEBUG_I2CDDC) { \ qemu_log("i2c-ddc: " fmt , ## __VA_ARGS__); \ } \ } while (0); /* Structure defining a monitor's characteristics in a * readable format: this should be passed to build_edid_blob() * to convert it into the 128 byte binary EDID blob. * Not all bits of the EDID are customisable here. */ struct EDIDData { char manuf_id[3]; /* three upper case letters */ uint16_t product_id; uint32_t serial_no; uint8_t manuf_week; int manuf_year; uint8_t h_cm; uint8_t v_cm; uint8_t gamma; char monitor_name[14]; char serial_no_string[14]; /* Range limits */ uint8_t vmin; /* Hz */ uint8_t vmax; /* Hz */ uint8_t hmin; /* kHz */ uint8_t hmax; /* kHz */ uint8_t pixclock; /* MHz / 10 */ uint8_t timing_data[18]; }; typedef struct EDIDData EDIDData; /* EDID data for a simple LCD monitor */ static const EDIDData lcd_edid = { /* The manuf_id ought really to be an assigned EISA ID */ .manuf_id = "QMU", .product_id = 0, .serial_no = 1, .manuf_week = 1, .manuf_year = 2011, .h_cm = 40, .v_cm = 30, .gamma = 0x78, .monitor_name = "QEMU monitor", .serial_no_string = "1", .vmin = 40, .vmax = 120, .hmin = 30, .hmax = 100, .pixclock = 18, .timing_data = { /* Borrowed from a 21" LCD */ 0x48, 0x3f, 0x40, 0x30, 0x62, 0xb0, 0x32, 0x40, 0x40, 0xc0, 0x13, 0x00, 0x98, 0x32, 0x11, 0x00, 0x00, 0x1e } }; static uint8_t manuf_char_to_int(char c) { return (c - 'A') & 0x1f; } static void write_ascii_descriptor_block(uint8_t *descblob, uint8_t blocktype, const char *string) { /* Write an EDID Descriptor Block of the "ascii string" type */ int i; descblob[0] = descblob[1] = descblob[2] = descblob[4] = 0; descblob[3] = blocktype; /* The rest is 13 bytes of ASCII; if less then the rest must * be filled with newline then spaces */ for (i = 5; i < 19; i++) { descblob[i] = string[i - 5]; if (!descblob[i]) { break; } } if (i < 19) { descblob[i++] = '\n'; } for ( ; i < 19; i++) { descblob[i] = ' '; } } static void write_range_limits_descriptor(const EDIDData *edid, uint8_t *descblob) { int i; descblob[0] = descblob[1] = descblob[2] = descblob[4] = 0; descblob[3] = 0xfd; descblob[5] = edid->vmin; descblob[6] = edid->vmax; descblob[7] = edid->hmin; descblob[8] = edid->hmax; descblob[9] = edid->pixclock; descblob[10] = 0; descblob[11] = 0xa; for (i = 12; i < 19; i++) { descblob[i] = 0x20; } } static void build_edid_blob(const EDIDData *edid, uint8_t *blob) { /* Write an EDID 1.3 format blob (128 bytes) based * on the EDIDData structure. */ int i; uint8_t cksum; /* 00-07 : header */ blob[0] = blob[7] = 0; for (i = 1 ; i < 7; i++) { blob[i] = 0xff; } /* 08-09 : manufacturer ID */ blob[8] = (manuf_char_to_int(edid->manuf_id[0]) << 2) | (manuf_char_to_int(edid->manuf_id[1]) >> 3); blob[9] = (manuf_char_to_int(edid->manuf_id[1]) << 5) | manuf_char_to_int(edid->manuf_id[2]); /* 10-11 : product ID code */ blob[10] = edid->product_id; blob[11] = edid->product_id >> 8; blob[12] = edid->serial_no; blob[13] = edid->serial_no >> 8; blob[14] = edid->serial_no >> 16; blob[15] = edid->serial_no >> 24; /* 16 : week of manufacture */ blob[16] = edid->manuf_week; /* 17 : year of manufacture - 1990 */ blob[17] = edid->manuf_year - 1990; /* 18, 19 : EDID version and revision */ blob[18] = 1; blob[19] = 3; /* 20 - 24 : basic display parameters */ /* We are always a digital display */ blob[20] = 0x80; /* 21, 22 : max h/v size in cm */ blob[21] = edid->h_cm; blob[22] = edid->v_cm; /* 23 : gamma (divide by 100 then add 1 for actual value) */ blob[23] = edid->gamma; /* 24 feature support: no power management, RGB, preferred timing mode, * standard colour space */ blob[24] = 0x0e; /* 25 - 34 : chromaticity coordinates. These are the * standard sRGB chromaticity values */ blob[25] = 0xee; blob[26] = 0x91; blob[27] = 0xa3; blob[28] = 0x54; blob[29] = 0x4c; blob[30] = 0x99; blob[31] = 0x26; blob[32] = 0x0f; blob[33] = 0x50; blob[34] = 0x54; /* 35, 36 : Established timings: claim to support everything */ blob[35] = blob[36] = 0xff; /* 37 : manufacturer's reserved timing: none */ blob[37] = 0; /* 38 - 53 : standard timing identification * don't claim anything beyond what the 'established timings' * already provide. Unused slots must be (0x1, 0x1) */ for (i = 38; i < 54; i++) { blob[i] = 0x1; } /* 54 - 71 : descriptor block 1 : must be preferred timing data */ memcpy(blob + 54, edid->timing_data, 18); /* 72 - 89, 90 - 107, 108 - 125 : descriptor block 2, 3, 4 * Order not important, but we must have a monitor name and a * range limits descriptor. */ write_range_limits_descriptor(edid, blob + 72); write_ascii_descriptor_block(blob + 90, 0xfc, edid->monitor_name); write_ascii_descriptor_block(blob + 108, 0xff, edid->serial_no_string); /* 126 : extension flag */ blob[126] = 0; cksum = 0; for (i = 0; i < 127; i++) { cksum += blob[i]; } /* 127 : checksum */ blob[127] = -cksum; if (DEBUG_I2CDDC) { qemu_hexdump((char *)blob, stdout, "", 128); } } static void i2c_ddc_reset(DeviceState *ds) { I2CDDCState *s = I2CDDC(ds); s->firstbyte = false; s->reg = 0; } static int i2c_ddc_event(I2CSlave *i2c, enum i2c_event event) { I2CDDCState *s = I2CDDC(i2c); if (event == I2C_START_SEND) { s->firstbyte = true; } return 0; } static int i2c_ddc_rx(I2CSlave *i2c) { I2CDDCState *s = I2CDDC(i2c); int value; value = s->edid_blob[s->reg]; s->reg++; return value; } static int i2c_ddc_tx(I2CSlave *i2c, uint8_t data) { I2CDDCState *s = I2CDDC(i2c); if (s->firstbyte) { s->reg = data; s->firstbyte = false; DPRINTF("[EDID] Written new pointer: %u\n", data); return 1; } /* Ignore all writes */ s->reg++; return 1; } static void i2c_ddc_init(Object *obj) { I2CDDCState *s = I2CDDC(obj); build_edid_blob(&lcd_edid, s->edid_blob); } static const VMStateDescription vmstate_i2c_ddc = { .name = TYPE_I2CDDC, .version_id = 1, .fields = (VMStateField[]) { VMSTATE_BOOL(firstbyte, I2CDDCState), VMSTATE_UINT8(reg, I2CDDCState), VMSTATE_END_OF_LIST() } }; static void i2c_ddc_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); I2CSlaveClass *isc = I2C_SLAVE_CLASS(oc); dc->reset = i2c_ddc_reset; dc->vmsd = &vmstate_i2c_ddc; isc->event = i2c_ddc_event; isc->recv = i2c_ddc_rx; isc->send = i2c_ddc_tx; } static TypeInfo i2c_ddc_info = { .name = TYPE_I2CDDC, .parent = TYPE_I2C_SLAVE, .instance_size = sizeof(I2CDDCState), .instance_init = i2c_ddc_init, .class_init = i2c_ddc_class_init }; static void ddc_register_devices(void) { type_register_static(&i2c_ddc_info); } type_init(ddc_register_devices);