/* * QEMU Crypto hmac algorithms tests * * Copyright (c) 2016 HUAWEI TECHNOLOGIES CO., LTD. * * Authors: * Longpeng(Mike) * * This work is licensed under the terms of the GNU GPL, version 2 or * (at your option) any later version. See the COPYING file in the * top-level directory. * */ #include "qemu/osdep.h" #include "crypto/init.h" #include "crypto/hmac.h" #define INPUT_TEXT1 "ABCDEFGHIJKLMNOPQRSTUVWXY" #define INPUT_TEXT2 "Zabcdefghijklmnopqrstuvwx" #define INPUT_TEXT3 "yz0123456789" #define INPUT_TEXT INPUT_TEXT1 \ INPUT_TEXT2 \ INPUT_TEXT3 #define KEY "monkey monkey monkey monkey" typedef struct QCryptoHmacTestData QCryptoHmacTestData; struct QCryptoHmacTestData { QCryptoHashAlgo alg; const char *hex_digest; }; static QCryptoHmacTestData test_data[] = { { .alg = QCRYPTO_HASH_ALGO_MD5, .hex_digest = "ede9cb83679ba82d88fbeae865b3f8fc", }, { .alg = QCRYPTO_HASH_ALGO_SHA1, .hex_digest = "c7b5a631e3aac975c4ededfcd346e469" "dbc5f2d1", }, { .alg = QCRYPTO_HASH_ALGO_SHA224, .hex_digest = "5f768179dbb29ca722875d0f461a2e2f" "597d0210340a84df1a8e9c63", }, { .alg = QCRYPTO_HASH_ALGO_SHA256, .hex_digest = "3798f363c57afa6edaffe39016ca7bad" "efd1e670afb0e3987194307dec3197db", }, { .alg = QCRYPTO_HASH_ALGO_SHA384, .hex_digest = "d218680a6032d33dccd9882d6a6a7164" "64f26623be257a9b2919b185294f4a49" "9e54b190bfd6bc5cedd2cd05c7e65e82", }, { .alg = QCRYPTO_HASH_ALGO_SHA512, .hex_digest = "835a4f5b3750b4c1fccfa88da2f746a4" "900160c9f18964309bb736c13b59491b" "8e32d37b724cc5aebb0f554c6338a3b5" "94c4ba26862b2dadb59b7ede1d08d53e", }, { .alg = QCRYPTO_HASH_ALGO_RIPEMD160, .hex_digest = "94964ed4c1155b62b668c241d67279e5" "8a711676", }, }; static const char hex[] = "0123456789abcdef"; static void test_hmac_alloc(void) { size_t i; for (i = 0; i < G_N_ELEMENTS(test_data); i++) { QCryptoHmacTestData *data = &test_data[i]; QCryptoHmac *hmac = NULL; uint8_t *result = NULL; size_t resultlen = 0; const char *exp_output = NULL; int ret; size_t j; if (!qcrypto_hmac_supports(data->alg)) { return; } exp_output = data->hex_digest; hmac = qcrypto_hmac_new(data->alg, (const uint8_t *)KEY, strlen(KEY), &error_fatal); g_assert(hmac != NULL); ret = qcrypto_hmac_bytes(hmac, (const char *)INPUT_TEXT, strlen(INPUT_TEXT), &result, &resultlen, &error_fatal); g_assert(ret == 0); for (j = 0; j < resultlen; j++) { g_assert(exp_output[j * 2] == hex[(result[j] >> 4) & 0xf]); g_assert(exp_output[j * 2 + 1] == hex[result[j] & 0xf]); } qcrypto_hmac_free(hmac); g_free(result); } } static void test_hmac_prealloc(void) { size_t i; for (i = 0; i < G_N_ELEMENTS(test_data); i++) { QCryptoHmacTestData *data = &test_data[i]; QCryptoHmac *hmac = NULL; uint8_t *result = NULL; size_t resultlen = 0; const char *exp_output = NULL; int ret; size_t j; if (!qcrypto_hmac_supports(data->alg)) { return; } exp_output = data->hex_digest; resultlen = strlen(exp_output) / 2; result = g_new0(uint8_t, resultlen); hmac = qcrypto_hmac_new(data->alg, (const uint8_t *)KEY, strlen(KEY), &error_fatal); g_assert(hmac != NULL); ret = qcrypto_hmac_bytes(hmac, (const char *)INPUT_TEXT, strlen(INPUT_TEXT), &result, &resultlen, &error_fatal); g_assert(ret == 0); exp_output = data->hex_digest; for (j = 0; j < resultlen; j++) { g_assert(exp_output[j * 2] == hex[(result[j] >> 4) & 0xf]); g_assert(exp_output[j * 2 + 1] == hex[result[j] & 0xf]); } qcrypto_hmac_free(hmac); g_free(result); } } static void test_hmac_iov(void) { size_t i; for (i = 0; i < G_N_ELEMENTS(test_data); i++) { QCryptoHmacTestData *data = &test_data[i]; QCryptoHmac *hmac = NULL; uint8_t *result = NULL; size_t resultlen = 0; const char *exp_output = NULL; int ret; size_t j; struct iovec iov[3] = { { .iov_base = (char *)INPUT_TEXT1, .iov_len = strlen(INPUT_TEXT1) }, { .iov_base = (char *)INPUT_TEXT2, .iov_len = strlen(INPUT_TEXT2) }, { .iov_base = (char *)INPUT_TEXT3, .iov_len = strlen(INPUT_TEXT3) }, }; if (!qcrypto_hmac_supports(data->alg)) { return; } exp_output = data->hex_digest; hmac = qcrypto_hmac_new(data->alg, (const uint8_t *)KEY, strlen(KEY), &error_fatal); g_assert(hmac != NULL); ret = qcrypto_hmac_bytesv(hmac, iov, 3, &result, &resultlen, &error_fatal); g_assert(ret == 0); for (j = 0; j < resultlen; j++) { g_assert(exp_output[j * 2] == hex[(result[j] >> 4) & 0xf]); g_assert(exp_output[j * 2 + 1] == hex[result[j] & 0xf]); } qcrypto_hmac_free(hmac); g_free(result); } } static void test_hmac_digest(void) { size_t i; for (i = 0; i < G_N_ELEMENTS(test_data); i++) { QCryptoHmacTestData *data = &test_data[i]; QCryptoHmac *hmac = NULL; uint8_t *result = NULL; const char *exp_output = NULL; int ret; if (!qcrypto_hmac_supports(data->alg)) { return; } exp_output = data->hex_digest; hmac = qcrypto_hmac_new(data->alg, (const uint8_t *)KEY, strlen(KEY), &error_fatal); g_assert(hmac != NULL); ret = qcrypto_hmac_digest(hmac, (const char *)INPUT_TEXT, strlen(INPUT_TEXT), (char **)&result, &error_fatal); g_assert(ret == 0); g_assert_cmpstr((const char *)result, ==, exp_output); qcrypto_hmac_free(hmac); g_free(result); } } int main(int argc, char **argv) { g_test_init(&argc, &argv, NULL); g_assert(qcrypto_init(NULL) == 0); g_test_add_func("/crypto/hmac/iov", test_hmac_iov); g_test_add_func("/crypto/hmac/alloc", test_hmac_alloc); g_test_add_func("/crypto/hmac/prealloc", test_hmac_prealloc); g_test_add_func("/crypto/hmac/digest", test_hmac_digest); return g_test_run(); }