/* Copyright 2008 IBM Corporation * 2008 Red Hat, Inc. * Copyright 2011 Intel Corporation * Copyright 2016 Veertu, Inc. * Copyright 2017 The Android Open Source Project * * QEMU Hypervisor.framework support * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * This file contain code under public domain from the hvdos project: * https://github.com/mist64/hvdos * * Parts Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "qemu/osdep.h" #include "qemu-common.h" #include "qemu/error-report.h" #include "sysemu/hvf.h" #include "sysemu/runstate.h" #include "hvf-i386.h" #include "vmcs.h" #include "vmx.h" #include "x86.h" #include "x86_descr.h" #include "x86_mmu.h" #include "x86_decode.h" #include "x86_emu.h" #include "x86_task.h" #include "x86hvf.h" #include #include #include #include "hw/i386/apic_internal.h" #include "qemu/main-loop.h" #include "qemu/accel.h" #include "target/i386/cpu.h" #include "hvf-accel-ops.h" HVFState *hvf_state; static void assert_hvf_ok(hv_return_t ret) { if (ret == HV_SUCCESS) { return; } switch (ret) { case HV_ERROR: error_report("Error: HV_ERROR"); break; case HV_BUSY: error_report("Error: HV_BUSY"); break; case HV_BAD_ARGUMENT: error_report("Error: HV_BAD_ARGUMENT"); break; case HV_NO_RESOURCES: error_report("Error: HV_NO_RESOURCES"); break; case HV_NO_DEVICE: error_report("Error: HV_NO_DEVICE"); break; case HV_UNSUPPORTED: error_report("Error: HV_UNSUPPORTED"); break; default: error_report("Unknown Error"); } abort(); } /* Memory slots */ hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size) { hvf_slot *slot; int x; for (x = 0; x < hvf_state->num_slots; ++x) { slot = &hvf_state->slots[x]; if (slot->size && start < (slot->start + slot->size) && (start + size) > slot->start) { return slot; } } return NULL; } struct mac_slot { int present; uint64_t size; uint64_t gpa_start; uint64_t gva; }; struct mac_slot mac_slots[32]; static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags) { struct mac_slot *macslot; hv_return_t ret; macslot = &mac_slots[slot->slot_id]; if (macslot->present) { if (macslot->size != slot->size) { macslot->present = 0; ret = hv_vm_unmap(macslot->gpa_start, macslot->size); assert_hvf_ok(ret); } } if (!slot->size) { return 0; } macslot->present = 1; macslot->gpa_start = slot->start; macslot->size = slot->size; ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags); assert_hvf_ok(ret); return 0; } void hvf_set_phys_mem(MemoryRegionSection *section, bool add) { hvf_slot *mem; MemoryRegion *area = section->mr; bool writeable = !area->readonly && !area->rom_device; hv_memory_flags_t flags; if (!memory_region_is_ram(area)) { if (writeable) { return; } else if (!memory_region_is_romd(area)) { /* * If the memory device is not in romd_mode, then we actually want * to remove the hvf memory slot so all accesses will trap. */ add = false; } } mem = hvf_find_overlap_slot( section->offset_within_address_space, int128_get64(section->size)); if (mem && add) { if (mem->size == int128_get64(section->size) && mem->start == section->offset_within_address_space && mem->mem == (memory_region_get_ram_ptr(area) + section->offset_within_region)) { return; /* Same region was attempted to register, go away. */ } } /* Region needs to be reset. set the size to 0 and remap it. */ if (mem) { mem->size = 0; if (do_hvf_set_memory(mem, 0)) { error_report("Failed to reset overlapping slot"); abort(); } } if (!add) { return; } if (area->readonly || (!memory_region_is_ram(area) && memory_region_is_romd(area))) { flags = HV_MEMORY_READ | HV_MEMORY_EXEC; } else { flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC; } /* Now make a new slot. */ int x; for (x = 0; x < hvf_state->num_slots; ++x) { mem = &hvf_state->slots[x]; if (!mem->size) { break; } } if (x == hvf_state->num_slots) { error_report("No free slots"); abort(); } mem->size = int128_get64(section->size); mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region; mem->start = section->offset_within_address_space; mem->region = area; if (do_hvf_set_memory(mem, flags)) { error_report("Error registering new memory slot"); abort(); } } void vmx_update_tpr(CPUState *cpu) { /* TODO: need integrate APIC handling */ X86CPU *x86_cpu = X86_CPU(cpu); int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4; int irr = apic_get_highest_priority_irr(x86_cpu->apic_state); wreg(cpu->hvf_fd, HV_X86_TPR, tpr); if (irr == -1) { wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0); } else { wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 : irr >> 4); } } static void update_apic_tpr(CPUState *cpu) { X86CPU *x86_cpu = X86_CPU(cpu); int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4; cpu_set_apic_tpr(x86_cpu->apic_state, tpr); } #define VECTORING_INFO_VECTOR_MASK 0xff void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer, int direction, int size, int count) { int i; uint8_t *ptr = buffer; for (i = 0; i < count; i++) { address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED, ptr, size, direction); ptr += size; } } static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) { if (!cpu->vcpu_dirty) { hvf_get_registers(cpu); cpu->vcpu_dirty = true; } } void hvf_cpu_synchronize_state(CPUState *cpu) { if (!cpu->vcpu_dirty) { run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL); } } static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) { hvf_put_registers(cpu); cpu->vcpu_dirty = false; } void hvf_cpu_synchronize_post_reset(CPUState *cpu) { run_on_cpu(cpu, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); } static void do_hvf_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) { hvf_put_registers(cpu); cpu->vcpu_dirty = false; } void hvf_cpu_synchronize_post_init(CPUState *cpu) { run_on_cpu(cpu, do_hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL); } static void do_hvf_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) { cpu->vcpu_dirty = true; } void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu) { run_on_cpu(cpu, do_hvf_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); } static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual) { int read, write; /* EPT fault on an instruction fetch doesn't make sense here */ if (ept_qual & EPT_VIOLATION_INST_FETCH) { return false; } /* EPT fault must be a read fault or a write fault */ read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0; write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0; if ((read | write) == 0) { return false; } if (write && slot) { if (slot->flags & HVF_SLOT_LOG) { memory_region_set_dirty(slot->region, gpa - slot->start, 1); hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size, HV_MEMORY_READ | HV_MEMORY_WRITE); } } /* * The EPT violation must have been caused by accessing a * guest-physical address that is a translation of a guest-linear * address. */ if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 || (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) { return false; } if (!slot) { return true; } if (!memory_region_is_ram(slot->region) && !(read && memory_region_is_romd(slot->region))) { return true; } return false; } static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on) { hvf_slot *slot; slot = hvf_find_overlap_slot( section->offset_within_address_space, int128_get64(section->size)); /* protect region against writes; begin tracking it */ if (on) { slot->flags |= HVF_SLOT_LOG; hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size, HV_MEMORY_READ); /* stop tracking region*/ } else { slot->flags &= ~HVF_SLOT_LOG; hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size, HV_MEMORY_READ | HV_MEMORY_WRITE); } } static void hvf_log_start(MemoryListener *listener, MemoryRegionSection *section, int old, int new) { if (old != 0) { return; } hvf_set_dirty_tracking(section, 1); } static void hvf_log_stop(MemoryListener *listener, MemoryRegionSection *section, int old, int new) { if (new != 0) { return; } hvf_set_dirty_tracking(section, 0); } static void hvf_log_sync(MemoryListener *listener, MemoryRegionSection *section) { /* * sync of dirty pages is handled elsewhere; just make sure we keep * tracking the region. */ hvf_set_dirty_tracking(section, 1); } static void hvf_region_add(MemoryListener *listener, MemoryRegionSection *section) { hvf_set_phys_mem(section, true); } static void hvf_region_del(MemoryListener *listener, MemoryRegionSection *section) { hvf_set_phys_mem(section, false); } static MemoryListener hvf_memory_listener = { .priority = 10, .region_add = hvf_region_add, .region_del = hvf_region_del, .log_start = hvf_log_start, .log_stop = hvf_log_stop, .log_sync = hvf_log_sync, }; void hvf_vcpu_destroy(CPUState *cpu) { X86CPU *x86_cpu = X86_CPU(cpu); CPUX86State *env = &x86_cpu->env; hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd); g_free(env->hvf_mmio_buf); assert_hvf_ok(ret); } static void dummy_signal(int sig) { } static void init_tsc_freq(CPUX86State *env) { size_t length; uint64_t tsc_freq; if (env->tsc_khz != 0) { return; } length = sizeof(uint64_t); if (sysctlbyname("machdep.tsc.frequency", &tsc_freq, &length, NULL, 0)) { return; } env->tsc_khz = tsc_freq / 1000; /* Hz to KHz */ } static void init_apic_bus_freq(CPUX86State *env) { size_t length; uint64_t bus_freq; if (env->apic_bus_freq != 0) { return; } length = sizeof(uint64_t); if (sysctlbyname("hw.busfrequency", &bus_freq, &length, NULL, 0)) { return; } env->apic_bus_freq = bus_freq; } static inline bool tsc_is_known(CPUX86State *env) { return env->tsc_khz != 0; } static inline bool apic_bus_freq_is_known(CPUX86State *env) { return env->apic_bus_freq != 0; } int hvf_init_vcpu(CPUState *cpu) { X86CPU *x86cpu = X86_CPU(cpu); CPUX86State *env = &x86cpu->env; int r; /* init cpu signals */ sigset_t set; struct sigaction sigact; memset(&sigact, 0, sizeof(sigact)); sigact.sa_handler = dummy_signal; sigaction(SIG_IPI, &sigact, NULL); pthread_sigmask(SIG_BLOCK, NULL, &set); sigdelset(&set, SIG_IPI); init_emu(); init_decoder(); hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1); env->hvf_mmio_buf = g_new(char, 4096); if (x86cpu->vmware_cpuid_freq) { init_tsc_freq(env); init_apic_bus_freq(env); if (!tsc_is_known(env) || !apic_bus_freq_is_known(env)) { error_report("vmware-cpuid-freq: feature couldn't be enabled"); } } r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT); cpu->vcpu_dirty = 1; assert_hvf_ok(r); if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED, &hvf_state->hvf_caps->vmx_cap_pinbased)) { abort(); } if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED, &hvf_state->hvf_caps->vmx_cap_procbased)) { abort(); } if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2, &hvf_state->hvf_caps->vmx_cap_procbased2)) { abort(); } if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY, &hvf_state->hvf_caps->vmx_cap_entry)) { abort(); } /* set VMCS control fields */ wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased, VMCS_PIN_BASED_CTLS_EXTINT | VMCS_PIN_BASED_CTLS_NMI | VMCS_PIN_BASED_CTLS_VNMI)); wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased, VMCS_PRI_PROC_BASED_CTLS_HLT | VMCS_PRI_PROC_BASED_CTLS_MWAIT | VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET | VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) | VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL); wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2, VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES)); wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry, 0)); wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */ wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0); x86cpu = X86_CPU(cpu); x86cpu->env.xsave_buf = qemu_memalign(4096, 4096); hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1); hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1); hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1); hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1); hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1); hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1); hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1); hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1); hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1); hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1); hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1); hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1); return 0; } static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info) { X86CPU *x86_cpu = X86_CPU(cpu); CPUX86State *env = &x86_cpu->env; env->exception_nr = -1; env->exception_pending = 0; env->exception_injected = 0; env->interrupt_injected = -1; env->nmi_injected = false; env->ins_len = 0; env->has_error_code = false; if (idtvec_info & VMCS_IDT_VEC_VALID) { switch (idtvec_info & VMCS_IDT_VEC_TYPE) { case VMCS_IDT_VEC_HWINTR: case VMCS_IDT_VEC_SWINTR: env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM; break; case VMCS_IDT_VEC_NMI: env->nmi_injected = true; break; case VMCS_IDT_VEC_HWEXCEPTION: case VMCS_IDT_VEC_SWEXCEPTION: env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM; env->exception_injected = 1; break; case VMCS_IDT_VEC_PRIV_SWEXCEPTION: default: abort(); } if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION || (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) { env->ins_len = ins_len; } if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { env->has_error_code = true; env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR); } } if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) & VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) { env->hflags2 |= HF2_NMI_MASK; } else { env->hflags2 &= ~HF2_NMI_MASK; } if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) & (VMCS_INTERRUPTIBILITY_STI_BLOCKING | VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) { env->hflags |= HF_INHIBIT_IRQ_MASK; } else { env->hflags &= ~HF_INHIBIT_IRQ_MASK; } } static void hvf_cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { /* * A wrapper extends cpu_x86_cpuid with 0x40000000 and 0x40000010 leafs, * leafs 0x40000001-0x4000000F are filled with zeros * Provides vmware-cpuid-freq support to hvf * * Note: leaf 0x40000000 not exposes HVF, * leaving hypervisor signature empty */ if (index < 0x40000000 || index > 0x40000010 || !tsc_is_known(env) || !apic_bus_freq_is_known(env)) { cpu_x86_cpuid(env, index, count, eax, ebx, ecx, edx); return; } switch (index) { case 0x40000000: *eax = 0x40000010; /* Max available cpuid leaf */ *ebx = 0; /* Leave signature empty */ *ecx = 0; *edx = 0; break; case 0x40000010: *eax = env->tsc_khz; *ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ *ecx = 0; *edx = 0; break; default: *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; } } int hvf_vcpu_exec(CPUState *cpu) { X86CPU *x86_cpu = X86_CPU(cpu); CPUX86State *env = &x86_cpu->env; int ret = 0; uint64_t rip = 0; if (hvf_process_events(cpu)) { return EXCP_HLT; } do { if (cpu->vcpu_dirty) { hvf_put_registers(cpu); cpu->vcpu_dirty = false; } if (hvf_inject_interrupts(cpu)) { return EXCP_INTERRUPT; } vmx_update_tpr(cpu); qemu_mutex_unlock_iothread(); if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) { qemu_mutex_lock_iothread(); return EXCP_HLT; } hv_return_t r = hv_vcpu_run(cpu->hvf_fd); assert_hvf_ok(r); /* handle VMEXIT */ uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON); uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION); uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd, VMCS_EXIT_INSTRUCTION_LENGTH); uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO); hvf_store_events(cpu, ins_len, idtvec_info); rip = rreg(cpu->hvf_fd, HV_X86_RIP); env->eflags = rreg(cpu->hvf_fd, HV_X86_RFLAGS); qemu_mutex_lock_iothread(); update_apic_tpr(cpu); current_cpu = cpu; ret = 0; switch (exit_reason) { case EXIT_REASON_HLT: { macvm_set_rip(cpu, rip + ins_len); if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) && !(idtvec_info & VMCS_IDT_VEC_VALID)) { cpu->halted = 1; ret = EXCP_HLT; break; } ret = EXCP_INTERRUPT; break; } case EXIT_REASON_MWAIT: { ret = EXCP_INTERRUPT; break; } /* Need to check if MMIO or unmapped fault */ case EXIT_REASON_EPT_FAULT: { hvf_slot *slot; uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS); if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) && ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) { vmx_set_nmi_blocking(cpu); } slot = hvf_find_overlap_slot(gpa, 1); /* mmio */ if (ept_emulation_fault(slot, gpa, exit_qual)) { struct x86_decode decode; load_regs(cpu); decode_instruction(env, &decode); exec_instruction(env, &decode); store_regs(cpu); break; } break; } case EXIT_REASON_INOUT: { uint32_t in = (exit_qual & 8) != 0; uint32_t size = (exit_qual & 7) + 1; uint32_t string = (exit_qual & 16) != 0; uint32_t port = exit_qual >> 16; /*uint32_t rep = (exit_qual & 0x20) != 0;*/ if (!string && in) { uint64_t val = 0; load_regs(cpu); hvf_handle_io(env, port, &val, 0, size, 1); if (size == 1) { AL(env) = val; } else if (size == 2) { AX(env) = val; } else if (size == 4) { RAX(env) = (uint32_t)val; } else { RAX(env) = (uint64_t)val; } env->eip += ins_len; store_regs(cpu); break; } else if (!string && !in) { RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX); hvf_handle_io(env, port, &RAX(env), 1, size, 1); macvm_set_rip(cpu, rip + ins_len); break; } struct x86_decode decode; load_regs(cpu); decode_instruction(env, &decode); assert(ins_len == decode.len); exec_instruction(env, &decode); store_regs(cpu); break; } case EXIT_REASON_CPUID: { uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX); uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX); uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX); uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX); if (rax == 1) { /* CPUID1.ecx.OSXSAVE needs to know CR4 */ env->cr[4] = rvmcs(cpu->hvf_fd, VMCS_GUEST_CR4); } hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx); wreg(cpu->hvf_fd, HV_X86_RAX, rax); wreg(cpu->hvf_fd, HV_X86_RBX, rbx); wreg(cpu->hvf_fd, HV_X86_RCX, rcx); wreg(cpu->hvf_fd, HV_X86_RDX, rdx); macvm_set_rip(cpu, rip + ins_len); break; } case EXIT_REASON_XSETBV: { X86CPU *x86_cpu = X86_CPU(cpu); CPUX86State *env = &x86_cpu->env; uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX); uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX); uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX); if (ecx) { macvm_set_rip(cpu, rip + ins_len); break; } env->xcr0 = ((uint64_t)edx << 32) | eax; wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1); macvm_set_rip(cpu, rip + ins_len); break; } case EXIT_REASON_INTR_WINDOW: vmx_clear_int_window_exiting(cpu); ret = EXCP_INTERRUPT; break; case EXIT_REASON_NMI_WINDOW: vmx_clear_nmi_window_exiting(cpu); ret = EXCP_INTERRUPT; break; case EXIT_REASON_EXT_INTR: /* force exit and allow io handling */ ret = EXCP_INTERRUPT; break; case EXIT_REASON_RDMSR: case EXIT_REASON_WRMSR: { load_regs(cpu); if (exit_reason == EXIT_REASON_RDMSR) { simulate_rdmsr(cpu); } else { simulate_wrmsr(cpu); } env->eip += ins_len; store_regs(cpu); break; } case EXIT_REASON_CR_ACCESS: { int cr; int reg; load_regs(cpu); cr = exit_qual & 15; reg = (exit_qual >> 8) & 15; switch (cr) { case 0x0: { macvm_set_cr0(cpu->hvf_fd, RRX(env, reg)); break; } case 4: { macvm_set_cr4(cpu->hvf_fd, RRX(env, reg)); break; } case 8: { X86CPU *x86_cpu = X86_CPU(cpu); if (exit_qual & 0x10) { RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state); } else { int tpr = RRX(env, reg); cpu_set_apic_tpr(x86_cpu->apic_state, tpr); ret = EXCP_INTERRUPT; } break; } default: error_report("Unrecognized CR %d", cr); abort(); } env->eip += ins_len; store_regs(cpu); break; } case EXIT_REASON_APIC_ACCESS: { /* TODO */ struct x86_decode decode; load_regs(cpu); decode_instruction(env, &decode); exec_instruction(env, &decode); store_regs(cpu); break; } case EXIT_REASON_TPR: { ret = 1; break; } case EXIT_REASON_TASK_SWITCH: { uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO); x68_segment_selector sel = {.sel = exit_qual & 0xffff}; vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3, vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo & VMCS_INTR_T_MASK); break; } case EXIT_REASON_TRIPLE_FAULT: { qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); ret = EXCP_INTERRUPT; break; } case EXIT_REASON_RDPMC: wreg(cpu->hvf_fd, HV_X86_RAX, 0); wreg(cpu->hvf_fd, HV_X86_RDX, 0); macvm_set_rip(cpu, rip + ins_len); break; case VMX_REASON_VMCALL: env->exception_nr = EXCP0D_GPF; env->exception_injected = 1; env->has_error_code = true; env->error_code = 0; break; default: error_report("%llx: unhandled exit %llx", rip, exit_reason); } } while (ret == 0); return ret; } bool hvf_allowed; static int hvf_accel_init(MachineState *ms) { int x; hv_return_t ret; HVFState *s; ret = hv_vm_create(HV_VM_DEFAULT); assert_hvf_ok(ret); s = g_new0(HVFState, 1); s->num_slots = 32; for (x = 0; x < s->num_slots; ++x) { s->slots[x].size = 0; s->slots[x].slot_id = x; } hvf_state = s; memory_listener_register(&hvf_memory_listener, &address_space_memory); return 0; } static void hvf_accel_class_init(ObjectClass *oc, void *data) { AccelClass *ac = ACCEL_CLASS(oc); ac->name = "HVF"; ac->init_machine = hvf_accel_init; ac->allowed = &hvf_allowed; } static const TypeInfo hvf_accel_type = { .name = TYPE_HVF_ACCEL, .parent = TYPE_ACCEL, .class_init = hvf_accel_class_init, }; static void hvf_type_init(void) { type_register_static(&hvf_accel_type); } type_init(hvf_type_init);