/* * MIPS emulation micro-operations for qemu. * * Copyright (c) 2004-2005 Jocelyn Mayer * Copyright (c) 2006 Marius Groeger (FPU operations) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include "exec.h" #ifndef CALL_FROM_TB0 #define CALL_FROM_TB0(func) func(); #endif #ifndef CALL_FROM_TB1 #define CALL_FROM_TB1(func, arg0) func(arg0); #endif #ifndef CALL_FROM_TB1_CONST16 #define CALL_FROM_TB1_CONST16(func, arg0) CALL_FROM_TB1(func, arg0); #endif #ifndef CALL_FROM_TB2 #define CALL_FROM_TB2(func, arg0, arg1) func(arg0, arg1); #endif #ifndef CALL_FROM_TB2_CONST16 #define CALL_FROM_TB2_CONST16(func, arg0, arg1) \ CALL_FROM_TB2(func, arg0, arg1); #endif #ifndef CALL_FROM_TB3 #define CALL_FROM_TB3(func, arg0, arg1, arg2) func(arg0, arg1, arg2); #endif #ifndef CALL_FROM_TB4 #define CALL_FROM_TB4(func, arg0, arg1, arg2, arg3) \ func(arg0, arg1, arg2, arg3); #endif #define REG 1 #include "op_template.c" #undef REG #define REG 2 #include "op_template.c" #undef REG #define REG 3 #include "op_template.c" #undef REG #define REG 4 #include "op_template.c" #undef REG #define REG 5 #include "op_template.c" #undef REG #define REG 6 #include "op_template.c" #undef REG #define REG 7 #include "op_template.c" #undef REG #define REG 8 #include "op_template.c" #undef REG #define REG 9 #include "op_template.c" #undef REG #define REG 10 #include "op_template.c" #undef REG #define REG 11 #include "op_template.c" #undef REG #define REG 12 #include "op_template.c" #undef REG #define REG 13 #include "op_template.c" #undef REG #define REG 14 #include "op_template.c" #undef REG #define REG 15 #include "op_template.c" #undef REG #define REG 16 #include "op_template.c" #undef REG #define REG 17 #include "op_template.c" #undef REG #define REG 18 #include "op_template.c" #undef REG #define REG 19 #include "op_template.c" #undef REG #define REG 20 #include "op_template.c" #undef REG #define REG 21 #include "op_template.c" #undef REG #define REG 22 #include "op_template.c" #undef REG #define REG 23 #include "op_template.c" #undef REG #define REG 24 #include "op_template.c" #undef REG #define REG 25 #include "op_template.c" #undef REG #define REG 26 #include "op_template.c" #undef REG #define REG 27 #include "op_template.c" #undef REG #define REG 28 #include "op_template.c" #undef REG #define REG 29 #include "op_template.c" #undef REG #define REG 30 #include "op_template.c" #undef REG #define REG 31 #include "op_template.c" #undef REG #define TN #include "op_template.c" #undef TN #ifdef MIPS_USES_FPU #define SFREG 0 #define DFREG 0 #include "fop_template.c" #undef SFREG #undef DFREG #define SFREG 1 #include "fop_template.c" #undef SFREG #define SFREG 2 #define DFREG 2 #include "fop_template.c" #undef SFREG #undef DFREG #define SFREG 3 #include "fop_template.c" #undef SFREG #define SFREG 4 #define DFREG 4 #include "fop_template.c" #undef SFREG #undef DFREG #define SFREG 5 #include "fop_template.c" #undef SFREG #define SFREG 6 #define DFREG 6 #include "fop_template.c" #undef SFREG #undef DFREG #define SFREG 7 #include "fop_template.c" #undef SFREG #define SFREG 8 #define DFREG 8 #include "fop_template.c" #undef SFREG #undef DFREG #define SFREG 9 #include "fop_template.c" #undef SFREG #define SFREG 10 #define DFREG 10 #include "fop_template.c" #undef SFREG #undef DFREG #define SFREG 11 #include "fop_template.c" #undef SFREG #define SFREG 12 #define DFREG 12 #include "fop_template.c" #undef SFREG #undef DFREG #define SFREG 13 #include "fop_template.c" #undef SFREG #define SFREG 14 #define DFREG 14 #include "fop_template.c" #undef SFREG #undef DFREG #define SFREG 15 #include "fop_template.c" #undef SFREG #define SFREG 16 #define DFREG 16 #include "fop_template.c" #undef SFREG #undef DFREG #define SFREG 17 #include "fop_template.c" #undef SFREG #define SFREG 18 #define DFREG 18 #include "fop_template.c" #undef SFREG #undef DFREG #define SFREG 19 #include "fop_template.c" #undef SFREG #define SFREG 20 #define DFREG 20 #include "fop_template.c" #undef SFREG #undef DFREG #define SFREG 21 #include "fop_template.c" #undef SFREG #define SFREG 22 #define DFREG 22 #include "fop_template.c" #undef SFREG #undef DFREG #define SFREG 23 #include "fop_template.c" #undef SFREG #define SFREG 24 #define DFREG 24 #include "fop_template.c" #undef SFREG #undef DFREG #define SFREG 25 #include "fop_template.c" #undef SFREG #define SFREG 26 #define DFREG 26 #include "fop_template.c" #undef SFREG #undef DFREG #define SFREG 27 #include "fop_template.c" #undef SFREG #define SFREG 28 #define DFREG 28 #include "fop_template.c" #undef SFREG #undef DFREG #define SFREG 29 #include "fop_template.c" #undef SFREG #define SFREG 30 #define DFREG 30 #include "fop_template.c" #undef SFREG #undef DFREG #define SFREG 31 #include "fop_template.c" #undef SFREG #define FTN #include "fop_template.c" #undef FTN #endif void op_dup_T0 (void) { T2 = T0; RETURN(); } void op_load_HI (void) { T0 = env->HI; RETURN(); } void op_store_HI (void) { env->HI = T0; RETURN(); } void op_load_LO (void) { T0 = env->LO; RETURN(); } void op_store_LO (void) { env->LO = T0; RETURN(); } /* Load and store */ #define MEMSUFFIX _raw #include "op_mem.c" #undef MEMSUFFIX #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_mem.c" #undef MEMSUFFIX #define MEMSUFFIX _kernel #include "op_mem.c" #undef MEMSUFFIX #endif /* Arithmetic */ void op_add (void) { T0 = (int32_t)((int32_t)T0 + (int32_t)T1); RETURN(); } void op_addo (void) { target_ulong tmp; tmp = (int32_t)T0; T0 = (int32_t)T0 + (int32_t)T1; if (((tmp ^ T1 ^ (-1)) & (T0 ^ T1)) >> 31) { /* operands of same sign, result different sign */ CALL_FROM_TB1(do_raise_exception_direct, EXCP_OVERFLOW); } T0 = (int32_t)T0; RETURN(); } void op_sub (void) { T0 = (int32_t)((int32_t)T0 - (int32_t)T1); RETURN(); } void op_subo (void) { target_ulong tmp; tmp = (int32_t)T0; T0 = (int32_t)T0 - (int32_t)T1; if (((tmp ^ T1) & (tmp ^ T0)) >> 31) { /* operands of different sign, first operand and result different sign */ CALL_FROM_TB1(do_raise_exception_direct, EXCP_OVERFLOW); } T0 = (int32_t)T0; RETURN(); } void op_mul (void) { T0 = (int32_t)((int32_t)T0 * (int32_t)T1); RETURN(); } void op_div (void) { if (T1 != 0) { env->LO = (int32_t)((int32_t)T0 / (int32_t)T1); env->HI = (int32_t)((int32_t)T0 % (int32_t)T1); } RETURN(); } void op_divu (void) { if (T1 != 0) { env->LO = (int32_t)((uint32_t)T0 / (uint32_t)T1); env->HI = (int32_t)((uint32_t)T0 % (uint32_t)T1); } RETURN(); } #ifdef MIPS_HAS_MIPS64 /* Arithmetic */ void op_dadd (void) { T0 += T1; RETURN(); } void op_daddo (void) { target_long tmp; tmp = T0; T0 += T1; if (((tmp ^ T1 ^ (-1)) & (T0 ^ T1)) >> 63) { /* operands of same sign, result different sign */ CALL_FROM_TB1(do_raise_exception_direct, EXCP_OVERFLOW); } RETURN(); } void op_dsub (void) { T0 -= T1; RETURN(); } void op_dsubo (void) { target_long tmp; tmp = T0; T0 = (int64_t)T0 - (int64_t)T1; if (((tmp ^ T1) & (tmp ^ T0)) >> 63) { /* operands of different sign, first operand and result different sign */ CALL_FROM_TB1(do_raise_exception_direct, EXCP_OVERFLOW); } RETURN(); } void op_dmul (void) { T0 = (int64_t)T0 * (int64_t)T1; RETURN(); } #if TARGET_LONG_BITS > HOST_LONG_BITS /* Those might call libgcc functions. */ void op_ddiv (void) { do_ddiv(); RETURN(); } void op_ddivu (void) { do_ddivu(); RETURN(); } #else void op_ddiv (void) { if (T1 != 0) { env->LO = (int64_t)T0 / (int64_t)T1; env->HI = (int64_t)T0 % (int64_t)T1; } RETURN(); } void op_ddivu (void) { if (T1 != 0) { env->LO = T0 / T1; env->HI = T0 % T1; } RETURN(); } #endif #endif /* MIPS_HAS_MIPS64 */ /* Logical */ void op_and (void) { T0 &= T1; RETURN(); } void op_nor (void) { T0 = ~(T0 | T1); RETURN(); } void op_or (void) { T0 |= T1; RETURN(); } void op_xor (void) { T0 ^= T1; RETURN(); } void op_sll (void) { T0 = (int32_t)((uint32_t)T0 << (uint32_t)T1); RETURN(); } void op_sra (void) { T0 = (int32_t)((int32_t)T0 >> (uint32_t)T1); RETURN(); } void op_srl (void) { T0 = (int32_t)((uint32_t)T0 >> (uint32_t)T1); RETURN(); } void op_rotr (void) { target_ulong tmp; if (T1) { tmp = (int32_t)((uint32_t)T0 << (0x20 - (uint32_t)T1)); T0 = (int32_t)((uint32_t)T0 >> (uint32_t)T1) | tmp; } else T0 = T1; RETURN(); } void op_sllv (void) { T0 = (int32_t)((uint32_t)T1 << ((uint32_t)T0 & 0x1F)); RETURN(); } void op_srav (void) { T0 = (int32_t)((int32_t)T1 >> (T0 & 0x1F)); RETURN(); } void op_srlv (void) { T0 = (int32_t)((uint32_t)T1 >> (T0 & 0x1F)); RETURN(); } void op_rotrv (void) { target_ulong tmp; T0 &= 0x1F; if (T0) { tmp = (int32_t)((uint32_t)T1 << (0x20 - T0)); T0 = (int32_t)((uint32_t)T1 >> T0) | tmp; } else T0 = T1; RETURN(); } void op_clo (void) { int n; if (T0 == ~((target_ulong)0)) { T0 = 32; } else { for (n = 0; n < 32; n++) { if (!(T0 & (1 << 31))) break; T0 = T0 << 1; } T0 = n; } RETURN(); } void op_clz (void) { int n; if (T0 == 0) { T0 = 32; } else { for (n = 0; n < 32; n++) { if (T0 & (1 << 31)) break; T0 = T0 << 1; } T0 = n; } RETURN(); } #ifdef MIPS_HAS_MIPS64 #if TARGET_LONG_BITS > HOST_LONG_BITS /* Those might call libgcc functions. */ void op_dsll (void) { CALL_FROM_TB0(do_dsll); RETURN(); } void op_dsll32 (void) { CALL_FROM_TB0(do_dsll32); RETURN(); } void op_dsra (void) { CALL_FROM_TB0(do_dsra); RETURN(); } void op_dsra32 (void) { CALL_FROM_TB0(do_dsra32); RETURN(); } void op_dsrl (void) { CALL_FROM_TB0(do_dsrl); RETURN(); } void op_dsrl32 (void) { CALL_FROM_TB0(do_dsrl32); RETURN(); } void op_drotr (void) { CALL_FROM_TB0(do_drotr); RETURN(); } void op_drotr32 (void) { CALL_FROM_TB0(do_drotr32); RETURN(); } void op_dsllv (void) { CALL_FROM_TB0(do_dsllv); RETURN(); } void op_dsrav (void) { CALL_FROM_TB0(do_dsrav); RETURN(); } void op_dsrlv (void) { CALL_FROM_TB0(do_dsrlv); RETURN(); } void op_drotrv (void) { CALL_FROM_TB0(do_drotrv); RETURN(); } #else /* TARGET_LONG_BITS > HOST_LONG_BITS */ void op_dsll (void) { T0 = T0 << T1; RETURN(); } void op_dsll32 (void) { T0 = T0 << (T1 + 32); RETURN(); } void op_dsra (void) { T0 = (int64_t)T0 >> T1; RETURN(); } void op_dsra32 (void) { T0 = (int64_t)T0 >> (T1 + 32); RETURN(); } void op_dsrl (void) { T0 = T0 >> T1; RETURN(); } void op_dsrl32 (void) { T0 = T0 >> (T1 + 32); RETURN(); } void op_drotr (void) { target_ulong tmp; if (T1) { tmp = T0 << (0x40 - T1); T0 = (T0 >> T1) | tmp; } else T0 = T1; RETURN(); } void op_drotr32 (void) { target_ulong tmp; if (T1) { tmp = T0 << (0x40 - (32 + T1)); T0 = (T0 >> (32 + T1)) | tmp; } else T0 = T1; RETURN(); } void op_dsllv (void) { T0 = T1 << (T0 & 0x3F); RETURN(); } void op_dsrav (void) { T0 = (int64_t)T1 >> (T0 & 0x3F); RETURN(); } void op_dsrlv (void) { T0 = T1 >> (T0 & 0x3F); RETURN(); } void op_drotrv (void) { target_ulong tmp; T0 &= 0x3F; if (T0) { tmp = T1 << (0x40 - T0); T0 = (T1 >> T0) | tmp; } else T0 = T1; RETURN(); } #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */ void op_dclo (void) { int n; if (T0 == ~((target_ulong)0)) { T0 = 64; } else { for (n = 0; n < 64; n++) { if (!(T0 & (1ULL << 63))) break; T0 = T0 << 1; } T0 = n; } RETURN(); } void op_dclz (void) { int n; if (T0 == 0) { T0 = 64; } else { for (n = 0; n < 64; n++) { if (T0 & (1ULL << 63)) break; T0 = T0 << 1; } T0 = n; } RETURN(); } #endif /* 64 bits arithmetic */ #if TARGET_LONG_BITS > HOST_LONG_BITS void op_mult (void) { CALL_FROM_TB0(do_mult); RETURN(); } void op_multu (void) { CALL_FROM_TB0(do_multu); RETURN(); } void op_madd (void) { CALL_FROM_TB0(do_madd); RETURN(); } void op_maddu (void) { CALL_FROM_TB0(do_maddu); RETURN(); } void op_msub (void) { CALL_FROM_TB0(do_msub); RETURN(); } void op_msubu (void) { CALL_FROM_TB0(do_msubu); RETURN(); } #else /* TARGET_LONG_BITS > HOST_LONG_BITS */ static inline uint64_t get_HILO (void) { return ((uint64_t)env->HI << 32) | ((uint64_t)(uint32_t)env->LO); } static inline void set_HILO (uint64_t HILO) { env->LO = (int32_t)(HILO & 0xFFFFFFFF); env->HI = (int32_t)(HILO >> 32); } void op_mult (void) { set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); RETURN(); } void op_multu (void) { set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); RETURN(); } void op_madd (void) { int64_t tmp; tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); set_HILO((int64_t)get_HILO() + tmp); RETURN(); } void op_maddu (void) { uint64_t tmp; tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); set_HILO(get_HILO() + tmp); RETURN(); } void op_msub (void) { int64_t tmp; tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); set_HILO((int64_t)get_HILO() - tmp); RETURN(); } void op_msubu (void) { uint64_t tmp; tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); set_HILO(get_HILO() - tmp); RETURN(); } #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */ #ifdef MIPS_HAS_MIPS64 void op_dmult (void) { CALL_FROM_TB0(do_dmult); RETURN(); } void op_dmultu (void) { CALL_FROM_TB0(do_dmultu); RETURN(); } #endif /* Conditional moves */ void op_movn (void) { if (T1 != 0) env->gpr[PARAM1] = T0; RETURN(); } void op_movz (void) { if (T1 == 0) env->gpr[PARAM1] = T0; RETURN(); } #ifdef MIPS_USES_FPU void op_movf (void) { if (!(env->fcr31 & PARAM1)) env->gpr[PARAM2] = env->gpr[PARAM3]; RETURN(); } void op_movt (void) { if (env->fcr31 & PARAM1) env->gpr[PARAM2] = env->gpr[PARAM3]; RETURN(); } #endif /* Tests */ #define OP_COND(name, cond) \ void glue(op_, name) (void) \ { \ if (cond) { \ T0 = 1; \ } else { \ T0 = 0; \ } \ RETURN(); \ } OP_COND(eq, T0 == T1); OP_COND(ne, T0 != T1); OP_COND(ge, (int32_t)T0 >= (int32_t)T1); OP_COND(geu, T0 >= T1); OP_COND(lt, (int32_t)T0 < (int32_t)T1); OP_COND(ltu, T0 < T1); OP_COND(gez, (int32_t)T0 >= 0); OP_COND(gtz, (int32_t)T0 > 0); OP_COND(lez, (int32_t)T0 <= 0); OP_COND(ltz, (int32_t)T0 < 0); /* Branches */ //#undef USE_DIRECT_JUMP void OPPROTO op_goto_tb0(void) { GOTO_TB(op_goto_tb0, PARAM1, 0); RETURN(); } void OPPROTO op_goto_tb1(void) { GOTO_TB(op_goto_tb1, PARAM1, 1); RETURN(); } /* Branch to register */ void op_save_breg_target (void) { env->btarget = T2; RETURN(); } void op_restore_breg_target (void) { T2 = env->btarget; RETURN(); } void op_breg (void) { env->PC = T2; RETURN(); } void op_save_btarget (void) { env->btarget = PARAM1; RETURN(); } /* Conditional branch */ void op_set_bcond (void) { T2 = T0; RETURN(); } void op_save_bcond (void) { env->bcond = T2; RETURN(); } void op_restore_bcond (void) { T2 = env->bcond; RETURN(); } void op_jnz_T2 (void) { if (T2) GOTO_LABEL_PARAM(1); RETURN(); } /* CP0 functions */ void op_mfc0_index (void) { T0 = env->CP0_Index; RETURN(); } void op_mfc0_random (void) { CALL_FROM_TB0(do_mfc0_random); RETURN(); } void op_mfc0_entrylo0 (void) { T0 = (int32_t)env->CP0_EntryLo0; RETURN(); } void op_mfc0_entrylo1 (void) { T0 = (int32_t)env->CP0_EntryLo1; RETURN(); } void op_mfc0_context (void) { T0 = (int32_t)env->CP0_Context; RETURN(); } void op_mfc0_pagemask (void) { T0 = env->CP0_PageMask; RETURN(); } void op_mfc0_pagegrain (void) { T0 = env->CP0_PageGrain; RETURN(); } void op_mfc0_wired (void) { T0 = env->CP0_Wired; RETURN(); } void op_mfc0_hwrena (void) { T0 = env->CP0_HWREna; RETURN(); } void op_mfc0_badvaddr (void) { T0 = (int32_t)env->CP0_BadVAddr; RETURN(); } void op_mfc0_count (void) { CALL_FROM_TB0(do_mfc0_count); RETURN(); } void op_mfc0_entryhi (void) { T0 = (int32_t)env->CP0_EntryHi; RETURN(); } void op_mfc0_compare (void) { T0 = env->CP0_Compare; RETURN(); } void op_mfc0_status (void) { T0 = env->CP0_Status; if (env->hflags & MIPS_HFLAG_UM) T0 |= (1 << CP0St_UM); if (env->hflags & MIPS_HFLAG_ERL) T0 |= (1 << CP0St_ERL); if (env->hflags & MIPS_HFLAG_EXL) T0 |= (1 << CP0St_EXL); RETURN(); } void op_mfc0_intctl (void) { T0 = env->CP0_IntCtl; RETURN(); } void op_mfc0_srsctl (void) { T0 = env->CP0_SRSCtl; RETURN(); } void op_mfc0_srsmap (void) { T0 = env->CP0_SRSMap; RETURN(); } void op_mfc0_cause (void) { T0 = env->CP0_Cause; RETURN(); } void op_mfc0_epc (void) { T0 = (int32_t)env->CP0_EPC; RETURN(); } void op_mfc0_prid (void) { T0 = env->CP0_PRid; RETURN(); } void op_mfc0_ebase (void) { T0 = env->CP0_EBase; RETURN(); } void op_mfc0_config0 (void) { T0 = env->CP0_Config0; RETURN(); } void op_mfc0_config1 (void) { T0 = env->CP0_Config1; RETURN(); } void op_mfc0_config2 (void) { T0 = env->CP0_Config2; RETURN(); } void op_mfc0_config3 (void) { T0 = env->CP0_Config3; RETURN(); } void op_mfc0_lladdr (void) { T0 = (int32_t)env->CP0_LLAddr >> 4; RETURN(); } void op_mfc0_watchlo0 (void) { T0 = (int32_t)env->CP0_WatchLo; RETURN(); } void op_mfc0_watchhi0 (void) { T0 = env->CP0_WatchHi; RETURN(); } void op_mfc0_xcontext (void) { T0 = (int32_t)env->CP0_XContext; RETURN(); } void op_mfc0_framemask (void) { T0 = env->CP0_Framemask; RETURN(); } void op_mfc0_debug (void) { T0 = env->CP0_Debug; if (env->hflags & MIPS_HFLAG_DM) T0 |= 1 << CP0DB_DM; RETURN(); } void op_mfc0_depc (void) { T0 = (int32_t)env->CP0_DEPC; RETURN(); } void op_mfc0_performance0 (void) { T0 = env->CP0_Performance0; RETURN(); } void op_mfc0_taglo (void) { T0 = env->CP0_TagLo; RETURN(); } void op_mfc0_datalo (void) { T0 = env->CP0_DataLo; RETURN(); } void op_mfc0_taghi (void) { T0 = env->CP0_TagHi; RETURN(); } void op_mfc0_datahi (void) { T0 = env->CP0_DataHi; RETURN(); } void op_mfc0_errorepc (void) { T0 = (int32_t)env->CP0_ErrorEPC; RETURN(); } void op_mfc0_desave (void) { T0 = env->CP0_DESAVE; RETURN(); } void op_mtc0_index (void) { env->CP0_Index = (env->CP0_Index & 0x80000000) | (T0 & (MIPS_TLB_NB - 1)); RETURN(); } void op_mtc0_entrylo0 (void) { /* Large physaddr not implemented */ /* 1k pages not implemented */ env->CP0_EntryLo0 = (int32_t)T0 & 0x3FFFFFFF; RETURN(); } void op_mtc0_entrylo1 (void) { /* Large physaddr not implemented */ /* 1k pages not implemented */ env->CP0_EntryLo1 = (int32_t)T0 & 0x3FFFFFFF; RETURN(); } void op_mtc0_context (void) { env->CP0_Context = (env->CP0_Context & ~0x007FFFFF) | (T0 & 0x007FFFF0); RETURN(); } void op_mtc0_pagemask (void) { /* 1k pages not implemented */ env->CP0_PageMask = T0 & 0x1FFFE000; RETURN(); } void op_mtc0_pagegrain (void) { /* SmartMIPS not implemented */ /* Large physaddr not implemented */ /* 1k pages not implemented */ env->CP0_PageGrain = 0; RETURN(); } void op_mtc0_wired (void) { env->CP0_Wired = T0 & (MIPS_TLB_NB - 1); RETURN(); } void op_mtc0_hwrena (void) { env->CP0_HWREna = T0 & 0x0000000F; RETURN(); } void op_mtc0_count (void) { CALL_FROM_TB2(cpu_mips_store_count, env, T0); RETURN(); } void op_mtc0_entryhi (void) { target_ulong old, val; /* 1k pages not implemented */ /* Ignore MIPS64 TLB for now */ val = (target_ulong)(int32_t)T0 & ~(target_ulong)0x1F00; old = env->CP0_EntryHi; env->CP0_EntryHi = val; /* If the ASID changes, flush qemu's TLB. */ if ((old & 0xFF) != (val & 0xFF)) CALL_FROM_TB2(cpu_mips_tlb_flush, env, 1); RETURN(); } void op_mtc0_compare (void) { CALL_FROM_TB2(cpu_mips_store_compare, env, T0); RETURN(); } void op_mtc0_status (void) { uint32_t val, old; val = (int32_t)T0 & 0xFA78FF01; old = env->CP0_Status; if (T0 & (1 << CP0St_UM)) env->hflags |= MIPS_HFLAG_UM; else env->hflags &= ~MIPS_HFLAG_UM; if (T0 & (1 << CP0St_ERL)) env->hflags |= MIPS_HFLAG_ERL; else env->hflags &= ~MIPS_HFLAG_ERL; if (T0 & (1 << CP0St_EXL)) env->hflags |= MIPS_HFLAG_EXL; else env->hflags &= ~MIPS_HFLAG_EXL; env->CP0_Status = val; if (loglevel & CPU_LOG_TB_IN_ASM) CALL_FROM_TB2(do_mtc0_status_debug, old, val); CALL_FROM_TB1(cpu_mips_update_irq, env); RETURN(); } void op_mtc0_intctl (void) { /* vectored interrupts not implemented */ env->CP0_IntCtl = 0; RETURN(); } void op_mtc0_srsctl (void) { /* shadow registers not implemented */ env->CP0_SRSCtl = 0; RETURN(); } void op_mtc0_srsmap (void) { /* shadow registers not implemented */ env->CP0_SRSMap = 0; RETURN(); } void op_mtc0_cause (void) { env->CP0_Cause = (env->CP0_Cause & 0xB000F87C) | (T0 & 0x00C00300); /* Handle the software interrupt as an hardware one, as they are very similar */ if (T0 & CP0Ca_IP_mask) { CALL_FROM_TB1(cpu_mips_update_irq, env); } RETURN(); } void op_mtc0_epc (void) { env->CP0_EPC = (int32_t)T0; RETURN(); } void op_mtc0_ebase (void) { /* vectored interrupts not implemented */ /* Multi-CPU not implemented */ env->CP0_EBase = 0x80000000 | (T0 & 0x3FFFF000); RETURN(); } void op_mtc0_config0 (void) { #if defined(MIPS_USES_R4K_TLB) /* Fixed mapping MMU not implemented */ env->CP0_Config0 = (env->CP0_Config0 & 0x8017FF88) | (T0 & 0x00000001); #else env->CP0_Config0 = (env->CP0_Config0 & 0xFE17FF88) | (T0 & 0x00000001); #endif RETURN(); } void op_mtc0_config2 (void) { /* tertiary/secondary caches not implemented */ env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF); RETURN(); } void op_mtc0_watchlo0 (void) { env->CP0_WatchLo = (int32_t)T0; RETURN(); } void op_mtc0_watchhi0 (void) { env->CP0_WatchHi = T0 & 0x40FF0FF8; RETURN(); } void op_mtc0_xcontext (void) { env->CP0_XContext = (int32_t)T0; /* XXX */ RETURN(); } void op_mtc0_framemask (void) { env->CP0_Framemask = T0; /* XXX */ RETURN(); } void op_mtc0_debug (void) { env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (T0 & 0x13300120); if (T0 & (1 << CP0DB_DM)) env->hflags |= MIPS_HFLAG_DM; else env->hflags &= ~MIPS_HFLAG_DM; RETURN(); } void op_mtc0_depc (void) { env->CP0_DEPC = (int32_t)T0; RETURN(); } void op_mtc0_performance0 (void) { env->CP0_Performance0 = T0; /* XXX */ RETURN(); } void op_mtc0_taglo (void) { env->CP0_TagLo = T0 & 0xFFFFFCF6; RETURN(); } void op_mtc0_datalo (void) { env->CP0_DataLo = T0; /* XXX */ RETURN(); } void op_mtc0_taghi (void) { env->CP0_TagHi = T0; /* XXX */ RETURN(); } void op_mtc0_datahi (void) { env->CP0_DataHi = T0; /* XXX */ RETURN(); } void op_mtc0_errorepc (void) { env->CP0_ErrorEPC = (int32_t)T0; RETURN(); } void op_mtc0_desave (void) { env->CP0_DESAVE = T0; RETURN(); } void op_dmfc0_entrylo0 (void) { T0 = env->CP0_EntryLo0; RETURN(); } void op_dmfc0_entrylo1 (void) { T0 = env->CP0_EntryLo1; RETURN(); } void op_dmfc0_context (void) { T0 = env->CP0_Context; RETURN(); } void op_dmfc0_badvaddr (void) { T0 = env->CP0_BadVAddr; RETURN(); } void op_dmfc0_entryhi (void) { T0 = env->CP0_EntryHi; RETURN(); } void op_dmfc0_epc (void) { T0 = env->CP0_EPC; RETURN(); } void op_dmfc0_lladdr (void) { T0 = env->CP0_LLAddr >> 4; RETURN(); } void op_dmfc0_watchlo0 (void) { T0 = env->CP0_WatchLo; RETURN(); } void op_dmfc0_xcontext (void) { T0 = env->CP0_XContext; RETURN(); } void op_dmfc0_depc (void) { T0 = env->CP0_DEPC; RETURN(); } void op_dmfc0_errorepc (void) { T0 = env->CP0_ErrorEPC; RETURN(); } void op_dmtc0_entrylo0 (void) { /* Large physaddr not implemented */ /* 1k pages not implemented */ env->CP0_EntryLo0 = T0 & 0x3FFFFFFF; RETURN(); } void op_dmtc0_entrylo1 (void) { /* Large physaddr not implemented */ /* 1k pages not implemented */ env->CP0_EntryLo1 = T0 & 0x3FFFFFFF; RETURN(); } void op_dmtc0_context (void) { env->CP0_Context = (env->CP0_Context & ~0x007FFFFF) | (T0 & 0x007FFFF0); RETURN(); } void op_dmtc0_epc (void) { env->CP0_EPC = T0; RETURN(); } void op_dmtc0_watchlo0 (void) { env->CP0_WatchLo = T0; RETURN(); } void op_dmtc0_xcontext (void) { env->CP0_XContext = T0; /* XXX */ RETURN(); } void op_dmtc0_depc (void) { env->CP0_DEPC = T0; RETURN(); } void op_dmtc0_errorepc (void) { env->CP0_ErrorEPC = T0; RETURN(); } #ifdef MIPS_USES_FPU #if 0 # define DEBUG_FPU_STATE() CALL_FROM_TB1(dump_fpu, env) #else # define DEBUG_FPU_STATE() do { } while(0) #endif void op_cp1_enabled(void) { if (!(env->CP0_Status & (1 << CP0St_CU1))) { CALL_FROM_TB2(do_raise_exception_err, EXCP_CpU, 1); } RETURN(); } /* CP1 functions */ void op_cfc1 (void) { if (T1 == 0) { T0 = env->fcr0; } else { /* fetch fcr31, masking unused bits */ T0 = env->fcr31 & 0x0183FFFF; } DEBUG_FPU_STATE(); RETURN(); } /* convert MIPS rounding mode in FCR31 to IEEE library */ unsigned int ieee_rm[] = { float_round_nearest_even, float_round_to_zero, float_round_up, float_round_down }; #define RESTORE_ROUNDING_MODE \ set_float_rounding_mode(ieee_rm[env->fcr31 & 3], &env->fp_status) void op_ctc1 (void) { if (T1 == 0) { /* XXX should this throw an exception? * don't write to FCR0. * env->fcr0 = T0; */ } else { /* store new fcr31, masking unused bits */ env->fcr31 = T0 & 0x0183FFFF; /* set rounding mode */ RESTORE_ROUNDING_MODE; #ifndef CONFIG_SOFTFLOAT /* no floating point exception for native float */ SET_FP_ENABLE(env->fcr31, 0); #endif } DEBUG_FPU_STATE(); RETURN(); } void op_mfc1 (void) { T0 = WT0; DEBUG_FPU_STATE(); RETURN(); } void op_mtc1 (void) { WT0 = T0; DEBUG_FPU_STATE(); RETURN(); } /* Float support. Single precition routines have a "s" suffix, double precision a "d" suffix. */ #define FLOAT_OP(name, p) void OPPROTO op_float_##name##_##p(void) FLOAT_OP(cvtd, s) { FDT2 = float32_to_float64(WT0, &env->fp_status); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtd, w) { FDT2 = int32_to_float64(WT0, &env->fp_status); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvts, d) { FST2 = float64_to_float32(FDT0, &env->fp_status); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvts, w) { FST2 = int32_to_float32(WT0, &env->fp_status); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtw, s) { WT2 = float32_to_int32(FST0, &env->fp_status); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtw, d) { WT2 = float64_to_int32(FDT0, &env->fp_status); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(roundw, d) { set_float_rounding_mode(float_round_nearest_even, &env->fp_status); WT2 = float64_round_to_int(FDT0, &env->fp_status); RESTORE_ROUNDING_MODE; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(roundw, s) { set_float_rounding_mode(float_round_nearest_even, &env->fp_status); WT2 = float32_round_to_int(FST0, &env->fp_status); RESTORE_ROUNDING_MODE; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(truncw, d) { WT2 = float64_to_int32_round_to_zero(FDT0, &env->fp_status); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(truncw, s) { WT2 = float32_to_int32_round_to_zero(FST0, &env->fp_status); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(ceilw, d) { set_float_rounding_mode(float_round_up, &env->fp_status); WT2 = float64_round_to_int(FDT0, &env->fp_status); RESTORE_ROUNDING_MODE; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(ceilw, s) { set_float_rounding_mode(float_round_up, &env->fp_status); WT2 = float32_round_to_int(FST0, &env->fp_status); RESTORE_ROUNDING_MODE; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(floorw, d) { set_float_rounding_mode(float_round_down, &env->fp_status); WT2 = float64_round_to_int(FDT0, &env->fp_status); RESTORE_ROUNDING_MODE; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(floorw, s) { set_float_rounding_mode(float_round_down, &env->fp_status); WT2 = float32_round_to_int(FST0, &env->fp_status); RESTORE_ROUNDING_MODE; DEBUG_FPU_STATE(); RETURN(); } /* binary operations */ #define FLOAT_BINOP(name) \ FLOAT_OP(name, d) \ { \ FDT2 = float64_ ## name (FDT0, FDT1, &env->fp_status); \ DEBUG_FPU_STATE(); \ } \ FLOAT_OP(name, s) \ { \ FST2 = float32_ ## name (FST0, FST1, &env->fp_status); \ DEBUG_FPU_STATE(); \ } FLOAT_BINOP(add) FLOAT_BINOP(sub) FLOAT_BINOP(mul) FLOAT_BINOP(div) #undef FLOAT_BINOP /* unary operations, modifying fp status */ #define FLOAT_UNOP(name) \ FLOAT_OP(name, d) \ { \ FDT2 = float64_ ## name(FDT0, &env->fp_status); \ DEBUG_FPU_STATE(); \ } \ FLOAT_OP(name, s) \ { \ FST2 = float32_ ## name(FST0, &env->fp_status); \ DEBUG_FPU_STATE(); \ } FLOAT_UNOP(sqrt) #undef FLOAT_UNOP /* unary operations, not modifying fp status */ #define FLOAT_UNOP(name) \ FLOAT_OP(name, d) \ { \ FDT2 = float64_ ## name(FDT0); \ DEBUG_FPU_STATE(); \ } \ FLOAT_OP(name, s) \ { \ FST2 = float32_ ## name(FST0); \ DEBUG_FPU_STATE(); \ } FLOAT_UNOP(abs) FLOAT_UNOP(chs) #undef FLOAT_UNOP FLOAT_OP(mov, d) { FDT2 = FDT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(mov, s) { FST2 = FST0; DEBUG_FPU_STATE(); RETURN(); } #ifdef CONFIG_SOFTFLOAT #define clear_invalid() do { \ int flags = get_float_exception_flags(&env->fp_status); \ flags &= ~float_flag_invalid; \ set_float_exception_flags(flags, &env->fp_status); \ } while(0) #else #define clear_invalid() do { } while(0) #endif extern void dump_fpu_s(CPUState *env); #define FOP_COND(fmt, op, sig, cond) \ void op_cmp_ ## fmt ## _ ## op (void) \ { \ if (cond) \ SET_FP_COND(env->fcr31); \ else \ CLEAR_FP_COND(env->fcr31); \ if (!sig) \ clear_invalid(); \ /*CALL_FROM_TB1(dump_fpu_s, env);*/ \ DEBUG_FPU_STATE(); \ RETURN(); \ } int float64_is_unordered(float64 a, float64 b STATUS_PARAM) { if (float64_is_nan(a) || float64_is_nan(b)) { float_raise(float_flag_invalid, status); return 1; } else { return 0; } } FOP_COND(d, f, 0, 0) FOP_COND(d, un, 0, float64_is_unordered(FDT1, FDT0, &env->fp_status)) FOP_COND(d, eq, 0, float64_eq(FDT0, FDT1, &env->fp_status)) FOP_COND(d, ueq, 0, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_eq(FDT0, FDT1, &env->fp_status)) FOP_COND(d, olt, 0, float64_lt(FDT0, FDT1, &env->fp_status)) FOP_COND(d, ult, 0, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_lt(FDT0, FDT1, &env->fp_status)) FOP_COND(d, ole, 0, float64_le(FDT0, FDT1, &env->fp_status)) FOP_COND(d, ule, 0, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_le(FDT0, FDT1, &env->fp_status)) /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called */ FOP_COND(d, sf, 1, (float64_is_unordered(FDT0, FDT1, &env->fp_status), 0)) FOP_COND(d, ngle,1, float64_is_unordered(FDT1, FDT0, &env->fp_status)) FOP_COND(d, seq, 1, float64_eq(FDT0, FDT1, &env->fp_status)) FOP_COND(d, ngl, 1, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_eq(FDT0, FDT1, &env->fp_status)) FOP_COND(d, lt, 1, float64_lt(FDT0, FDT1, &env->fp_status)) FOP_COND(d, nge, 1, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_lt(FDT0, FDT1, &env->fp_status)) FOP_COND(d, le, 1, float64_le(FDT0, FDT1, &env->fp_status)) FOP_COND(d, ngt, 1, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_le(FDT0, FDT1, &env->fp_status)) flag float32_is_unordered(float32 a, float32 b STATUS_PARAM) { extern flag float32_is_nan( float32 a ); if (float32_is_nan(a) || float32_is_nan(b)) { float_raise(float_flag_invalid, status); return 1; } else { return 0; } } /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called */ FOP_COND(s, f, 0, 0) FOP_COND(s, un, 0, float32_is_unordered(FST1, FST0, &env->fp_status)) FOP_COND(s, eq, 0, float32_eq(FST0, FST1, &env->fp_status)) FOP_COND(s, ueq, 0, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status)) FOP_COND(s, olt, 0, float32_lt(FST0, FST1, &env->fp_status)) FOP_COND(s, ult, 0, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status)) FOP_COND(s, ole, 0, float32_le(FST0, FST1, &env->fp_status)) FOP_COND(s, ule, 0, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status)) /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called */ FOP_COND(s, sf, 1, (float32_is_unordered(FST0, FST1, &env->fp_status), 0)) FOP_COND(s, ngle,1, float32_is_unordered(FST1, FST0, &env->fp_status)) FOP_COND(s, seq, 1, float32_eq(FST0, FST1, &env->fp_status)) FOP_COND(s, ngl, 1, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status)) FOP_COND(s, lt, 1, float32_lt(FST0, FST1, &env->fp_status)) FOP_COND(s, nge, 1, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status)) FOP_COND(s, le, 1, float32_le(FST0, FST1, &env->fp_status)) FOP_COND(s, ngt, 1, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status)) void op_bc1f (void) { T0 = ! IS_FP_COND_SET(env->fcr31); DEBUG_FPU_STATE(); RETURN(); } void op_bc1t (void) { T0 = IS_FP_COND_SET(env->fcr31); DEBUG_FPU_STATE(); RETURN(); } #endif /* MIPS_USES_FPU */ #if defined(MIPS_USES_R4K_TLB) void op_tlbwi (void) { CALL_FROM_TB0(do_tlbwi); RETURN(); } void op_tlbwr (void) { CALL_FROM_TB0(do_tlbwr); RETURN(); } void op_tlbp (void) { CALL_FROM_TB0(do_tlbp); RETURN(); } void op_tlbr (void) { CALL_FROM_TB0(do_tlbr); RETURN(); } #endif /* Specials */ void op_pmon (void) { CALL_FROM_TB1(do_pmon, PARAM1); RETURN(); } void op_di (void) { T0 = env->CP0_Status; env->CP0_Status = T0 & ~(1 << CP0St_IE); CALL_FROM_TB1(cpu_mips_update_irq, env); RETURN(); } void op_ei (void) { T0 = env->CP0_Status; env->CP0_Status = T0 | (1 << CP0St_IE); CALL_FROM_TB1(cpu_mips_update_irq, env); RETURN(); } void op_trap (void) { if (T0) { CALL_FROM_TB1(do_raise_exception_direct, EXCP_TRAP); } RETURN(); } void op_debug (void) { CALL_FROM_TB1(do_raise_exception, EXCP_DEBUG); RETURN(); } void op_set_lladdr (void) { env->CP0_LLAddr = T2; RETURN(); } void debug_eret (void); void op_eret (void) { CALL_FROM_TB0(debug_eret); if (env->hflags & MIPS_HFLAG_ERL) { env->PC = env->CP0_ErrorEPC; env->hflags &= ~MIPS_HFLAG_ERL; env->CP0_Status &= ~(1 << CP0St_ERL); } else { env->PC = env->CP0_EPC; env->hflags &= ~MIPS_HFLAG_EXL; env->CP0_Status &= ~(1 << CP0St_EXL); } env->CP0_LLAddr = 1; RETURN(); } void op_deret (void) { CALL_FROM_TB0(debug_eret); env->PC = env->CP0_DEPC; RETURN(); } void op_rdhwr_cpunum(void) { if (env->CP0_HWREna & (1 << 0)) T0 = env->CP0_EBase & 0x2ff; else CALL_FROM_TB1(do_raise_exception_direct, EXCP_RI); RETURN(); } void op_rdhwr_synci_step(void) { if (env->CP0_HWREna & (1 << 1)) T0 = env->SYNCI_Step; else CALL_FROM_TB1(do_raise_exception_direct, EXCP_RI); RETURN(); } void op_rdhwr_cc(void) { if (env->CP0_HWREna & (1 << 2)) T0 = env->CP0_Count; else CALL_FROM_TB1(do_raise_exception_direct, EXCP_RI); RETURN(); } void op_rdhwr_ccres(void) { if (env->CP0_HWREna & (1 << 3)) T0 = env->CCRes; else CALL_FROM_TB1(do_raise_exception_direct, EXCP_RI); RETURN(); } void op_save_state (void) { env->hflags = PARAM1; RETURN(); } void op_save_pc (void) { env->PC = PARAM1; RETURN(); } void op_raise_exception (void) { CALL_FROM_TB1(do_raise_exception, PARAM1); RETURN(); } void op_raise_exception_err (void) { CALL_FROM_TB2(do_raise_exception_err, PARAM1, PARAM2); RETURN(); } void op_exit_tb (void) { EXIT_TB(); RETURN(); } void op_wait (void) { env->halted = 1; CALL_FROM_TB1(do_raise_exception, EXCP_HLT); RETURN(); } /* Bitfield operations. */ void op_ext(void) { unsigned int pos = PARAM1; unsigned int size = PARAM2; T0 = ((uint32_t)T1 >> pos) & ((1 << size) - 1); RETURN(); } void op_ins(void) { unsigned int pos = PARAM1; unsigned int size = PARAM2; target_ulong mask = ((1 << size) - 1) << pos; T0 = (T2 & ~mask) | (((uint32_t)T1 << pos) & mask); RETURN(); } void op_wsbh(void) { T0 = ((T1 << 8) & ~0x00FF00FF) | ((T1 >> 8) & 0x00FF00FF); RETURN(); } #ifdef MIPS_HAS_MIPS64 void op_dext(void) { unsigned int pos = PARAM1; unsigned int size = PARAM2; T0 = (T1 >> pos) & ((1 << size) - 1); RETURN(); } void op_dins(void) { unsigned int pos = PARAM1; unsigned int size = PARAM2; target_ulong mask = ((1 << size) - 1) << pos; T0 = (T2 & ~mask) | ((T1 << pos) & mask); RETURN(); } void op_dsbh(void) { T0 = ((T1 << 8) & ~0x00FF00FF00FF00FFULL) | ((T1 >> 8) & 0x00FF00FF00FF00FFULL); RETURN(); } void op_dshd(void) { T0 = ((T1 << 16) & ~0x0000FFFF0000FFFFULL) | ((T1 >> 16) & 0x0000FFFF0000FFFFULL); RETURN(); } #endif void op_seb(void) { T0 = ((T1 & 0xFF) ^ 0x80) - 0x80; RETURN(); } void op_seh(void) { T0 = ((T1 & 0xFFFF) ^ 0x8000) - 0x8000; RETURN(); }