/* * ARM AMBA Generic/Distributed Interrupt Controller * * Copyright (c) 2006 CodeSourcery. * Written by Paul Brook * * This code is licenced under the GPL. */ /* TODO: Some variants of this controller can handle multiple CPUs. Currently only single CPU operation is implemented. */ #include "vl.h" #include "arm_pic.h" //#define DEBUG_GIC #ifdef DEBUG_GIC #define DPRINTF(fmt, args...) \ do { printf("arm_gic: " fmt , (int)s->base, ##args); } while (0) #else #define DPRINTF(fmt, args...) do {} while(0) #endif /* Distributed interrupt controller. */ static const uint8_t gic_id[] = { 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 }; #define GIC_NIRQ 96 typedef struct gic_irq_state { unsigned enabled:1; unsigned pending:1; unsigned active:1; unsigned level:1; unsigned model:1; /* 0 = 1:N, 1 = N:N */ unsigned trigger:1; /* nonzero = edge triggered. */ } gic_irq_state; #define GIC_SET_ENABLED(irq) s->irq_state[irq].enabled = 1 #define GIC_CLEAR_ENABLED(irq) s->irq_state[irq].enabled = 0 #define GIC_TEST_ENABLED(irq) s->irq_state[irq].enabled #define GIC_SET_PENDING(irq) s->irq_state[irq].pending = 1 #define GIC_CLEAR_PENDING(irq) s->irq_state[irq].pending = 0 #define GIC_TEST_PENDING(irq) s->irq_state[irq].pending #define GIC_SET_ACTIVE(irq) s->irq_state[irq].active = 1 #define GIC_CLEAR_ACTIVE(irq) s->irq_state[irq].active = 0 #define GIC_TEST_ACTIVE(irq) s->irq_state[irq].active #define GIC_SET_MODEL(irq) s->irq_state[irq].model = 1 #define GIC_CLEAR_MODEL(irq) s->irq_state[irq].model = 0 #define GIC_TEST_MODEL(irq) s->irq_state[irq].model #define GIC_SET_LEVEL(irq) s->irq_state[irq].level = 1 #define GIC_CLEAR_LEVEL(irq) s->irq_state[irq].level = 0 #define GIC_TEST_LEVEL(irq) s->irq_state[irq].level #define GIC_SET_TRIGGER(irq) s->irq_state[irq].trigger = 1 #define GIC_CLEAR_TRIGGER(irq) s->irq_state[irq].trigger = 0 #define GIC_TEST_TRIGGER(irq) s->irq_state[irq].trigger typedef struct gic_state { arm_pic_handler handler; uint32_t base; void *parent; int parent_irq; int enabled; int cpu_enabled; gic_irq_state irq_state[GIC_NIRQ]; int irq_target[GIC_NIRQ]; int priority[GIC_NIRQ]; int last_active[GIC_NIRQ]; int priority_mask; int running_irq; int running_priority; int current_pending; } gic_state; /* TODO: Many places that call this routine could be optimized. */ /* Update interrupt status after enabled or pending bits have been changed. */ static void gic_update(gic_state *s) { int best_irq; int best_prio; int irq; s->current_pending = 1023; if (!s->enabled || !s->cpu_enabled) { pic_set_irq_new(s->parent, s->parent_irq, 0); return; } best_prio = 0x100; best_irq = 1023; for (irq = 0; irq < 96; irq++) { if (GIC_TEST_ENABLED(irq) && GIC_TEST_PENDING(irq)) { if (s->priority[irq] < best_prio) { best_prio = s->priority[irq]; best_irq = irq; } } } if (best_prio > s->priority_mask) { pic_set_irq_new(s->parent, s->parent_irq, 0); } else { s->current_pending = best_irq; if (best_prio < s->running_priority) { DPRINTF("Raised pending IRQ %d\n", best_irq); pic_set_irq_new(s->parent, s->parent_irq, 1); } } } static void gic_set_irq(void *opaque, int irq, int level) { gic_state *s = (gic_state *)opaque; /* The first external input line is internal interrupt 32. */ irq += 32; if (level == GIC_TEST_LEVEL(irq)) return; if (level) { GIC_SET_LEVEL(irq); if (GIC_TEST_TRIGGER(irq) || GIC_TEST_ENABLED(irq)) { DPRINTF("Set %d pending\n", irq); GIC_SET_PENDING(irq); } } else { GIC_CLEAR_LEVEL(irq); } gic_update(s); } static void gic_set_running_irq(gic_state *s, int irq) { s->running_irq = irq; s->running_priority = s->priority[irq]; gic_update(s); } static uint32_t gic_acknowledge_irq(gic_state *s) { int new_irq; new_irq = s->current_pending; if (new_irq == 1023 || s->priority[new_irq] >= s->running_priority) { DPRINTF("ACK no pending IRQ\n"); return 1023; } pic_set_irq_new(s->parent, s->parent_irq, 0); s->last_active[new_irq] = s->running_irq; /* For level triggered interrupts we clear the pending bit while the interrupt is active. */ GIC_CLEAR_PENDING(new_irq); gic_set_running_irq(s, new_irq); DPRINTF("ACK %d\n", new_irq); return new_irq; } static void gic_complete_irq(gic_state * s, int irq) { int update = 0; DPRINTF("EIO %d\n", irq); if (s->running_irq == 1023) return; /* No active IRQ. */ if (irq != 1023) { /* Mark level triggered interrupts as pending if they are still raised. */ if (!GIC_TEST_TRIGGER(irq) && GIC_TEST_ENABLED(irq) && GIC_TEST_LEVEL(irq)) { GIC_SET_PENDING(irq); update = 1; } } if (irq != s->running_irq) { /* Complete an IRQ that is not currently running. */ int tmp = s->running_irq; while (s->last_active[tmp] != 1023) { if (s->last_active[tmp] == irq) { s->last_active[tmp] = s->last_active[irq]; break; } tmp = s->last_active[tmp]; } if (update) { gic_update(s); } } else { /* Complete the current running IRQ. */ gic_set_running_irq(s, s->last_active[s->running_irq]); } } static uint32_t gic_dist_readb(void *opaque, target_phys_addr_t offset) { gic_state *s = (gic_state *)opaque; uint32_t res; int irq; int i; offset -= s->base + 0x1000; if (offset < 0x100) { if (offset == 0) return s->enabled; if (offset == 4) return (GIC_NIRQ / 32) - 1; if (offset < 0x08) return 0; goto bad_reg; } else if (offset < 0x200) { /* Interrupt Set/Clear Enable. */ if (offset < 0x180) irq = (offset - 0x100) * 8; else irq = (offset - 0x180) * 8; if (irq >= GIC_NIRQ) goto bad_reg; res = 0; for (i = 0; i < 8; i++) { if (GIC_TEST_ENABLED(irq + i)) { res |= (1 << i); } } } else if (offset < 0x300) { /* Interrupt Set/Clear Pending. */ if (offset < 0x280) irq = (offset - 0x200) * 8; else irq = (offset - 0x280) * 8; if (irq >= GIC_NIRQ) goto bad_reg; res = 0; for (i = 0; i < 8; i++) { if (GIC_TEST_PENDING(irq + i)) { res |= (1 << i); } } } else if (offset < 0x400) { /* Interrupt Active. */ irq = (offset - 0x300) * 8; if (irq >= GIC_NIRQ) goto bad_reg; res = 0; for (i = 0; i < 8; i++) { if (GIC_TEST_ACTIVE(irq + i)) { res |= (1 << i); } } } else if (offset < 0x800) { /* Interrupt Priority. */ irq = offset - 0x400; if (irq >= GIC_NIRQ) goto bad_reg; res = s->priority[irq]; } else if (offset < 0xc00) { /* Interrupt CPU Target. */ irq = offset - 0x800; if (irq >= GIC_NIRQ) goto bad_reg; res = s->irq_target[irq]; } else if (offset < 0xf00) { /* Interrupt Configuration. */ irq = (offset - 0xc00) * 2; if (irq >= GIC_NIRQ) goto bad_reg; res = 0; for (i = 0; i < 4; i++) { if (GIC_TEST_MODEL(irq + i)) res |= (1 << (i * 2)); if (GIC_TEST_TRIGGER(irq + i)) res |= (2 << (i * 2)); } } else if (offset < 0xfe0) { goto bad_reg; } else /* offset >= 0xfe0 */ { if (offset & 3) { res = 0; } else { res = gic_id[(offset - 0xfe0) >> 2]; } } return res; bad_reg: cpu_abort (cpu_single_env, "gic_dist_readb: Bad offset %x\n", offset); return 0; } static uint32_t gic_dist_readw(void *opaque, target_phys_addr_t offset) { uint32_t val; val = gic_dist_readb(opaque, offset); val |= gic_dist_readb(opaque, offset + 1) << 8; return val; } static uint32_t gic_dist_readl(void *opaque, target_phys_addr_t offset) { uint32_t val; val = gic_dist_readw(opaque, offset); val |= gic_dist_readw(opaque, offset + 2) << 16; return val; } static void gic_dist_writeb(void *opaque, target_phys_addr_t offset, uint32_t value) { gic_state *s = (gic_state *)opaque; int irq; int i; offset -= s->base + 0x1000; if (offset < 0x100) { if (offset == 0) { s->enabled = (value & 1); DPRINTF("Distribution %sabled\n", s->enabled ? "En" : "Dis"); } else if (offset < 4) { /* ignored. */ } else { goto bad_reg; } } else if (offset < 0x180) { /* Interrupt Set Enable. */ irq = (offset - 0x100) * 8; if (irq >= GIC_NIRQ) goto bad_reg; for (i = 0; i < 8; i++) { if (value & (1 << i)) { if (!GIC_TEST_ENABLED(irq + i)) DPRINTF("Enabled IRQ %d\n", irq + i); GIC_SET_ENABLED(irq + i); /* If a raised level triggered IRQ enabled then mark is as pending. */ if (GIC_TEST_LEVEL(irq + i) && !GIC_TEST_TRIGGER(irq + i)) GIC_SET_PENDING(irq + i); } } } else if (offset < 0x200) { /* Interrupt Clear Enable. */ irq = (offset - 0x180) * 8; if (irq >= GIC_NIRQ) goto bad_reg; for (i = 0; i < 8; i++) { if (value & (1 << i)) { if (GIC_TEST_ENABLED(irq + i)) DPRINTF("Disabled IRQ %d\n", irq + i); GIC_CLEAR_ENABLED(irq + i); } } } else if (offset < 0x280) { /* Interrupt Set Pending. */ irq = (offset - 0x200) * 8; if (irq >= GIC_NIRQ) goto bad_reg; for (i = 0; i < 8; i++) { if (value & (1 << i)) { GIC_SET_PENDING(irq + i); } } } else if (offset < 0x300) { /* Interrupt Clear Pending. */ irq = (offset - 0x280) * 8; if (irq >= GIC_NIRQ) goto bad_reg; for (i = 0; i < 8; i++) { if (value & (1 << i)) { GIC_CLEAR_PENDING(irq + i); } } } else if (offset < 0x400) { /* Interrupt Active. */ goto bad_reg; } else if (offset < 0x800) { /* Interrupt Priority. */ irq = offset - 0x400; if (irq >= GIC_NIRQ) goto bad_reg; s->priority[irq] = value; } else if (offset < 0xc00) { /* Interrupt CPU Target. */ irq = offset - 0x800; if (irq >= GIC_NIRQ) goto bad_reg; s->irq_target[irq] = value; } else if (offset < 0xf00) { /* Interrupt Configuration. */ irq = (offset - 0xc00) * 4; if (irq >= GIC_NIRQ) goto bad_reg; for (i = 0; i < 4; i++) { if (value & (1 << (i * 2))) { GIC_SET_MODEL(irq + i); } else { GIC_CLEAR_MODEL(irq + i); } if (value & (2 << (i * 2))) { GIC_SET_TRIGGER(irq + i); } else { GIC_CLEAR_TRIGGER(irq + i); } } } else { /* 0xf00 is only handled for word writes. */ goto bad_reg; } gic_update(s); return; bad_reg: cpu_abort (cpu_single_env, "gic_dist_writeb: Bad offset %x\n", offset); } static void gic_dist_writew(void *opaque, target_phys_addr_t offset, uint32_t value) { gic_state *s = (gic_state *)opaque; if (offset - s->base == 0xf00) { GIC_SET_PENDING(value & 0x3ff); gic_update(s); return; } gic_dist_writeb(opaque, offset, value & 0xff); gic_dist_writeb(opaque, offset + 1, value >> 8); } static void gic_dist_writel(void *opaque, target_phys_addr_t offset, uint32_t value) { gic_dist_writew(opaque, offset, value & 0xffff); gic_dist_writew(opaque, offset + 2, value >> 16); } static CPUReadMemoryFunc *gic_dist_readfn[] = { gic_dist_readb, gic_dist_readw, gic_dist_readl }; static CPUWriteMemoryFunc *gic_dist_writefn[] = { gic_dist_writeb, gic_dist_writew, gic_dist_writel }; static uint32_t gic_cpu_read(void *opaque, target_phys_addr_t offset) { gic_state *s = (gic_state *)opaque; offset -= s->base; switch (offset) { case 0x00: /* Control */ return s->cpu_enabled; case 0x04: /* Priority mask */ return s->priority_mask; case 0x08: /* Binary Point */ /* ??? Not implemented. */ return 0; case 0x0c: /* Acknowledge */ return gic_acknowledge_irq(s); case 0x14: /* Runing Priority */ return s->running_priority; case 0x18: /* Highest Pending Interrupt */ return s->current_pending; default: cpu_abort (cpu_single_env, "gic_cpu_writeb: Bad offset %x\n", offset); return 0; } } static void gic_cpu_write(void *opaque, target_phys_addr_t offset, uint32_t value) { gic_state *s = (gic_state *)opaque; offset -= s->base; switch (offset) { case 0x00: /* Control */ s->cpu_enabled = (value & 1); DPRINTF("CPU %sabled\n", s->cpu_enabled ? "En" : "Dis"); break; case 0x04: /* Priority mask */ s->priority_mask = (value & 0x3ff); break; case 0x08: /* Binary Point */ /* ??? Not implemented. */ break; case 0x10: /* End Of Interrupt */ return gic_complete_irq(s, value & 0x3ff); default: cpu_abort (cpu_single_env, "gic_cpu_writeb: Bad offset %x\n", offset); return; } gic_update(s); } static CPUReadMemoryFunc *gic_cpu_readfn[] = { gic_cpu_read, gic_cpu_read, gic_cpu_read }; static CPUWriteMemoryFunc *gic_cpu_writefn[] = { gic_cpu_write, gic_cpu_write, gic_cpu_write }; static void gic_reset(gic_state *s) { int i; memset(s->irq_state, 0, GIC_NIRQ * sizeof(gic_irq_state)); s->priority_mask = 0xf0; s->current_pending = 1023; s->running_irq = 1023; s->running_priority = 0x100; for (i = 0; i < 15; i++) { GIC_SET_ENABLED(i); GIC_SET_TRIGGER(i); } s->enabled = 0; s->cpu_enabled = 0; } void *arm_gic_init(uint32_t base, void *parent, int parent_irq) { gic_state *s; int iomemtype; s = (gic_state *)qemu_mallocz(sizeof(gic_state)); if (!s) return NULL; s->handler = gic_set_irq; s->parent = parent; s->parent_irq = parent_irq; if (base != 0xffffffff) { iomemtype = cpu_register_io_memory(0, gic_cpu_readfn, gic_cpu_writefn, s); cpu_register_physical_memory(base, 0x00000fff, iomemtype); iomemtype = cpu_register_io_memory(0, gic_dist_readfn, gic_dist_writefn, s); cpu_register_physical_memory(base + 0x1000, 0x00000fff, iomemtype); s->base = base; } else { s->base = 0; } gic_reset(s); return s; }