/* * virtio-iommu device * * Copyright (c) 2020 Red Hat, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . * */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/iov.h" #include "qemu/range.h" #include "qemu/reserved-region.h" #include "exec/target_page.h" #include "hw/qdev-properties.h" #include "hw/virtio/virtio.h" #include "sysemu/kvm.h" #include "sysemu/reset.h" #include "sysemu/sysemu.h" #include "qemu/reserved-region.h" #include "qemu/units.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "trace.h" #include "standard-headers/linux/virtio_ids.h" #include "hw/virtio/virtio-bus.h" #include "hw/virtio/virtio-iommu.h" #include "hw/pci/pci_bus.h" #include "hw/pci/pci.h" /* Max size */ #define VIOMMU_DEFAULT_QUEUE_SIZE 256 #define VIOMMU_PROBE_SIZE 512 typedef struct VirtIOIOMMUDomain { uint32_t id; bool bypass; GTree *mappings; QLIST_HEAD(, VirtIOIOMMUEndpoint) endpoint_list; } VirtIOIOMMUDomain; typedef struct VirtIOIOMMUEndpoint { uint32_t id; VirtIOIOMMUDomain *domain; IOMMUMemoryRegion *iommu_mr; QLIST_ENTRY(VirtIOIOMMUEndpoint) next; } VirtIOIOMMUEndpoint; typedef struct VirtIOIOMMUInterval { uint64_t low; uint64_t high; } VirtIOIOMMUInterval; typedef struct VirtIOIOMMUMapping { uint64_t phys_addr; uint32_t flags; } VirtIOIOMMUMapping; struct hiod_key { PCIBus *bus; uint8_t devfn; }; static inline uint16_t virtio_iommu_get_bdf(IOMMUDevice *dev) { return PCI_BUILD_BDF(pci_bus_num(dev->bus), dev->devfn); } static bool virtio_iommu_device_bypassed(IOMMUDevice *sdev) { uint32_t sid; bool bypassed; VirtIOIOMMU *s = sdev->viommu; VirtIOIOMMUEndpoint *ep; sid = virtio_iommu_get_bdf(sdev); qemu_rec_mutex_lock(&s->mutex); /* need to check bypass before system reset */ if (!s->endpoints) { bypassed = s->config.bypass; goto unlock; } ep = g_tree_lookup(s->endpoints, GUINT_TO_POINTER(sid)); if (!ep || !ep->domain) { bypassed = s->config.bypass; } else { bypassed = ep->domain->bypass; } unlock: qemu_rec_mutex_unlock(&s->mutex); return bypassed; } /* Return whether the device is using IOMMU translation. */ static bool virtio_iommu_switch_address_space(IOMMUDevice *sdev) { bool use_remapping; assert(sdev); use_remapping = !virtio_iommu_device_bypassed(sdev); trace_virtio_iommu_switch_address_space(pci_bus_num(sdev->bus), PCI_SLOT(sdev->devfn), PCI_FUNC(sdev->devfn), use_remapping); /* Turn off first then on the other */ if (use_remapping) { memory_region_set_enabled(&sdev->bypass_mr, false); memory_region_set_enabled(MEMORY_REGION(&sdev->iommu_mr), true); } else { memory_region_set_enabled(MEMORY_REGION(&sdev->iommu_mr), false); memory_region_set_enabled(&sdev->bypass_mr, true); } return use_remapping; } static void virtio_iommu_switch_address_space_all(VirtIOIOMMU *s) { GHashTableIter iter; IOMMUPciBus *iommu_pci_bus; int i; g_hash_table_iter_init(&iter, s->as_by_busptr); while (g_hash_table_iter_next(&iter, NULL, (void **)&iommu_pci_bus)) { for (i = 0; i < PCI_DEVFN_MAX; i++) { if (!iommu_pci_bus->pbdev[i]) { continue; } virtio_iommu_switch_address_space(iommu_pci_bus->pbdev[i]); } } } /** * The bus number is used for lookup when SID based operations occur. * In that case we lazily populate the IOMMUPciBus array from the bus hash * table. At the time the IOMMUPciBus is created (iommu_find_add_as), the bus * numbers may not be always initialized yet. */ static IOMMUPciBus *iommu_find_iommu_pcibus(VirtIOIOMMU *s, uint8_t bus_num) { IOMMUPciBus *iommu_pci_bus = s->iommu_pcibus_by_bus_num[bus_num]; if (!iommu_pci_bus) { GHashTableIter iter; g_hash_table_iter_init(&iter, s->as_by_busptr); while (g_hash_table_iter_next(&iter, NULL, (void **)&iommu_pci_bus)) { if (pci_bus_num(iommu_pci_bus->bus) == bus_num) { s->iommu_pcibus_by_bus_num[bus_num] = iommu_pci_bus; return iommu_pci_bus; } } return NULL; } return iommu_pci_bus; } static IOMMUMemoryRegion *virtio_iommu_mr(VirtIOIOMMU *s, uint32_t sid) { uint8_t bus_n, devfn; IOMMUPciBus *iommu_pci_bus; IOMMUDevice *dev; bus_n = PCI_BUS_NUM(sid); iommu_pci_bus = iommu_find_iommu_pcibus(s, bus_n); if (iommu_pci_bus) { devfn = sid & (PCI_DEVFN_MAX - 1); dev = iommu_pci_bus->pbdev[devfn]; if (dev) { return &dev->iommu_mr; } } return NULL; } static gint interval_cmp(gconstpointer a, gconstpointer b, gpointer user_data) { VirtIOIOMMUInterval *inta = (VirtIOIOMMUInterval *)a; VirtIOIOMMUInterval *intb = (VirtIOIOMMUInterval *)b; if (inta->high < intb->low) { return -1; } else if (intb->high < inta->low) { return 1; } else { return 0; } } static void virtio_iommu_notify_map_unmap(IOMMUMemoryRegion *mr, IOMMUTLBEvent *event, hwaddr virt_start, hwaddr virt_end) { uint64_t delta = virt_end - virt_start; event->entry.iova = virt_start; event->entry.addr_mask = delta; if (delta == UINT64_MAX) { memory_region_notify_iommu(mr, 0, *event); } while (virt_start != virt_end + 1) { uint64_t mask = dma_aligned_pow2_mask(virt_start, virt_end, 64); event->entry.addr_mask = mask; event->entry.iova = virt_start; memory_region_notify_iommu(mr, 0, *event); virt_start += mask + 1; if (event->entry.perm != IOMMU_NONE) { event->entry.translated_addr += mask + 1; } } } static void virtio_iommu_notify_map(IOMMUMemoryRegion *mr, hwaddr virt_start, hwaddr virt_end, hwaddr paddr, uint32_t flags) { IOMMUTLBEvent event; IOMMUAccessFlags perm = IOMMU_ACCESS_FLAG(flags & VIRTIO_IOMMU_MAP_F_READ, flags & VIRTIO_IOMMU_MAP_F_WRITE); if (!(mr->iommu_notify_flags & IOMMU_NOTIFIER_MAP) || (flags & VIRTIO_IOMMU_MAP_F_MMIO) || !perm) { return; } trace_virtio_iommu_notify_map(mr->parent_obj.name, virt_start, virt_end, paddr, perm); event.type = IOMMU_NOTIFIER_MAP; event.entry.target_as = &address_space_memory; event.entry.perm = perm; event.entry.translated_addr = paddr; virtio_iommu_notify_map_unmap(mr, &event, virt_start, virt_end); } static void virtio_iommu_notify_unmap(IOMMUMemoryRegion *mr, hwaddr virt_start, hwaddr virt_end) { IOMMUTLBEvent event; if (!(mr->iommu_notify_flags & IOMMU_NOTIFIER_UNMAP)) { return; } trace_virtio_iommu_notify_unmap(mr->parent_obj.name, virt_start, virt_end); event.type = IOMMU_NOTIFIER_UNMAP; event.entry.target_as = &address_space_memory; event.entry.perm = IOMMU_NONE; event.entry.translated_addr = 0; virtio_iommu_notify_map_unmap(mr, &event, virt_start, virt_end); } static gboolean virtio_iommu_notify_unmap_cb(gpointer key, gpointer value, gpointer data) { VirtIOIOMMUInterval *interval = (VirtIOIOMMUInterval *) key; IOMMUMemoryRegion *mr = (IOMMUMemoryRegion *) data; virtio_iommu_notify_unmap(mr, interval->low, interval->high); return false; } static gboolean virtio_iommu_notify_map_cb(gpointer key, gpointer value, gpointer data) { VirtIOIOMMUMapping *mapping = (VirtIOIOMMUMapping *) value; VirtIOIOMMUInterval *interval = (VirtIOIOMMUInterval *) key; IOMMUMemoryRegion *mr = (IOMMUMemoryRegion *) data; virtio_iommu_notify_map(mr, interval->low, interval->high, mapping->phys_addr, mapping->flags); return false; } static void virtio_iommu_detach_endpoint_from_domain(VirtIOIOMMUEndpoint *ep) { VirtIOIOMMUDomain *domain = ep->domain; IOMMUDevice *sdev = container_of(ep->iommu_mr, IOMMUDevice, iommu_mr); if (!ep->domain) { return; } g_tree_foreach(domain->mappings, virtio_iommu_notify_unmap_cb, ep->iommu_mr); QLIST_REMOVE(ep, next); ep->domain = NULL; virtio_iommu_switch_address_space(sdev); } static VirtIOIOMMUEndpoint *virtio_iommu_get_endpoint(VirtIOIOMMU *s, uint32_t ep_id) { VirtIOIOMMUEndpoint *ep; IOMMUMemoryRegion *mr; ep = g_tree_lookup(s->endpoints, GUINT_TO_POINTER(ep_id)); if (ep) { return ep; } mr = virtio_iommu_mr(s, ep_id); if (!mr) { return NULL; } ep = g_malloc0(sizeof(*ep)); ep->id = ep_id; ep->iommu_mr = mr; trace_virtio_iommu_get_endpoint(ep_id); g_tree_insert(s->endpoints, GUINT_TO_POINTER(ep_id), ep); return ep; } static void virtio_iommu_put_endpoint(gpointer data) { VirtIOIOMMUEndpoint *ep = (VirtIOIOMMUEndpoint *)data; if (ep->domain) { virtio_iommu_detach_endpoint_from_domain(ep); } trace_virtio_iommu_put_endpoint(ep->id); g_free(ep); } static VirtIOIOMMUDomain *virtio_iommu_get_domain(VirtIOIOMMU *s, uint32_t domain_id, bool bypass) { VirtIOIOMMUDomain *domain; domain = g_tree_lookup(s->domains, GUINT_TO_POINTER(domain_id)); if (domain) { if (domain->bypass != bypass) { return NULL; } return domain; } domain = g_malloc0(sizeof(*domain)); domain->id = domain_id; domain->mappings = g_tree_new_full((GCompareDataFunc)interval_cmp, NULL, (GDestroyNotify)g_free, (GDestroyNotify)g_free); domain->bypass = bypass; g_tree_insert(s->domains, GUINT_TO_POINTER(domain_id), domain); QLIST_INIT(&domain->endpoint_list); trace_virtio_iommu_get_domain(domain_id); return domain; } static void virtio_iommu_put_domain(gpointer data) { VirtIOIOMMUDomain *domain = (VirtIOIOMMUDomain *)data; VirtIOIOMMUEndpoint *iter, *tmp; QLIST_FOREACH_SAFE(iter, &domain->endpoint_list, next, tmp) { virtio_iommu_detach_endpoint_from_domain(iter); } g_tree_destroy(domain->mappings); trace_virtio_iommu_put_domain(domain->id); g_free(domain); } static void add_prop_resv_regions(IOMMUDevice *sdev) { VirtIOIOMMU *s = sdev->viommu; int i; for (i = 0; i < s->nr_prop_resv_regions; i++) { ReservedRegion *reg = g_new0(ReservedRegion, 1); *reg = s->prop_resv_regions[i]; sdev->resv_regions = resv_region_list_insert(sdev->resv_regions, reg); } } static AddressSpace *virtio_iommu_find_add_as(PCIBus *bus, void *opaque, int devfn) { VirtIOIOMMU *s = opaque; IOMMUPciBus *sbus = g_hash_table_lookup(s->as_by_busptr, bus); static uint32_t mr_index; IOMMUDevice *sdev; if (!sbus) { sbus = g_malloc0(sizeof(IOMMUPciBus) + sizeof(IOMMUDevice *) * PCI_DEVFN_MAX); sbus->bus = bus; g_hash_table_insert(s->as_by_busptr, bus, sbus); } sdev = sbus->pbdev[devfn]; if (!sdev) { char *name = g_strdup_printf("%s-%d-%d", TYPE_VIRTIO_IOMMU_MEMORY_REGION, mr_index++, devfn); sdev = sbus->pbdev[devfn] = g_new0(IOMMUDevice, 1); sdev->viommu = s; sdev->bus = bus; sdev->devfn = devfn; trace_virtio_iommu_init_iommu_mr(name); memory_region_init(&sdev->root, OBJECT(s), name, UINT64_MAX); address_space_init(&sdev->as, &sdev->root, TYPE_VIRTIO_IOMMU); add_prop_resv_regions(sdev); /* * Build the IOMMU disabled container with aliases to the * shared MRs. Note that aliasing to a shared memory region * could help the memory API to detect same FlatViews so we * can have devices to share the same FlatView when in bypass * mode. (either by not configuring virtio-iommu driver or with * "iommu=pt"). It will greatly reduce the total number of * FlatViews of the system hence VM runs faster. */ memory_region_init_alias(&sdev->bypass_mr, OBJECT(s), "system", get_system_memory(), 0, memory_region_size(get_system_memory())); memory_region_init_iommu(&sdev->iommu_mr, sizeof(sdev->iommu_mr), TYPE_VIRTIO_IOMMU_MEMORY_REGION, OBJECT(s), name, UINT64_MAX); /* * Hook both the containers under the root container, we * switch between iommu & bypass MRs by enable/disable * corresponding sub-containers */ memory_region_add_subregion_overlap(&sdev->root, 0, MEMORY_REGION(&sdev->iommu_mr), 0); memory_region_add_subregion_overlap(&sdev->root, 0, &sdev->bypass_mr, 0); virtio_iommu_switch_address_space(sdev); g_free(name); } return &sdev->as; } static void virtio_iommu_device_clear(VirtIOIOMMU *s, PCIBus *bus, int devfn) { IOMMUPciBus *sbus = g_hash_table_lookup(s->as_by_busptr, bus); IOMMUDevice *sdev; if (!sbus) { return; } sdev = sbus->pbdev[devfn]; if (!sdev) { return; } g_list_free_full(sdev->resv_regions, g_free); sdev->resv_regions = NULL; g_free(sdev); sbus->pbdev[devfn] = NULL; } static gboolean hiod_equal(gconstpointer v1, gconstpointer v2) { const struct hiod_key *key1 = v1; const struct hiod_key *key2 = v2; return (key1->bus == key2->bus) && (key1->devfn == key2->devfn); } static guint hiod_hash(gconstpointer v) { const struct hiod_key *key = v; guint value = (guint)(uintptr_t)key->bus; return (guint)(value << 8 | key->devfn); } static void hiod_destroy(gpointer v) { object_unref(v); } static HostIOMMUDevice * get_host_iommu_device(VirtIOIOMMU *viommu, PCIBus *bus, int devfn) { struct hiod_key key = { .bus = bus, .devfn = devfn, }; return g_hash_table_lookup(viommu->host_iommu_devices, &key); } /** * rebuild_resv_regions: rebuild resv regions with both the * info of host resv ranges and property set resv ranges */ static int rebuild_resv_regions(IOMMUDevice *sdev) { GList *l; int i = 0; /* free the existing list and rebuild it from scratch */ g_list_free_full(sdev->resv_regions, g_free); sdev->resv_regions = NULL; /* First add host reserved regions if any, all tagged as RESERVED */ for (l = sdev->host_resv_ranges; l; l = l->next) { ReservedRegion *reg = g_new0(ReservedRegion, 1); Range *r = (Range *)l->data; reg->type = VIRTIO_IOMMU_RESV_MEM_T_RESERVED; range_set_bounds(®->range, range_lob(r), range_upb(r)); sdev->resv_regions = resv_region_list_insert(sdev->resv_regions, reg); trace_virtio_iommu_host_resv_regions(sdev->iommu_mr.parent_obj.name, i, range_lob(®->range), range_upb(®->range)); i++; } /* * then add higher priority reserved regions set by the machine * through properties */ add_prop_resv_regions(sdev); return 0; } static int virtio_iommu_set_host_iova_ranges(VirtIOIOMMU *s, PCIBus *bus, int devfn, GList *iova_ranges, Error **errp) { IOMMUPciBus *sbus = g_hash_table_lookup(s->as_by_busptr, bus); IOMMUDevice *sdev; GList *current_ranges; GList *l, *tmp, *new_ranges = NULL; int ret = -EINVAL; if (!sbus) { error_setg(errp, "%s: no IOMMUPciBus found!", __func__); return ret; } sdev = sbus->pbdev[devfn]; if (!sdev) { error_setg(errp, "%s: no IOMMUDevice found!", __func__); return ret; } current_ranges = sdev->host_resv_ranges; g_assert(!sdev->probe_done); /* check that each new resv region is included in an existing one */ if (sdev->host_resv_ranges) { range_inverse_array(iova_ranges, &new_ranges, 0, UINT64_MAX); for (tmp = new_ranges; tmp; tmp = tmp->next) { Range *newr = (Range *)tmp->data; bool included = false; for (l = current_ranges; l; l = l->next) { Range * r = (Range *)l->data; if (range_contains_range(r, newr)) { included = true; break; } } if (!included) { goto error; } } /* all new reserved ranges are included in existing ones */ ret = 0; goto out; } range_inverse_array(iova_ranges, &sdev->host_resv_ranges, 0, UINT64_MAX); rebuild_resv_regions(sdev); return 0; error: error_setg(errp, "%s Conflicting host reserved ranges set!", __func__); out: g_list_free_full(new_ranges, g_free); return ret; } static bool virtio_iommu_set_iommu_device(PCIBus *bus, void *opaque, int devfn, HostIOMMUDevice *hiod, Error **errp) { VirtIOIOMMU *viommu = opaque; HostIOMMUDeviceClass *hiodc = HOST_IOMMU_DEVICE_GET_CLASS(hiod); struct hiod_key *new_key; GList *host_iova_ranges = NULL; assert(hiod); if (get_host_iommu_device(viommu, bus, devfn)) { error_setg(errp, "Host IOMMU device already exists"); return false; } if (hiodc->get_iova_ranges) { int ret; host_iova_ranges = hiodc->get_iova_ranges(hiod, errp); if (!host_iova_ranges) { return true; /* some old kernels may not support that capability */ } ret = virtio_iommu_set_host_iova_ranges(viommu, hiod->aliased_bus, hiod->aliased_devfn, host_iova_ranges, errp); if (ret) { g_list_free_full(host_iova_ranges, g_free); return false; } } new_key = g_malloc(sizeof(*new_key)); new_key->bus = bus; new_key->devfn = devfn; object_ref(hiod); g_hash_table_insert(viommu->host_iommu_devices, new_key, hiod); g_list_free_full(host_iova_ranges, g_free); return true; } static void virtio_iommu_unset_iommu_device(PCIBus *bus, void *opaque, int devfn) { VirtIOIOMMU *viommu = opaque; HostIOMMUDevice *hiod; struct hiod_key key = { .bus = bus, .devfn = devfn, }; hiod = g_hash_table_lookup(viommu->host_iommu_devices, &key); if (!hiod) { return; } g_hash_table_remove(viommu->host_iommu_devices, &key); virtio_iommu_device_clear(viommu, bus, devfn); } static const PCIIOMMUOps virtio_iommu_ops = { .get_address_space = virtio_iommu_find_add_as, .set_iommu_device = virtio_iommu_set_iommu_device, .unset_iommu_device = virtio_iommu_unset_iommu_device, }; static int virtio_iommu_attach(VirtIOIOMMU *s, struct virtio_iommu_req_attach *req) { uint32_t domain_id = le32_to_cpu(req->domain); uint32_t ep_id = le32_to_cpu(req->endpoint); uint32_t flags = le32_to_cpu(req->flags); VirtIOIOMMUDomain *domain; VirtIOIOMMUEndpoint *ep; IOMMUDevice *sdev; trace_virtio_iommu_attach(domain_id, ep_id); if (flags & ~VIRTIO_IOMMU_ATTACH_F_BYPASS) { return VIRTIO_IOMMU_S_INVAL; } ep = virtio_iommu_get_endpoint(s, ep_id); if (!ep) { return VIRTIO_IOMMU_S_NOENT; } if (ep->domain) { VirtIOIOMMUDomain *previous_domain = ep->domain; /* * the device is already attached to a domain, * detach it first */ virtio_iommu_detach_endpoint_from_domain(ep); if (QLIST_EMPTY(&previous_domain->endpoint_list)) { g_tree_remove(s->domains, GUINT_TO_POINTER(previous_domain->id)); } } domain = virtio_iommu_get_domain(s, domain_id, flags & VIRTIO_IOMMU_ATTACH_F_BYPASS); if (!domain) { /* Incompatible bypass flag */ return VIRTIO_IOMMU_S_INVAL; } QLIST_INSERT_HEAD(&domain->endpoint_list, ep, next); ep->domain = domain; sdev = container_of(ep->iommu_mr, IOMMUDevice, iommu_mr); virtio_iommu_switch_address_space(sdev); /* Replay domain mappings on the associated memory region */ g_tree_foreach(domain->mappings, virtio_iommu_notify_map_cb, ep->iommu_mr); return VIRTIO_IOMMU_S_OK; } static int virtio_iommu_detach(VirtIOIOMMU *s, struct virtio_iommu_req_detach *req) { uint32_t domain_id = le32_to_cpu(req->domain); uint32_t ep_id = le32_to_cpu(req->endpoint); VirtIOIOMMUDomain *domain; VirtIOIOMMUEndpoint *ep; trace_virtio_iommu_detach(domain_id, ep_id); ep = g_tree_lookup(s->endpoints, GUINT_TO_POINTER(ep_id)); if (!ep) { return VIRTIO_IOMMU_S_NOENT; } domain = ep->domain; if (!domain || domain->id != domain_id) { return VIRTIO_IOMMU_S_INVAL; } virtio_iommu_detach_endpoint_from_domain(ep); if (QLIST_EMPTY(&domain->endpoint_list)) { g_tree_remove(s->domains, GUINT_TO_POINTER(domain->id)); } return VIRTIO_IOMMU_S_OK; } static int virtio_iommu_map(VirtIOIOMMU *s, struct virtio_iommu_req_map *req) { uint32_t domain_id = le32_to_cpu(req->domain); uint64_t phys_start = le64_to_cpu(req->phys_start); uint64_t virt_start = le64_to_cpu(req->virt_start); uint64_t virt_end = le64_to_cpu(req->virt_end); uint32_t flags = le32_to_cpu(req->flags); VirtIOIOMMUDomain *domain; VirtIOIOMMUInterval *interval; VirtIOIOMMUMapping *mapping; VirtIOIOMMUEndpoint *ep; if (flags & ~VIRTIO_IOMMU_MAP_F_MASK) { return VIRTIO_IOMMU_S_INVAL; } domain = g_tree_lookup(s->domains, GUINT_TO_POINTER(domain_id)); if (!domain) { return VIRTIO_IOMMU_S_NOENT; } if (domain->bypass) { return VIRTIO_IOMMU_S_INVAL; } interval = g_malloc0(sizeof(*interval)); interval->low = virt_start; interval->high = virt_end; mapping = g_tree_lookup(domain->mappings, (gpointer)interval); if (mapping) { g_free(interval); return VIRTIO_IOMMU_S_INVAL; } trace_virtio_iommu_map(domain_id, virt_start, virt_end, phys_start, flags); mapping = g_malloc0(sizeof(*mapping)); mapping->phys_addr = phys_start; mapping->flags = flags; g_tree_insert(domain->mappings, interval, mapping); QLIST_FOREACH(ep, &domain->endpoint_list, next) { virtio_iommu_notify_map(ep->iommu_mr, virt_start, virt_end, phys_start, flags); } return VIRTIO_IOMMU_S_OK; } static int virtio_iommu_unmap(VirtIOIOMMU *s, struct virtio_iommu_req_unmap *req) { uint32_t domain_id = le32_to_cpu(req->domain); uint64_t virt_start = le64_to_cpu(req->virt_start); uint64_t virt_end = le64_to_cpu(req->virt_end); VirtIOIOMMUMapping *iter_val; VirtIOIOMMUInterval interval, *iter_key; VirtIOIOMMUDomain *domain; VirtIOIOMMUEndpoint *ep; int ret = VIRTIO_IOMMU_S_OK; trace_virtio_iommu_unmap(domain_id, virt_start, virt_end); domain = g_tree_lookup(s->domains, GUINT_TO_POINTER(domain_id)); if (!domain) { return VIRTIO_IOMMU_S_NOENT; } if (domain->bypass) { return VIRTIO_IOMMU_S_INVAL; } interval.low = virt_start; interval.high = virt_end; while (g_tree_lookup_extended(domain->mappings, &interval, (void **)&iter_key, (void**)&iter_val)) { uint64_t current_low = iter_key->low; uint64_t current_high = iter_key->high; if (interval.low <= current_low && interval.high >= current_high) { QLIST_FOREACH(ep, &domain->endpoint_list, next) { virtio_iommu_notify_unmap(ep->iommu_mr, current_low, current_high); } g_tree_remove(domain->mappings, iter_key); trace_virtio_iommu_unmap_done(domain_id, current_low, current_high); } else { ret = VIRTIO_IOMMU_S_RANGE; break; } } return ret; } static ssize_t virtio_iommu_fill_resv_mem_prop(IOMMUDevice *sdev, uint32_t ep, uint8_t *buf, size_t free) { struct virtio_iommu_probe_resv_mem prop = {}; size_t size = sizeof(prop), length = size - sizeof(prop.head), total; GList *l; total = size * g_list_length(sdev->resv_regions); if (total > free) { return -ENOSPC; } for (l = sdev->resv_regions; l; l = l->next) { ReservedRegion *reg = l->data; unsigned subtype = reg->type; Range *range = ®->range; assert(subtype == VIRTIO_IOMMU_RESV_MEM_T_RESERVED || subtype == VIRTIO_IOMMU_RESV_MEM_T_MSI); prop.head.type = cpu_to_le16(VIRTIO_IOMMU_PROBE_T_RESV_MEM); prop.head.length = cpu_to_le16(length); prop.subtype = subtype; prop.start = cpu_to_le64(range_lob(range)); prop.end = cpu_to_le64(range_upb(range)); memcpy(buf, &prop, size); trace_virtio_iommu_fill_resv_property(ep, prop.subtype, prop.start, prop.end); buf += size; } return total; } /** * virtio_iommu_probe - Fill the probe request buffer with * the properties the device is able to return */ static int virtio_iommu_probe(VirtIOIOMMU *s, struct virtio_iommu_req_probe *req, uint8_t *buf) { uint32_t ep_id = le32_to_cpu(req->endpoint); IOMMUMemoryRegion *iommu_mr = virtio_iommu_mr(s, ep_id); size_t free = VIOMMU_PROBE_SIZE; IOMMUDevice *sdev; ssize_t count; if (!iommu_mr) { return VIRTIO_IOMMU_S_NOENT; } sdev = container_of(iommu_mr, IOMMUDevice, iommu_mr); count = virtio_iommu_fill_resv_mem_prop(sdev, ep_id, buf, free); if (count < 0) { return VIRTIO_IOMMU_S_INVAL; } buf += count; free -= count; sdev->probe_done = true; return VIRTIO_IOMMU_S_OK; } static int virtio_iommu_iov_to_req(struct iovec *iov, unsigned int iov_cnt, void *req, size_t payload_sz) { size_t sz = iov_to_buf(iov, iov_cnt, 0, req, payload_sz); if (unlikely(sz != payload_sz)) { return VIRTIO_IOMMU_S_INVAL; } return 0; } #define virtio_iommu_handle_req(__req) \ static int virtio_iommu_handle_ ## __req(VirtIOIOMMU *s, \ struct iovec *iov, \ unsigned int iov_cnt) \ { \ struct virtio_iommu_req_ ## __req req; \ int ret = virtio_iommu_iov_to_req(iov, iov_cnt, &req, \ sizeof(req) - sizeof(struct virtio_iommu_req_tail));\ \ return ret ? ret : virtio_iommu_ ## __req(s, &req); \ } virtio_iommu_handle_req(attach) virtio_iommu_handle_req(detach) virtio_iommu_handle_req(map) virtio_iommu_handle_req(unmap) static int virtio_iommu_handle_probe(VirtIOIOMMU *s, struct iovec *iov, unsigned int iov_cnt, uint8_t *buf) { struct virtio_iommu_req_probe req; int ret = virtio_iommu_iov_to_req(iov, iov_cnt, &req, sizeof(req)); return ret ? ret : virtio_iommu_probe(s, &req, buf); } static void virtio_iommu_handle_command(VirtIODevice *vdev, VirtQueue *vq) { VirtIOIOMMU *s = VIRTIO_IOMMU(vdev); struct virtio_iommu_req_head head; struct virtio_iommu_req_tail tail = {}; VirtQueueElement *elem; unsigned int iov_cnt; struct iovec *iov; void *buf = NULL; size_t sz; for (;;) { size_t output_size = sizeof(tail); elem = virtqueue_pop(vq, sizeof(VirtQueueElement)); if (!elem) { return; } if (iov_size(elem->in_sg, elem->in_num) < sizeof(tail) || iov_size(elem->out_sg, elem->out_num) < sizeof(head)) { virtio_error(vdev, "virtio-iommu bad head/tail size"); virtqueue_detach_element(vq, elem, 0); g_free(elem); break; } iov_cnt = elem->out_num; iov = elem->out_sg; sz = iov_to_buf(iov, iov_cnt, 0, &head, sizeof(head)); if (unlikely(sz != sizeof(head))) { qemu_log_mask(LOG_GUEST_ERROR, "%s: read %zu bytes from command head" "but expected %zu\n", __func__, sz, sizeof(head)); tail.status = VIRTIO_IOMMU_S_DEVERR; goto out; } qemu_rec_mutex_lock(&s->mutex); switch (head.type) { case VIRTIO_IOMMU_T_ATTACH: tail.status = virtio_iommu_handle_attach(s, iov, iov_cnt); break; case VIRTIO_IOMMU_T_DETACH: tail.status = virtio_iommu_handle_detach(s, iov, iov_cnt); break; case VIRTIO_IOMMU_T_MAP: tail.status = virtio_iommu_handle_map(s, iov, iov_cnt); break; case VIRTIO_IOMMU_T_UNMAP: tail.status = virtio_iommu_handle_unmap(s, iov, iov_cnt); break; case VIRTIO_IOMMU_T_PROBE: { struct virtio_iommu_req_tail *ptail; output_size = s->config.probe_size + sizeof(tail); buf = g_malloc0(output_size); ptail = buf + s->config.probe_size; ptail->status = virtio_iommu_handle_probe(s, iov, iov_cnt, buf); break; } default: tail.status = VIRTIO_IOMMU_S_UNSUPP; } qemu_rec_mutex_unlock(&s->mutex); out: sz = iov_from_buf(elem->in_sg, elem->in_num, 0, buf ? buf : &tail, output_size); if (unlikely(sz != output_size)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: wrote %zu bytes to command response" "but response size is %zu\n", __func__, sz, output_size); tail.status = VIRTIO_IOMMU_S_DEVERR; /* * We checked that sizeof(tail) can fit to elem->in_sg at the * beginning of the loop */ output_size = sizeof(tail); g_free(buf); buf = NULL; sz = iov_from_buf(elem->in_sg, elem->in_num, 0, &tail, output_size); } assert(sz == output_size); virtqueue_push(vq, elem, sz); virtio_notify(vdev, vq); g_free(elem); g_free(buf); buf = NULL; } } static void virtio_iommu_report_fault(VirtIOIOMMU *viommu, uint8_t reason, int flags, uint32_t endpoint, uint64_t address) { VirtIODevice *vdev = &viommu->parent_obj; VirtQueue *vq = viommu->event_vq; struct virtio_iommu_fault fault; VirtQueueElement *elem; size_t sz; memset(&fault, 0, sizeof(fault)); fault.reason = reason; fault.flags = cpu_to_le32(flags); fault.endpoint = cpu_to_le32(endpoint); fault.address = cpu_to_le64(address); elem = virtqueue_pop(vq, sizeof(VirtQueueElement)); if (!elem) { error_report_once( "no buffer available in event queue to report event"); return; } if (iov_size(elem->in_sg, elem->in_num) < sizeof(fault)) { virtio_error(vdev, "error buffer of wrong size"); virtqueue_detach_element(vq, elem, 0); g_free(elem); return; } sz = iov_from_buf(elem->in_sg, elem->in_num, 0, &fault, sizeof(fault)); assert(sz == sizeof(fault)); trace_virtio_iommu_report_fault(reason, flags, endpoint, address); virtqueue_push(vq, elem, sz); virtio_notify(vdev, vq); g_free(elem); } static IOMMUTLBEntry virtio_iommu_translate(IOMMUMemoryRegion *mr, hwaddr addr, IOMMUAccessFlags flag, int iommu_idx) { IOMMUDevice *sdev = container_of(mr, IOMMUDevice, iommu_mr); VirtIOIOMMUInterval interval, *mapping_key; VirtIOIOMMUMapping *mapping_value; VirtIOIOMMU *s = sdev->viommu; bool read_fault, write_fault; VirtIOIOMMUEndpoint *ep; uint32_t sid, flags; bool bypass_allowed; int granule; bool found; GList *l; interval.low = addr; interval.high = addr + 1; granule = ctz64(s->config.page_size_mask); IOMMUTLBEntry entry = { .target_as = &address_space_memory, .iova = addr, .translated_addr = addr, .addr_mask = BIT_ULL(granule) - 1, .perm = IOMMU_NONE, }; bypass_allowed = s->config.bypass; sid = virtio_iommu_get_bdf(sdev); trace_virtio_iommu_translate(mr->parent_obj.name, sid, addr, flag); qemu_rec_mutex_lock(&s->mutex); ep = g_tree_lookup(s->endpoints, GUINT_TO_POINTER(sid)); if (bypass_allowed) assert(ep && ep->domain && !ep->domain->bypass); if (!ep) { if (!bypass_allowed) { error_report_once("%s sid=%d is not known!!", __func__, sid); virtio_iommu_report_fault(s, VIRTIO_IOMMU_FAULT_R_UNKNOWN, VIRTIO_IOMMU_FAULT_F_ADDRESS, sid, addr); } else { entry.perm = flag; } goto unlock; } for (l = sdev->resv_regions; l; l = l->next) { ReservedRegion *reg = l->data; if (range_contains(®->range, addr)) { switch (reg->type) { case VIRTIO_IOMMU_RESV_MEM_T_MSI: entry.perm = flag; break; case VIRTIO_IOMMU_RESV_MEM_T_RESERVED: default: virtio_iommu_report_fault(s, VIRTIO_IOMMU_FAULT_R_MAPPING, VIRTIO_IOMMU_FAULT_F_ADDRESS, sid, addr); break; } goto unlock; } } if (!ep->domain) { if (!bypass_allowed) { error_report_once("%s %02x:%02x.%01x not attached to any domain", __func__, PCI_BUS_NUM(sid), PCI_SLOT(sid), PCI_FUNC(sid)); virtio_iommu_report_fault(s, VIRTIO_IOMMU_FAULT_R_DOMAIN, VIRTIO_IOMMU_FAULT_F_ADDRESS, sid, addr); } else { entry.perm = flag; } goto unlock; } else if (ep->domain->bypass) { entry.perm = flag; goto unlock; } found = g_tree_lookup_extended(ep->domain->mappings, (gpointer)(&interval), (void **)&mapping_key, (void **)&mapping_value); if (!found) { error_report_once("%s no mapping for 0x%"PRIx64" for sid=%d", __func__, addr, sid); virtio_iommu_report_fault(s, VIRTIO_IOMMU_FAULT_R_MAPPING, VIRTIO_IOMMU_FAULT_F_ADDRESS, sid, addr); goto unlock; } read_fault = (flag & IOMMU_RO) && !(mapping_value->flags & VIRTIO_IOMMU_MAP_F_READ); write_fault = (flag & IOMMU_WO) && !(mapping_value->flags & VIRTIO_IOMMU_MAP_F_WRITE); flags = read_fault ? VIRTIO_IOMMU_FAULT_F_READ : 0; flags |= write_fault ? VIRTIO_IOMMU_FAULT_F_WRITE : 0; if (flags) { error_report_once("%s permission error on 0x%"PRIx64"(%d): allowed=%d", __func__, addr, flag, mapping_value->flags); flags |= VIRTIO_IOMMU_FAULT_F_ADDRESS; virtio_iommu_report_fault(s, VIRTIO_IOMMU_FAULT_R_MAPPING, flags | VIRTIO_IOMMU_FAULT_F_ADDRESS, sid, addr); goto unlock; } entry.translated_addr = addr - mapping_key->low + mapping_value->phys_addr; entry.perm = flag; trace_virtio_iommu_translate_out(addr, entry.translated_addr, sid); unlock: qemu_rec_mutex_unlock(&s->mutex); return entry; } static void virtio_iommu_get_config(VirtIODevice *vdev, uint8_t *config_data) { VirtIOIOMMU *dev = VIRTIO_IOMMU(vdev); struct virtio_iommu_config *dev_config = &dev->config; struct virtio_iommu_config *out_config = (void *)config_data; out_config->page_size_mask = cpu_to_le64(dev_config->page_size_mask); out_config->input_range.start = cpu_to_le64(dev_config->input_range.start); out_config->input_range.end = cpu_to_le64(dev_config->input_range.end); out_config->domain_range.start = cpu_to_le32(dev_config->domain_range.start); out_config->domain_range.end = cpu_to_le32(dev_config->domain_range.end); out_config->probe_size = cpu_to_le32(dev_config->probe_size); out_config->bypass = dev_config->bypass; trace_virtio_iommu_get_config(dev_config->page_size_mask, dev_config->input_range.start, dev_config->input_range.end, dev_config->domain_range.start, dev_config->domain_range.end, dev_config->probe_size, dev_config->bypass); } static void virtio_iommu_set_config(VirtIODevice *vdev, const uint8_t *config_data) { VirtIOIOMMU *dev = VIRTIO_IOMMU(vdev); struct virtio_iommu_config *dev_config = &dev->config; const struct virtio_iommu_config *in_config = (void *)config_data; if (in_config->bypass != dev_config->bypass) { if (!virtio_vdev_has_feature(vdev, VIRTIO_IOMMU_F_BYPASS_CONFIG)) { virtio_error(vdev, "cannot set config.bypass"); return; } else if (in_config->bypass != 0 && in_config->bypass != 1) { virtio_error(vdev, "invalid config.bypass value '%u'", in_config->bypass); return; } dev_config->bypass = in_config->bypass; virtio_iommu_switch_address_space_all(dev); } trace_virtio_iommu_set_config(in_config->bypass); } static uint64_t virtio_iommu_get_features(VirtIODevice *vdev, uint64_t f, Error **errp) { VirtIOIOMMU *dev = VIRTIO_IOMMU(vdev); f |= dev->features; trace_virtio_iommu_get_features(f); return f; } static gint int_cmp(gconstpointer a, gconstpointer b, gpointer user_data) { guint ua = GPOINTER_TO_UINT(a); guint ub = GPOINTER_TO_UINT(b); return (ua > ub) - (ua < ub); } static gboolean virtio_iommu_remap(gpointer key, gpointer value, gpointer data) { VirtIOIOMMUMapping *mapping = (VirtIOIOMMUMapping *) value; VirtIOIOMMUInterval *interval = (VirtIOIOMMUInterval *) key; IOMMUMemoryRegion *mr = (IOMMUMemoryRegion *) data; trace_virtio_iommu_remap(mr->parent_obj.name, interval->low, interval->high, mapping->phys_addr); virtio_iommu_notify_map(mr, interval->low, interval->high, mapping->phys_addr, mapping->flags); return false; } static void virtio_iommu_replay(IOMMUMemoryRegion *mr, IOMMUNotifier *n) { IOMMUDevice *sdev = container_of(mr, IOMMUDevice, iommu_mr); VirtIOIOMMU *s = sdev->viommu; uint32_t sid; VirtIOIOMMUEndpoint *ep; sid = virtio_iommu_get_bdf(sdev); qemu_rec_mutex_lock(&s->mutex); if (!s->endpoints) { goto unlock; } ep = g_tree_lookup(s->endpoints, GUINT_TO_POINTER(sid)); if (!ep || !ep->domain) { goto unlock; } g_tree_foreach(ep->domain->mappings, virtio_iommu_remap, mr); unlock: qemu_rec_mutex_unlock(&s->mutex); } static int virtio_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu_mr, IOMMUNotifierFlag old, IOMMUNotifierFlag new, Error **errp) { if (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) { error_setg(errp, "Virtio-iommu does not support dev-iotlb yet"); return -EINVAL; } if (old == IOMMU_NOTIFIER_NONE) { trace_virtio_iommu_notify_flag_add(iommu_mr->parent_obj.name); } else if (new == IOMMU_NOTIFIER_NONE) { trace_virtio_iommu_notify_flag_del(iommu_mr->parent_obj.name); } return 0; } /* * The default mask depends on the "granule" property. For example, with * 4k granule, it is -(4 * KiB). When an assigned device has page size * restrictions due to the hardware IOMMU configuration, apply this restriction * to the mask. */ static int virtio_iommu_set_page_size_mask(IOMMUMemoryRegion *mr, uint64_t new_mask, Error **errp) { IOMMUDevice *sdev = container_of(mr, IOMMUDevice, iommu_mr); VirtIOIOMMU *s = sdev->viommu; uint64_t cur_mask = s->config.page_size_mask; trace_virtio_iommu_set_page_size_mask(mr->parent_obj.name, cur_mask, new_mask); if ((cur_mask & new_mask) == 0) { error_setg(errp, "virtio-iommu %s reports a page size mask 0x%"PRIx64 " incompatible with currently supported mask 0x%"PRIx64, mr->parent_obj.name, new_mask, cur_mask); return -1; } /* * Once the granule is frozen we can't change the mask anymore. If by * chance the hotplugged device supports the same granule, we can still * accept it. */ if (s->granule_frozen) { int cur_granule = ctz64(cur_mask); if (!(BIT_ULL(cur_granule) & new_mask)) { error_setg(errp, "virtio-iommu %s does not support frozen granule 0x%llx", mr->parent_obj.name, BIT_ULL(cur_granule)); return -1; } return 0; } s->config.page_size_mask &= new_mask; return 0; } static void virtio_iommu_system_reset(void *opaque) { VirtIOIOMMU *s = opaque; trace_virtio_iommu_system_reset(); memset(s->iommu_pcibus_by_bus_num, 0, sizeof(s->iommu_pcibus_by_bus_num)); /* * config.bypass is sticky across device reset, but should be restored on * system reset */ s->config.bypass = s->boot_bypass; virtio_iommu_switch_address_space_all(s); } static void virtio_iommu_freeze_granule(Notifier *notifier, void *data) { VirtIOIOMMU *s = container_of(notifier, VirtIOIOMMU, machine_done); int granule; if (likely(s->config.bypass)) { /* * Transient IOMMU MR enable to collect page_size_mask requirements * through memory_region_iommu_set_page_size_mask() called by * VFIO region_add() callback */ s->config.bypass = false; virtio_iommu_switch_address_space_all(s); /* restore default */ s->config.bypass = true; virtio_iommu_switch_address_space_all(s); } s->granule_frozen = true; granule = ctz64(s->config.page_size_mask); trace_virtio_iommu_freeze_granule(BIT_ULL(granule)); } static void virtio_iommu_device_realize(DeviceState *dev, Error **errp) { VirtIODevice *vdev = VIRTIO_DEVICE(dev); VirtIOIOMMU *s = VIRTIO_IOMMU(dev); virtio_init(vdev, VIRTIO_ID_IOMMU, sizeof(struct virtio_iommu_config)); s->req_vq = virtio_add_queue(vdev, VIOMMU_DEFAULT_QUEUE_SIZE, virtio_iommu_handle_command); s->event_vq = virtio_add_queue(vdev, VIOMMU_DEFAULT_QUEUE_SIZE, NULL); /* * config.bypass is needed to get initial address space early, such as * in vfio realize */ s->config.bypass = s->boot_bypass; if (s->aw_bits < 32 || s->aw_bits > 64) { error_setg(errp, "aw-bits must be within [32,64]"); return; } s->config.input_range.end = s->aw_bits == 64 ? UINT64_MAX : BIT_ULL(s->aw_bits) - 1; switch (s->granule_mode) { case GRANULE_MODE_4K: s->config.page_size_mask = -(4 * KiB); break; case GRANULE_MODE_8K: s->config.page_size_mask = -(8 * KiB); break; case GRANULE_MODE_16K: s->config.page_size_mask = -(16 * KiB); break; case GRANULE_MODE_64K: s->config.page_size_mask = -(64 * KiB); break; case GRANULE_MODE_HOST: s->config.page_size_mask = qemu_real_host_page_mask(); break; default: error_setg(errp, "Unsupported granule mode"); } s->config.domain_range.end = UINT32_MAX; s->config.probe_size = VIOMMU_PROBE_SIZE; virtio_add_feature(&s->features, VIRTIO_RING_F_EVENT_IDX); virtio_add_feature(&s->features, VIRTIO_RING_F_INDIRECT_DESC); virtio_add_feature(&s->features, VIRTIO_F_VERSION_1); virtio_add_feature(&s->features, VIRTIO_IOMMU_F_INPUT_RANGE); virtio_add_feature(&s->features, VIRTIO_IOMMU_F_DOMAIN_RANGE); virtio_add_feature(&s->features, VIRTIO_IOMMU_F_MAP_UNMAP); virtio_add_feature(&s->features, VIRTIO_IOMMU_F_MMIO); virtio_add_feature(&s->features, VIRTIO_IOMMU_F_PROBE); virtio_add_feature(&s->features, VIRTIO_IOMMU_F_BYPASS_CONFIG); qemu_rec_mutex_init(&s->mutex); s->as_by_busptr = g_hash_table_new_full(NULL, NULL, NULL, g_free); s->host_iommu_devices = g_hash_table_new_full(hiod_hash, hiod_equal, g_free, hiod_destroy); if (s->primary_bus) { pci_setup_iommu(s->primary_bus, &virtio_iommu_ops, s); } else { error_setg(errp, "VIRTIO-IOMMU is not attached to any PCI bus!"); } s->machine_done.notify = virtio_iommu_freeze_granule; qemu_add_machine_init_done_notifier(&s->machine_done); qemu_register_reset(virtio_iommu_system_reset, s); } static void virtio_iommu_device_unrealize(DeviceState *dev) { VirtIODevice *vdev = VIRTIO_DEVICE(dev); VirtIOIOMMU *s = VIRTIO_IOMMU(dev); qemu_unregister_reset(virtio_iommu_system_reset, s); qemu_remove_machine_init_done_notifier(&s->machine_done); g_hash_table_destroy(s->as_by_busptr); if (s->domains) { g_tree_destroy(s->domains); } if (s->endpoints) { g_tree_destroy(s->endpoints); } qemu_rec_mutex_destroy(&s->mutex); virtio_delete_queue(s->req_vq); virtio_delete_queue(s->event_vq); virtio_cleanup(vdev); } static void virtio_iommu_device_reset(VirtIODevice *vdev) { VirtIOIOMMU *s = VIRTIO_IOMMU(vdev); trace_virtio_iommu_device_reset(); if (s->domains) { g_tree_destroy(s->domains); } if (s->endpoints) { g_tree_destroy(s->endpoints); } s->domains = g_tree_new_full((GCompareDataFunc)int_cmp, NULL, NULL, virtio_iommu_put_domain); s->endpoints = g_tree_new_full((GCompareDataFunc)int_cmp, NULL, NULL, virtio_iommu_put_endpoint); } static void virtio_iommu_set_status(VirtIODevice *vdev, uint8_t status) { trace_virtio_iommu_device_status(status); } static void virtio_iommu_instance_init(Object *obj) { } #define VMSTATE_INTERVAL \ { \ .name = "interval", \ .version_id = 1, \ .minimum_version_id = 1, \ .fields = (const VMStateField[]) { \ VMSTATE_UINT64(low, VirtIOIOMMUInterval), \ VMSTATE_UINT64(high, VirtIOIOMMUInterval), \ VMSTATE_END_OF_LIST() \ } \ } #define VMSTATE_MAPPING \ { \ .name = "mapping", \ .version_id = 1, \ .minimum_version_id = 1, \ .fields = (const VMStateField[]) { \ VMSTATE_UINT64(phys_addr, VirtIOIOMMUMapping),\ VMSTATE_UINT32(flags, VirtIOIOMMUMapping), \ VMSTATE_END_OF_LIST() \ }, \ } static const VMStateDescription vmstate_interval_mapping[2] = { VMSTATE_MAPPING, /* value */ VMSTATE_INTERVAL /* key */ }; static int domain_preload(void *opaque) { VirtIOIOMMUDomain *domain = opaque; domain->mappings = g_tree_new_full((GCompareDataFunc)interval_cmp, NULL, g_free, g_free); return 0; } static const VMStateDescription vmstate_endpoint = { .name = "endpoint", .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT32(id, VirtIOIOMMUEndpoint), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_domain = { .name = "domain", .version_id = 2, .minimum_version_id = 2, .pre_load = domain_preload, .fields = (const VMStateField[]) { VMSTATE_UINT32(id, VirtIOIOMMUDomain), VMSTATE_GTREE_V(mappings, VirtIOIOMMUDomain, 1, vmstate_interval_mapping, VirtIOIOMMUInterval, VirtIOIOMMUMapping), VMSTATE_QLIST_V(endpoint_list, VirtIOIOMMUDomain, 1, vmstate_endpoint, VirtIOIOMMUEndpoint, next), VMSTATE_BOOL_V(bypass, VirtIOIOMMUDomain, 2), VMSTATE_END_OF_LIST() } }; static gboolean reconstruct_endpoints(gpointer key, gpointer value, gpointer data) { VirtIOIOMMU *s = (VirtIOIOMMU *)data; VirtIOIOMMUDomain *d = (VirtIOIOMMUDomain *)value; VirtIOIOMMUEndpoint *iter; IOMMUMemoryRegion *mr; QLIST_FOREACH(iter, &d->endpoint_list, next) { mr = virtio_iommu_mr(s, iter->id); assert(mr); iter->domain = d; iter->iommu_mr = mr; g_tree_insert(s->endpoints, GUINT_TO_POINTER(iter->id), iter); } return false; /* continue the domain traversal */ } static int iommu_post_load(void *opaque, int version_id) { VirtIOIOMMU *s = opaque; g_tree_foreach(s->domains, reconstruct_endpoints, s); /* * Memory regions are dynamically turned on/off depending on * 'config.bypass' and attached domain type if there is. After * migration, we need to make sure the memory regions are * still correct. */ virtio_iommu_switch_address_space_all(s); return 0; } static const VMStateDescription vmstate_virtio_iommu_device = { .name = "virtio-iommu-device", .minimum_version_id = 2, .version_id = 2, .post_load = iommu_post_load, .fields = (const VMStateField[]) { VMSTATE_GTREE_DIRECT_KEY_V(domains, VirtIOIOMMU, 2, &vmstate_domain, VirtIOIOMMUDomain), VMSTATE_UINT8_V(config.bypass, VirtIOIOMMU, 2), VMSTATE_END_OF_LIST() }, }; static const VMStateDescription vmstate_virtio_iommu = { .name = "virtio-iommu", .minimum_version_id = 2, .priority = MIG_PRI_IOMMU, .version_id = 2, .fields = (const VMStateField[]) { VMSTATE_VIRTIO_DEVICE, VMSTATE_END_OF_LIST() }, }; static Property virtio_iommu_properties[] = { DEFINE_PROP_LINK("primary-bus", VirtIOIOMMU, primary_bus, TYPE_PCI_BUS, PCIBus *), DEFINE_PROP_BOOL("boot-bypass", VirtIOIOMMU, boot_bypass, true), DEFINE_PROP_GRANULE_MODE("granule", VirtIOIOMMU, granule_mode, GRANULE_MODE_HOST), DEFINE_PROP_UINT8("aw-bits", VirtIOIOMMU, aw_bits, 64), DEFINE_PROP_END_OF_LIST(), }; static void virtio_iommu_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); VirtioDeviceClass *vdc = VIRTIO_DEVICE_CLASS(klass); device_class_set_props(dc, virtio_iommu_properties); dc->vmsd = &vmstate_virtio_iommu; set_bit(DEVICE_CATEGORY_MISC, dc->categories); vdc->realize = virtio_iommu_device_realize; vdc->unrealize = virtio_iommu_device_unrealize; vdc->reset = virtio_iommu_device_reset; vdc->get_config = virtio_iommu_get_config; vdc->set_config = virtio_iommu_set_config; vdc->get_features = virtio_iommu_get_features; vdc->set_status = virtio_iommu_set_status; vdc->vmsd = &vmstate_virtio_iommu_device; } static void virtio_iommu_memory_region_class_init(ObjectClass *klass, void *data) { IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); imrc->translate = virtio_iommu_translate; imrc->replay = virtio_iommu_replay; imrc->notify_flag_changed = virtio_iommu_notify_flag_changed; imrc->iommu_set_page_size_mask = virtio_iommu_set_page_size_mask; } static const TypeInfo virtio_iommu_info = { .name = TYPE_VIRTIO_IOMMU, .parent = TYPE_VIRTIO_DEVICE, .instance_size = sizeof(VirtIOIOMMU), .instance_init = virtio_iommu_instance_init, .class_init = virtio_iommu_class_init, }; static const TypeInfo virtio_iommu_memory_region_info = { .parent = TYPE_IOMMU_MEMORY_REGION, .name = TYPE_VIRTIO_IOMMU_MEMORY_REGION, .class_init = virtio_iommu_memory_region_class_init, }; static void virtio_register_types(void) { type_register_static(&virtio_iommu_info); type_register_static(&virtio_iommu_memory_region_info); } type_init(virtio_register_types)