/* * QEMU SPAPR Dynamic Reconfiguration Connector Implementation * * Copyright IBM Corp. 2014 * * Authors: * Michael Roth * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qapi/error.h" #include "cpu.h" #include "qemu/cutils.h" #include "hw/ppc/spapr_drc.h" #include "qom/object.h" #include "hw/qdev.h" #include "qapi/visitor.h" #include "qemu/error-report.h" #include "hw/ppc/spapr.h" /* for RTAS return codes */ #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ #include "trace.h" #define DRC_CONTAINER_PATH "/dr-connector" #define DRC_INDEX_TYPE_SHIFT 28 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) sPAPRDRConnectorType spapr_drc_type(sPAPRDRConnector *drc) { sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); return 1 << drck->typeshift; } uint32_t spapr_drc_index(sPAPRDRConnector *drc) { sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); /* no set format for a drc index: it only needs to be globally * unique. this is how we encode the DRC type on bare-metal * however, so might as well do that here */ return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) | (drc->id & DRC_INDEX_ID_MASK); } static uint32_t drc_isolate_physical(sPAPRDRConnector *drc) { switch (drc->state) { case SPAPR_DRC_STATE_PHYSICAL_POWERON: return RTAS_OUT_SUCCESS; /* Nothing to do */ case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: break; /* see below */ case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: return RTAS_OUT_PARAM_ERROR; /* not allowed */ default: g_assert_not_reached(); } drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; if (drc->unplug_requested) { uint32_t drc_index = spapr_drc_index(drc); trace_spapr_drc_set_isolation_state_finalizing(drc_index); spapr_drc_detach(drc); } return RTAS_OUT_SUCCESS; } static uint32_t drc_unisolate_physical(sPAPRDRConnector *drc) { switch (drc->state) { case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: return RTAS_OUT_SUCCESS; /* Nothing to do */ case SPAPR_DRC_STATE_PHYSICAL_POWERON: break; /* see below */ default: g_assert_not_reached(); } /* cannot unisolate a non-existent resource, and, or resources * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, * 13.5.3.5) */ if (!drc->dev) { return RTAS_OUT_NO_SUCH_INDICATOR; } drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; drc->ccs_offset = drc->fdt_start_offset; drc->ccs_depth = 0; return RTAS_OUT_SUCCESS; } static uint32_t drc_isolate_logical(sPAPRDRConnector *drc) { switch (drc->state) { case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: return RTAS_OUT_SUCCESS; /* Nothing to do */ case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: break; /* see below */ case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: return RTAS_OUT_PARAM_ERROR; /* not allowed */ default: g_assert_not_reached(); } /* * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't * belong to a DIMM device that is marked for removal. * * Currently the guest userspace tool drmgr that drives the memory * hotplug/unplug will just try to remove a set of 'removable' LMBs * in response to a hot unplug request that is based on drc-count. * If the LMB being removed doesn't belong to a DIMM device that is * actually being unplugged, fail the isolation request here. */ if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB && !drc->unplug_requested) { return RTAS_OUT_HW_ERROR; } drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; /* if we're awaiting release, but still in an unconfigured state, * it's likely the guest is still in the process of configuring * the device and is transitioning the devices to an ISOLATED * state as a part of that process. so we only complete the * removal when this transition happens for a device in a * configured state, as suggested by the state diagram from PAPR+ * 2.7, 13.4 */ if (drc->unplug_requested) { uint32_t drc_index = spapr_drc_index(drc); trace_spapr_drc_set_isolation_state_finalizing(drc_index); spapr_drc_detach(drc); } return RTAS_OUT_SUCCESS; } static uint32_t drc_unisolate_logical(sPAPRDRConnector *drc) { switch (drc->state) { case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: return RTAS_OUT_SUCCESS; /* Nothing to do */ case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: break; /* see below */ case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ default: g_assert_not_reached(); } /* Move to AVAILABLE state should have ensured device was present */ g_assert(drc->dev); drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; drc->ccs_offset = drc->fdt_start_offset; drc->ccs_depth = 0; return RTAS_OUT_SUCCESS; } static uint32_t drc_set_usable(sPAPRDRConnector *drc) { switch (drc->state) { case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: return RTAS_OUT_SUCCESS; /* Nothing to do */ case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: break; /* see below */ default: g_assert_not_reached(); } /* if there's no resource/device associated with the DRC, there's * no way for us to put it in an allocation state consistent with * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should * result in an RTAS return code of -3 / "no such indicator" */ if (!drc->dev) { return RTAS_OUT_NO_SUCH_INDICATOR; } if (drc->unplug_requested) { /* Don't allow the guest to move a device away from UNUSABLE * state when we want to unplug it */ return RTAS_OUT_NO_SUCH_INDICATOR; } drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; return RTAS_OUT_SUCCESS; } static uint32_t drc_set_unusable(sPAPRDRConnector *drc) { switch (drc->state) { case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: return RTAS_OUT_SUCCESS; /* Nothing to do */ case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: break; /* see below */ case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ default: g_assert_not_reached(); } drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; if (drc->unplug_requested) { uint32_t drc_index = spapr_drc_index(drc); trace_spapr_drc_set_allocation_state_finalizing(drc_index); spapr_drc_detach(drc); } return RTAS_OUT_SUCCESS; } static const char *spapr_drc_name(sPAPRDRConnector *drc) { sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); /* human-readable name for a DRC to encode into the DT * description. this is mainly only used within a guest in place * of the unique DRC index. * * in the case of VIO/PCI devices, it corresponds to a "location * code" that maps a logical device/function (DRC index) to a * physical (or virtual in the case of VIO) location in the system * by chaining together the "location label" for each * encapsulating component. * * since this is more to do with diagnosing physical hardware * issues than guest compatibility, we choose location codes/DRC * names that adhere to the documented format, but avoid encoding * the entire topology information into the label/code, instead * just using the location codes based on the labels for the * endpoints (VIO/PCI adaptor connectors), which is basically just * "C" followed by an integer ID. * * DRC names as documented by PAPR+ v2.7, 13.5.2.4 * location codes as documented by PAPR+ v2.7, 12.3.1.5 */ return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); } /* * dr-entity-sense sensor value * returned via get-sensor-state RTAS calls * as expected by state diagram in PAPR+ 2.7, 13.4 * based on the current allocation/indicator/power states * for the DR connector. */ static sPAPRDREntitySense physical_entity_sense(sPAPRDRConnector *drc) { /* this assumes all PCI devices are assigned to a 'live insertion' * power domain, where QEMU manages power state automatically as * opposed to the guest. present, non-PCI resources are unaffected * by power state. */ return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT : SPAPR_DR_ENTITY_SENSE_EMPTY; } static sPAPRDREntitySense logical_entity_sense(sPAPRDRConnector *drc) { switch (drc->state) { case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: return SPAPR_DR_ENTITY_SENSE_UNUSABLE; case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: g_assert(drc->dev); return SPAPR_DR_ENTITY_SENSE_PRESENT; default: g_assert_not_reached(); } } static void prop_get_index(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); uint32_t value = spapr_drc_index(drc); visit_type_uint32(v, name, &value, errp); } static void prop_get_fdt(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); QNull *null = NULL; Error *err = NULL; int fdt_offset_next, fdt_offset, fdt_depth; void *fdt; if (!drc->fdt) { visit_type_null(v, NULL, &null, errp); QDECREF(null); return; } fdt = drc->fdt; fdt_offset = drc->fdt_start_offset; fdt_depth = 0; do { const char *name = NULL; const struct fdt_property *prop = NULL; int prop_len = 0, name_len = 0; uint32_t tag; tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); switch (tag) { case FDT_BEGIN_NODE: fdt_depth++; name = fdt_get_name(fdt, fdt_offset, &name_len); visit_start_struct(v, name, NULL, 0, &err); if (err) { error_propagate(errp, err); return; } break; case FDT_END_NODE: /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ g_assert(fdt_depth > 0); visit_check_struct(v, &err); visit_end_struct(v, NULL); if (err) { error_propagate(errp, err); return; } fdt_depth--; break; case FDT_PROP: { int i; prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); visit_start_list(v, name, NULL, 0, &err); if (err) { error_propagate(errp, err); return; } for (i = 0; i < prop_len; i++) { visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err); if (err) { error_propagate(errp, err); return; } } visit_check_list(v, &err); visit_end_list(v, NULL); if (err) { error_propagate(errp, err); return; } break; } default: error_setg(&error_abort, "device FDT in unexpected state: %d", tag); } fdt_offset = fdt_offset_next; } while (fdt_depth != 0); } void spapr_drc_attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt, int fdt_start_offset, Error **errp) { trace_spapr_drc_attach(spapr_drc_index(drc)); if (drc->dev) { error_setg(errp, "an attached device is still awaiting release"); return; } g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); g_assert(fdt); drc->dev = d; drc->fdt = fdt; drc->fdt_start_offset = fdt_start_offset; object_property_add_link(OBJECT(drc), "device", object_get_typename(OBJECT(drc->dev)), (Object **)(&drc->dev), NULL, 0, NULL); } static void spapr_drc_release(sPAPRDRConnector *drc) { sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); drck->release(drc->dev); drc->unplug_requested = false; g_free(drc->fdt); drc->fdt = NULL; drc->fdt_start_offset = 0; object_property_del(OBJECT(drc), "device", &error_abort); drc->dev = NULL; } void spapr_drc_detach(sPAPRDRConnector *drc) { sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); trace_spapr_drc_detach(spapr_drc_index(drc)); g_assert(drc->dev); drc->unplug_requested = true; if (drc->state != drck->empty_state) { trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); return; } spapr_drc_release(drc); } void spapr_drc_reset(sPAPRDRConnector *drc) { sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); trace_spapr_drc_reset(spapr_drc_index(drc)); /* immediately upon reset we can safely assume DRCs whose devices * are pending removal can be safely removed. */ if (drc->unplug_requested) { spapr_drc_release(drc); } if (drc->dev) { /* A device present at reset is ready to go, same as coldplugged */ drc->state = drck->ready_state; /* * Ensure that we are able to send the FDT fragment again * via configure-connector call if the guest requests. */ drc->ccs_offset = drc->fdt_start_offset; drc->ccs_depth = 0; } else { drc->state = drck->empty_state; drc->ccs_offset = -1; drc->ccs_depth = -1; } } static void drc_reset(void *opaque) { spapr_drc_reset(SPAPR_DR_CONNECTOR(opaque)); } bool spapr_drc_needed(void *opaque) { sPAPRDRConnector *drc = (sPAPRDRConnector *)opaque; sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); /* If no dev is plugged in there is no need to migrate the DRC state */ if (!drc->dev) { return false; } /* * We need to migrate the state if it's not equal to the expected * long-term state, which is the same as the coldplugged initial * state */ return (drc->state != drck->ready_state); } static const VMStateDescription vmstate_spapr_drc = { .name = "spapr_drc", .version_id = 1, .minimum_version_id = 1, .needed = spapr_drc_needed, .fields = (VMStateField []) { VMSTATE_UINT32(state, sPAPRDRConnector), VMSTATE_END_OF_LIST() } }; static void realize(DeviceState *d, Error **errp) { sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d); Object *root_container; gchar *link_name; gchar *child_name; Error *err = NULL; trace_spapr_drc_realize(spapr_drc_index(drc)); /* NOTE: we do this as part of realize/unrealize due to the fact * that the guest will communicate with the DRC via RTAS calls * referencing the global DRC index. By unlinking the DRC * from DRC_CONTAINER_PATH/ we effectively make it * inaccessible by the guest, since lookups rely on this path * existing in the composition tree */ root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); link_name = g_strdup_printf("%x", spapr_drc_index(drc)); child_name = object_get_canonical_path_component(OBJECT(drc)); trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); object_property_add_alias(root_container, link_name, drc->owner, child_name, &err); g_free(child_name); g_free(link_name); if (err) { error_propagate(errp, err); return; } vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc, drc); qemu_register_reset(drc_reset, drc); trace_spapr_drc_realize_complete(spapr_drc_index(drc)); } static void unrealize(DeviceState *d, Error **errp) { sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d); Object *root_container; gchar *name; trace_spapr_drc_unrealize(spapr_drc_index(drc)); qemu_unregister_reset(drc_reset, drc); vmstate_unregister(DEVICE(drc), &vmstate_spapr_drc, drc); root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); name = g_strdup_printf("%x", spapr_drc_index(drc)); object_property_del(root_container, name, errp); g_free(name); } sPAPRDRConnector *spapr_dr_connector_new(Object *owner, const char *type, uint32_t id) { sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(object_new(type)); char *prop_name; drc->id = id; drc->owner = owner; prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", spapr_drc_index(drc)); object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort); object_property_set_bool(OBJECT(drc), true, "realized", NULL); g_free(prop_name); return drc; } static void spapr_dr_connector_instance_init(Object *obj) { sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); object_property_add_uint32_ptr(obj, "id", &drc->id, NULL); object_property_add(obj, "index", "uint32", prop_get_index, NULL, NULL, NULL, NULL); object_property_add(obj, "fdt", "struct", prop_get_fdt, NULL, NULL, NULL, NULL); drc->state = drck->empty_state; } static void spapr_dr_connector_class_init(ObjectClass *k, void *data) { DeviceClass *dk = DEVICE_CLASS(k); dk->realize = realize; dk->unrealize = unrealize; /* * Reason: it crashes FIXME find and document the real reason */ dk->user_creatable = false; } static bool drc_physical_needed(void *opaque) { sPAPRDRCPhysical *drcp = (sPAPRDRCPhysical *)opaque; sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(drcp); if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { return false; } return true; } static const VMStateDescription vmstate_spapr_drc_physical = { .name = "spapr_drc/physical", .version_id = 1, .minimum_version_id = 1, .needed = drc_physical_needed, .fields = (VMStateField []) { VMSTATE_UINT32(dr_indicator, sPAPRDRCPhysical), VMSTATE_END_OF_LIST() } }; static void drc_physical_reset(void *opaque) { sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(opaque); sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); if (drc->dev) { drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; } else { drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; } } static void realize_physical(DeviceState *d, Error **errp) { sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(d); Error *local_err = NULL; realize(d, &local_err); if (local_err) { error_propagate(errp, local_err); return; } vmstate_register(DEVICE(drcp), spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), &vmstate_spapr_drc_physical, drcp); qemu_register_reset(drc_physical_reset, drcp); } static void unrealize_physical(DeviceState *d, Error **errp) { sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(d); Error *local_err = NULL; unrealize(d, &local_err); if (local_err) { error_propagate(errp, local_err); return; } vmstate_unregister(DEVICE(drcp), &vmstate_spapr_drc_physical, drcp); qemu_unregister_reset(drc_physical_reset, drcp); } static void spapr_drc_physical_class_init(ObjectClass *k, void *data) { DeviceClass *dk = DEVICE_CLASS(k); sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); dk->realize = realize_physical; dk->unrealize = unrealize_physical; drck->dr_entity_sense = physical_entity_sense; drck->isolate = drc_isolate_physical; drck->unisolate = drc_unisolate_physical; drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; } static void spapr_drc_logical_class_init(ObjectClass *k, void *data) { sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); drck->dr_entity_sense = logical_entity_sense; drck->isolate = drc_isolate_logical; drck->unisolate = drc_unisolate_logical; drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; } static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) { sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; drck->typename = "CPU"; drck->drc_name_prefix = "CPU "; drck->release = spapr_core_release; } static void spapr_drc_pci_class_init(ObjectClass *k, void *data) { sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; drck->typename = "28"; drck->drc_name_prefix = "C"; drck->release = spapr_phb_remove_pci_device_cb; } static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) { sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; drck->typename = "MEM"; drck->drc_name_prefix = "LMB "; drck->release = spapr_lmb_release; } static const TypeInfo spapr_dr_connector_info = { .name = TYPE_SPAPR_DR_CONNECTOR, .parent = TYPE_DEVICE, .instance_size = sizeof(sPAPRDRConnector), .instance_init = spapr_dr_connector_instance_init, .class_size = sizeof(sPAPRDRConnectorClass), .class_init = spapr_dr_connector_class_init, .abstract = true, }; static const TypeInfo spapr_drc_physical_info = { .name = TYPE_SPAPR_DRC_PHYSICAL, .parent = TYPE_SPAPR_DR_CONNECTOR, .instance_size = sizeof(sPAPRDRCPhysical), .class_init = spapr_drc_physical_class_init, .abstract = true, }; static const TypeInfo spapr_drc_logical_info = { .name = TYPE_SPAPR_DRC_LOGICAL, .parent = TYPE_SPAPR_DR_CONNECTOR, .class_init = spapr_drc_logical_class_init, .abstract = true, }; static const TypeInfo spapr_drc_cpu_info = { .name = TYPE_SPAPR_DRC_CPU, .parent = TYPE_SPAPR_DRC_LOGICAL, .class_init = spapr_drc_cpu_class_init, }; static const TypeInfo spapr_drc_pci_info = { .name = TYPE_SPAPR_DRC_PCI, .parent = TYPE_SPAPR_DRC_PHYSICAL, .class_init = spapr_drc_pci_class_init, }; static const TypeInfo spapr_drc_lmb_info = { .name = TYPE_SPAPR_DRC_LMB, .parent = TYPE_SPAPR_DRC_LOGICAL, .class_init = spapr_drc_lmb_class_init, }; /* helper functions for external users */ sPAPRDRConnector *spapr_drc_by_index(uint32_t index) { Object *obj; gchar *name; name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); obj = object_resolve_path(name, NULL); g_free(name); return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); } sPAPRDRConnector *spapr_drc_by_id(const char *type, uint32_t id) { sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT | (id & DRC_INDEX_ID_MASK)); } /** * spapr_drc_populate_dt * * @fdt: libfdt device tree * @path: path in the DT to generate properties * @owner: parent Object/DeviceState for which to generate DRC * descriptions for * @drc_type_mask: mask of sPAPRDRConnectorType values corresponding * to the types of DRCs to generate entries for * * generate OF properties to describe DRC topology/indices to guests * * as documented in PAPR+ v2.1, 13.5.2 */ int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner, uint32_t drc_type_mask) { Object *root_container; ObjectProperty *prop; ObjectPropertyIterator iter; uint32_t drc_count = 0; GArray *drc_indexes, *drc_power_domains; GString *drc_names, *drc_types; int ret; /* the first entry of each properties is a 32-bit integer encoding * the number of elements in the array. we won't know this until * we complete the iteration through all the matching DRCs, but * reserve the space now and set the offsets accordingly so we * can fill them in later. */ drc_indexes = g_array_new(false, true, sizeof(uint32_t)); drc_indexes = g_array_set_size(drc_indexes, 1); drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); drc_power_domains = g_array_set_size(drc_power_domains, 1); drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); /* aliases for all DRConnector objects will be rooted in QOM * composition tree at DRC_CONTAINER_PATH */ root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); object_property_iter_init(&iter, root_container); while ((prop = object_property_iter_next(&iter))) { Object *obj; sPAPRDRConnector *drc; sPAPRDRConnectorClass *drck; uint32_t drc_index, drc_power_domain; if (!strstart(prop->type, "link<", NULL)) { continue; } obj = object_property_get_link(root_container, prop->name, NULL); drc = SPAPR_DR_CONNECTOR(obj); drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); if (owner && (drc->owner != owner)) { continue; } if ((spapr_drc_type(drc) & drc_type_mask) == 0) { continue; } drc_count++; /* ibm,drc-indexes */ drc_index = cpu_to_be32(spapr_drc_index(drc)); g_array_append_val(drc_indexes, drc_index); /* ibm,drc-power-domains */ drc_power_domain = cpu_to_be32(-1); g_array_append_val(drc_power_domains, drc_power_domain); /* ibm,drc-names */ drc_names = g_string_append(drc_names, spapr_drc_name(drc)); drc_names = g_string_insert_len(drc_names, -1, "\0", 1); /* ibm,drc-types */ drc_types = g_string_append(drc_types, drck->typename); drc_types = g_string_insert_len(drc_types, -1, "\0", 1); } /* now write the drc count into the space we reserved at the * beginning of the arrays previously */ *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes", drc_indexes->data, drc_indexes->len * sizeof(uint32_t)); if (ret) { error_report("Couldn't create ibm,drc-indexes property"); goto out; } ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains", drc_power_domains->data, drc_power_domains->len * sizeof(uint32_t)); if (ret) { error_report("Couldn't finalize ibm,drc-power-domains property"); goto out; } ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names", drc_names->str, drc_names->len); if (ret) { error_report("Couldn't finalize ibm,drc-names property"); goto out; } ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types", drc_types->str, drc_types->len); if (ret) { error_report("Couldn't finalize ibm,drc-types property"); goto out; } out: g_array_free(drc_indexes, true); g_array_free(drc_power_domains, true); g_string_free(drc_names, true); g_string_free(drc_types, true); return ret; } /* * RTAS calls */ static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) { sPAPRDRConnector *drc = spapr_drc_by_index(idx); sPAPRDRConnectorClass *drck; if (!drc) { return RTAS_OUT_NO_SUCH_INDICATOR; } trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); switch (state) { case SPAPR_DR_ISOLATION_STATE_ISOLATED: return drck->isolate(drc); case SPAPR_DR_ISOLATION_STATE_UNISOLATED: return drck->unisolate(drc); default: return RTAS_OUT_PARAM_ERROR; } } static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) { sPAPRDRConnector *drc = spapr_drc_by_index(idx); if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { return RTAS_OUT_NO_SUCH_INDICATOR; } trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); switch (state) { case SPAPR_DR_ALLOCATION_STATE_USABLE: return drc_set_usable(drc); case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: return drc_set_unusable(drc); default: return RTAS_OUT_PARAM_ERROR; } } static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) { sPAPRDRConnector *drc = spapr_drc_by_index(idx); if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { return RTAS_OUT_NO_SUCH_INDICATOR; } if ((state != SPAPR_DR_INDICATOR_INACTIVE) && (state != SPAPR_DR_INDICATOR_ACTIVE) && (state != SPAPR_DR_INDICATOR_IDENTIFY) && (state != SPAPR_DR_INDICATOR_ACTION)) { return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ } trace_spapr_drc_set_dr_indicator(idx, state); SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; return RTAS_OUT_SUCCESS; } static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t type, idx, state; uint32_t ret = RTAS_OUT_SUCCESS; if (nargs != 3 || nret != 1) { ret = RTAS_OUT_PARAM_ERROR; goto out; } type = rtas_ld(args, 0); idx = rtas_ld(args, 1); state = rtas_ld(args, 2); switch (type) { case RTAS_SENSOR_TYPE_ISOLATION_STATE: ret = rtas_set_isolation_state(idx, state); break; case RTAS_SENSOR_TYPE_DR: ret = rtas_set_dr_indicator(idx, state); break; case RTAS_SENSOR_TYPE_ALLOCATION_STATE: ret = rtas_set_allocation_state(idx, state); break; default: ret = RTAS_OUT_NOT_SUPPORTED; } out: rtas_st(rets, 0, ret); } static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t sensor_type; uint32_t sensor_index; uint32_t sensor_state = 0; sPAPRDRConnector *drc; sPAPRDRConnectorClass *drck; uint32_t ret = RTAS_OUT_SUCCESS; if (nargs != 2 || nret != 2) { ret = RTAS_OUT_PARAM_ERROR; goto out; } sensor_type = rtas_ld(args, 0); sensor_index = rtas_ld(args, 1); if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { /* currently only DR-related sensors are implemented */ trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, sensor_type); ret = RTAS_OUT_NOT_SUPPORTED; goto out; } drc = spapr_drc_by_index(sensor_index); if (!drc) { trace_spapr_rtas_get_sensor_state_invalid(sensor_index); ret = RTAS_OUT_PARAM_ERROR; goto out; } drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); sensor_state = drck->dr_entity_sense(drc); out: rtas_st(rets, 0, ret); rtas_st(rets, 1, sensor_state); } /* configure-connector work area offsets, int32_t units for field * indexes, bytes for field offset/len values. * * as documented by PAPR+ v2.7, 13.5.3.5 */ #define CC_IDX_NODE_NAME_OFFSET 2 #define CC_IDX_PROP_NAME_OFFSET 2 #define CC_IDX_PROP_LEN 3 #define CC_IDX_PROP_DATA_OFFSET 4 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) #define CC_WA_LEN 4096 static void configure_connector_st(target_ulong addr, target_ulong offset, const void *buf, size_t len) { cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), buf, MIN(len, CC_WA_LEN - offset)); } static void rtas_ibm_configure_connector(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint64_t wa_addr; uint64_t wa_offset; uint32_t drc_index; sPAPRDRConnector *drc; sPAPRDRConnectorClass *drck; sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; int rc; if (nargs != 2 || nret != 1) { rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return; } wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); drc_index = rtas_ld(wa_addr, 0); drc = spapr_drc_by_index(drc_index); if (!drc) { trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); rc = RTAS_OUT_PARAM_ERROR; goto out; } if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { /* * Need to unisolate the device before configuring * or it should already be in configured state to * allow configure-connector be called repeatedly. */ rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; goto out; } g_assert(drc->fdt); drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); do { uint32_t tag; const char *name; const struct fdt_property *prop; int fdt_offset_next, prop_len; tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); switch (tag) { case FDT_BEGIN_NODE: drc->ccs_depth++; name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); /* provide the name of the next OF node */ wa_offset = CC_VAL_DATA_OFFSET; rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; break; case FDT_END_NODE: drc->ccs_depth--; if (drc->ccs_depth == 0) { uint32_t drc_index = spapr_drc_index(drc); /* done sending the device tree, move to configured state */ trace_spapr_drc_set_configured(drc_index); drc->state = drck->ready_state; /* * Ensure that we are able to send the FDT fragment * again via configure-connector call if the guest requests. */ drc->ccs_offset = drc->fdt_start_offset; drc->ccs_depth = 0; fdt_offset_next = drc->fdt_start_offset; resp = SPAPR_DR_CC_RESPONSE_SUCCESS; } else { resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; } break; case FDT_PROP: prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, &prop_len); name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); /* provide the name of the next OF property */ wa_offset = CC_VAL_DATA_OFFSET; rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); /* provide the length and value of the OF property. data gets * placed immediately after NULL terminator of the OF property's * name string */ wa_offset += strlen(name) + 1, rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; break; case FDT_END: resp = SPAPR_DR_CC_RESPONSE_ERROR; default: /* keep seeking for an actionable tag */ break; } if (drc->ccs_offset >= 0) { drc->ccs_offset = fdt_offset_next; } } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); rc = resp; out: rtas_st(rets, 0, rc); } static void spapr_drc_register_types(void) { type_register_static(&spapr_dr_connector_info); type_register_static(&spapr_drc_physical_info); type_register_static(&spapr_drc_logical_info); type_register_static(&spapr_drc_cpu_info); type_register_static(&spapr_drc_pci_info); type_register_static(&spapr_drc_lmb_info); spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", rtas_set_indicator); spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", rtas_get_sensor_state); spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", rtas_ibm_configure_connector); } type_init(spapr_drc_register_types)