/* * Copyright (c) 2003-2004 Fabrice Bellard * Copyright (c) 2019, 2024 Red Hat, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/error-report.h" #include "qemu/cutils.h" #include "qemu/units.h" #include "qemu/datadir.h" #include "qapi/error.h" #include "sysemu/numa.h" #include "sysemu/sysemu.h" #include "sysemu/xen.h" #include "trace.h" #include "hw/i386/x86.h" #include "target/i386/cpu.h" #include "hw/rtc/mc146818rtc.h" #include "target/i386/sev.h" #include "hw/acpi/cpu_hotplug.h" #include "hw/irq.h" #include "hw/loader.h" #include "multiboot.h" #include "elf.h" #include "standard-headers/asm-x86/bootparam.h" #include CONFIG_DEVICES #include "kvm/kvm_i386.h" #ifdef CONFIG_XEN_EMU #include "hw/xen/xen.h" #include "hw/i386/kvm/xen_evtchn.h" #endif /* Physical Address of PVH entry point read from kernel ELF NOTE */ static size_t pvh_start_addr; static void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) { Object *cpu = object_new(MACHINE(x86ms)->cpu_type); if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { goto out; } qdev_realize(DEVICE(cpu), NULL, errp); out: object_unref(cpu); } void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) { int i; const CPUArchIdList *possible_cpus; MachineState *ms = MACHINE(x86ms); MachineClass *mc = MACHINE_GET_CLASS(x86ms); x86_cpu_set_default_version(default_cpu_version); /* * Calculates the limit to CPU APIC ID values * * Limit for the APIC ID value, so that all * CPU APIC IDs are < x86ms->apic_id_limit. * * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). */ x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, ms->smp.max_cpus - 1) + 1; /* * Can we support APIC ID 255 or higher? With KVM, that requires * both in-kernel lapic and X2APIC userspace API. * * kvm_enabled() must go first to ensure that kvm_* references are * not emitted for the linker to consume (kvm_enabled() is * a literal `0` in configurations where kvm_* aren't defined) */ if (kvm_enabled() && x86ms->apic_id_limit > 255 && kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) { error_report("current -smp configuration requires kernel " "irqchip and X2APIC API support."); exit(EXIT_FAILURE); } if (kvm_enabled()) { kvm_set_max_apic_id(x86ms->apic_id_limit); } if (!kvm_irqchip_in_kernel()) { apic_set_max_apic_id(x86ms->apic_id_limit); } possible_cpus = mc->possible_cpu_arch_ids(ms); for (i = 0; i < ms->smp.cpus; i++) { x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); } } void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count) { MC146818RtcState *rtc = MC146818_RTC(s); if (cpus_count > 0xff) { /* * If the number of CPUs can't be represented in 8 bits, the * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just * to make old BIOSes fail more predictably. */ mc146818rtc_set_cmos_data(rtc, 0x5f, 0); } else { mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1); } } static int x86_apic_cmp(const void *a, const void *b) { CPUArchId *apic_a = (CPUArchId *)a; CPUArchId *apic_b = (CPUArchId *)b; return apic_a->arch_id - apic_b->arch_id; } /* * returns pointer to CPUArchId descriptor that matches CPU's apic_id * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no * entry corresponding to CPU's apic_id returns NULL. */ static CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) { CPUArchId apic_id, *found_cpu; apic_id.arch_id = id; found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), x86_apic_cmp); if (found_cpu && idx) { *idx = found_cpu - ms->possible_cpus->cpus; } return found_cpu; } void x86_cpu_plug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { CPUArchId *found_cpu; Error *local_err = NULL; X86CPU *cpu = X86_CPU(dev); X86MachineState *x86ms = X86_MACHINE(hotplug_dev); if (x86ms->acpi_dev) { hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); if (local_err) { goto out; } } /* increment the number of CPUs */ x86ms->boot_cpus++; if (x86ms->rtc) { x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); } if (x86ms->fw_cfg) { fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); } found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); found_cpu->cpu = CPU(dev); out: error_propagate(errp, local_err); } void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { int idx = -1; X86CPU *cpu = X86_CPU(dev); X86MachineState *x86ms = X86_MACHINE(hotplug_dev); if (!x86ms->acpi_dev) { error_setg(errp, "CPU hot unplug not supported without ACPI"); return; } x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); assert(idx != -1); if (idx == 0) { error_setg(errp, "Boot CPU is unpluggable"); return; } hotplug_handler_unplug_request(x86ms->acpi_dev, dev, errp); } void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { CPUArchId *found_cpu; Error *local_err = NULL; X86CPU *cpu = X86_CPU(dev); X86MachineState *x86ms = X86_MACHINE(hotplug_dev); hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); if (local_err) { goto out; } found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); found_cpu->cpu = NULL; qdev_unrealize(dev); /* decrement the number of CPUs */ x86ms->boot_cpus--; /* Update the number of CPUs in CMOS */ x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); out: error_propagate(errp, local_err); } void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { int idx; CPUState *cs; CPUArchId *cpu_slot; X86CPUTopoIDs topo_ids; X86CPU *cpu = X86_CPU(dev); CPUX86State *env = &cpu->env; MachineState *ms = MACHINE(hotplug_dev); X86MachineState *x86ms = X86_MACHINE(hotplug_dev); unsigned int smp_cores = ms->smp.cores; unsigned int smp_threads = ms->smp.threads; X86CPUTopoInfo topo_info; if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", ms->cpu_type); return; } if (x86ms->acpi_dev) { Error *local_err = NULL; hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } } init_topo_info(&topo_info, x86ms); env->nr_dies = ms->smp.dies; /* * If APIC ID is not set, * set it based on socket/die/core/thread properties. */ if (cpu->apic_id == UNASSIGNED_APIC_ID) { int max_socket = (ms->smp.max_cpus - 1) / smp_threads / smp_cores / ms->smp.dies; /* * die-id was optional in QEMU 4.0 and older, so keep it optional * if there's only one die per socket. */ if (cpu->die_id < 0 && ms->smp.dies == 1) { cpu->die_id = 0; } if (cpu->socket_id < 0) { error_setg(errp, "CPU socket-id is not set"); return; } else if (cpu->socket_id > max_socket) { error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", cpu->socket_id, max_socket); return; } if (cpu->die_id < 0) { error_setg(errp, "CPU die-id is not set"); return; } else if (cpu->die_id > ms->smp.dies - 1) { error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", cpu->die_id, ms->smp.dies - 1); return; } if (cpu->core_id < 0) { error_setg(errp, "CPU core-id is not set"); return; } else if (cpu->core_id > (smp_cores - 1)) { error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", cpu->core_id, smp_cores - 1); return; } if (cpu->thread_id < 0) { error_setg(errp, "CPU thread-id is not set"); return; } else if (cpu->thread_id > (smp_threads - 1)) { error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", cpu->thread_id, smp_threads - 1); return; } topo_ids.pkg_id = cpu->socket_id; topo_ids.die_id = cpu->die_id; topo_ids.core_id = cpu->core_id; topo_ids.smt_id = cpu->thread_id; cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids); } cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); if (!cpu_slot) { x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); error_setg(errp, "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with" " APIC ID %" PRIu32 ", valid index range 0:%d", topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id, cpu->apic_id, ms->possible_cpus->len - 1); return; } if (cpu_slot->cpu) { error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", idx, cpu->apic_id); return; } /* if 'address' properties socket-id/core-id/thread-id are not set, set them * so that machine_query_hotpluggable_cpus would show correct values */ /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() * once -smp refactoring is complete and there will be CPU private * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { error_setg(errp, "property socket-id: %u doesn't match set apic-id:" " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo_ids.pkg_id); return; } cpu->socket_id = topo_ids.pkg_id; if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { error_setg(errp, "property die-id: %u doesn't match set apic-id:" " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); return; } cpu->die_id = topo_ids.die_id; if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { error_setg(errp, "property core-id: %u doesn't match set apic-id:" " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo_ids.core_id); return; } cpu->core_id = topo_ids.core_id; if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { error_setg(errp, "property thread-id: %u doesn't match set apic-id:" " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo_ids.smt_id); return; } cpu->thread_id = topo_ids.smt_id; /* * kvm_enabled() must go first to ensure that kvm_* references are * not emitted for the linker to consume (kvm_enabled() is * a literal `0` in configurations where kvm_* aren't defined) */ if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !kvm_hv_vpindex_settable()) { error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); return; } cs = CPU(cpu); cs->cpu_index = idx; numa_cpu_pre_plug(cpu_slot, dev, errp); } static long get_file_size(FILE *f) { long where, size; /* XXX: on Unix systems, using fstat() probably makes more sense */ where = ftell(f); fseek(f, 0, SEEK_END); size = ftell(f); fseek(f, where, SEEK_SET); return size; } void gsi_handler(void *opaque, int n, int level) { GSIState *s = opaque; trace_x86_gsi_interrupt(n, level); switch (n) { case 0 ... ISA_NUM_IRQS - 1: if (s->i8259_irq[n]) { /* Under KVM, Kernel will forward to both PIC and IOAPIC */ qemu_set_irq(s->i8259_irq[n], level); } /* fall through */ case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1: #ifdef CONFIG_XEN_EMU /* * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC * routing actually works properly under Xen). And then to * *either* the PIRQ handling or the I/OAPIC depending on * whether the former wants it. */ if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) { break; } #endif qemu_set_irq(s->ioapic_irq[n], level); break; case IO_APIC_SECONDARY_IRQBASE ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1: qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level); break; } } void ioapic_init_gsi(GSIState *gsi_state, Object *parent) { DeviceState *dev; SysBusDevice *d; unsigned int i; assert(parent); if (kvm_ioapic_in_kernel()) { dev = qdev_new(TYPE_KVM_IOAPIC); } else { dev = qdev_new(TYPE_IOAPIC); } object_property_add_child(parent, "ioapic", OBJECT(dev)); d = SYS_BUS_DEVICE(dev); sysbus_realize_and_unref(d, &error_fatal); sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); for (i = 0; i < IOAPIC_NUM_PINS; i++) { gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); } } DeviceState *ioapic_init_secondary(GSIState *gsi_state) { DeviceState *dev; SysBusDevice *d; unsigned int i; dev = qdev_new(TYPE_IOAPIC); d = SYS_BUS_DEVICE(dev); sysbus_realize_and_unref(d, &error_fatal); sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS); for (i = 0; i < IOAPIC_NUM_PINS; i++) { gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i); } return dev; } /* * The entry point into the kernel for PVH boot is different from * the native entry point. The PVH entry is defined by the x86/HVM * direct boot ABI and is available in an ELFNOTE in the kernel binary. * * This function is passed to load_elf() when it is called from * load_elfboot() which then additionally checks for an ELF Note of * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to * parse the PVH entry address from the ELF Note. * * Due to trickery in elf_opts.h, load_elf() is actually available as * load_elf32() or load_elf64() and this routine needs to be able * to deal with being called as 32 or 64 bit. * * The address of the PVH entry point is saved to the 'pvh_start_addr' * global variable. (although the entry point is 32-bit, the kernel * binary can be either 32-bit or 64-bit). */ static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) { size_t *elf_note_data_addr; /* Check if ELF Note header passed in is valid */ if (arg1 == NULL) { return 0; } if (is64) { struct elf64_note *nhdr64 = (struct elf64_note *)arg1; uint64_t nhdr_size64 = sizeof(struct elf64_note); uint64_t phdr_align = *(uint64_t *)arg2; uint64_t nhdr_namesz = nhdr64->n_namesz; elf_note_data_addr = ((void *)nhdr64) + nhdr_size64 + QEMU_ALIGN_UP(nhdr_namesz, phdr_align); pvh_start_addr = *elf_note_data_addr; } else { struct elf32_note *nhdr32 = (struct elf32_note *)arg1; uint32_t nhdr_size32 = sizeof(struct elf32_note); uint32_t phdr_align = *(uint32_t *)arg2; uint32_t nhdr_namesz = nhdr32->n_namesz; elf_note_data_addr = ((void *)nhdr32) + nhdr_size32 + QEMU_ALIGN_UP(nhdr_namesz, phdr_align); pvh_start_addr = *(uint32_t *)elf_note_data_addr; } return pvh_start_addr; } static bool load_elfboot(const char *kernel_filename, int kernel_file_size, uint8_t *header, size_t pvh_xen_start_addr, FWCfgState *fw_cfg) { uint32_t flags = 0; uint32_t mh_load_addr = 0; uint32_t elf_kernel_size = 0; uint64_t elf_entry; uint64_t elf_low, elf_high; int kernel_size; if (ldl_p(header) != 0x464c457f) { return false; /* no elfboot */ } bool elf_is64 = header[EI_CLASS] == ELFCLASS64; flags = elf_is64 ? ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ error_report("elfboot unsupported flags = %x", flags); exit(1); } uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; kernel_size = load_elf(kernel_filename, read_pvh_start_addr, NULL, &elf_note_type, &elf_entry, &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 0, 0); if (kernel_size < 0) { error_report("Error while loading elf kernel"); exit(1); } mh_load_addr = elf_low; elf_kernel_size = elf_high - elf_low; if (pvh_start_addr == 0) { error_report("Error loading uncompressed kernel without PVH ELF Note"); exit(1); } fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); return true; } void x86_load_linux(X86MachineState *x86ms, FWCfgState *fw_cfg, int acpi_data_size, bool pvh_enabled) { bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled; uint16_t protocol; int setup_size, kernel_size, cmdline_size; int dtb_size, setup_data_offset; uint32_t initrd_max; uint8_t header[8192], *setup, *kernel; hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; FILE *f; char *vmode; MachineState *machine = MACHINE(x86ms); struct setup_data *setup_data; const char *kernel_filename = machine->kernel_filename; const char *initrd_filename = machine->initrd_filename; const char *dtb_filename = machine->dtb; const char *kernel_cmdline = machine->kernel_cmdline; SevKernelLoaderContext sev_load_ctx = {}; /* Align to 16 bytes as a paranoia measure */ cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; /* load the kernel header */ f = fopen(kernel_filename, "rb"); if (!f) { fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", kernel_filename, strerror(errno)); exit(1); } kernel_size = get_file_size(f); if (!kernel_size || fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != MIN(ARRAY_SIZE(header), kernel_size)) { fprintf(stderr, "qemu: could not load kernel '%s': %s\n", kernel_filename, strerror(errno)); exit(1); } /* kernel protocol version */ if (ldl_p(header + 0x202) == 0x53726448) { protocol = lduw_p(header + 0x206); } else { /* * This could be a multiboot kernel. If it is, let's stop treating it * like a Linux kernel. * Note: some multiboot images could be in the ELF format (the same of * PVH), so we try multiboot first since we check the multiboot magic * header before to load it. */ if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename, kernel_cmdline, kernel_size, header)) { return; } /* * Check if the file is an uncompressed kernel file (ELF) and load it, * saving the PVH entry point used by the x86/HVM direct boot ABI. * If load_elfboot() is successful, populate the fw_cfg info. */ if (pvh_enabled && load_elfboot(kernel_filename, kernel_size, header, pvh_start_addr, fw_cfg)) { fclose(f); fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, header, sizeof(header)); /* load initrd */ if (initrd_filename) { GMappedFile *mapped_file; gsize initrd_size; gchar *initrd_data; GError *gerr = NULL; mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); if (!mapped_file) { fprintf(stderr, "qemu: error reading initrd %s: %s\n", initrd_filename, gerr->message); exit(1); } x86ms->initrd_mapped_file = mapped_file; initrd_data = g_mapped_file_get_contents(mapped_file); initrd_size = g_mapped_file_get_length(mapped_file); initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; if (initrd_size >= initrd_max) { fprintf(stderr, "qemu: initrd is too large, cannot support." "(max: %"PRIu32", need %"PRId64")\n", initrd_max, (uint64_t)initrd_size); exit(1); } initrd_addr = (initrd_max - initrd_size) & ~4095; fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); } option_rom[nb_option_roms].bootindex = 0; option_rom[nb_option_roms].name = "pvh.bin"; nb_option_roms++; return; } protocol = 0; } if (protocol < 0x200 || !(header[0x211] & 0x01)) { /* Low kernel */ real_addr = 0x90000; cmdline_addr = 0x9a000 - cmdline_size; prot_addr = 0x10000; } else if (protocol < 0x202) { /* High but ancient kernel */ real_addr = 0x90000; cmdline_addr = 0x9a000 - cmdline_size; prot_addr = 0x100000; } else { /* High and recent kernel */ real_addr = 0x10000; cmdline_addr = 0x20000; prot_addr = 0x100000; } /* highest address for loading the initrd */ if (protocol >= 0x20c && lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { /* * Linux has supported initrd up to 4 GB for a very long time (2007, * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), * though it only sets initrd_max to 2 GB to "work around bootloader * bugs". Luckily, QEMU firmware(which does something like bootloader) * has supported this. * * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can * be loaded into any address. * * In addition, initrd_max is uint32_t simply because QEMU doesn't * support the 64-bit boot protocol (specifically the ext_ramdisk_image * field). * * Therefore here just limit initrd_max to UINT32_MAX simply as well. */ initrd_max = UINT32_MAX; } else if (protocol >= 0x203) { initrd_max = ldl_p(header + 0x22c); } else { initrd_max = 0x37ffffff; } if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; } fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); sev_load_ctx.cmdline_data = (char *)kernel_cmdline; sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1; if (protocol >= 0x202) { stl_p(header + 0x228, cmdline_addr); } else { stw_p(header + 0x20, 0xA33F); stw_p(header + 0x22, cmdline_addr - real_addr); } /* handle vga= parameter */ vmode = strstr(kernel_cmdline, "vga="); if (vmode) { unsigned int video_mode; const char *end; int ret; /* skip "vga=" */ vmode += 4; if (!strncmp(vmode, "normal", 6)) { video_mode = 0xffff; } else if (!strncmp(vmode, "ext", 3)) { video_mode = 0xfffe; } else if (!strncmp(vmode, "ask", 3)) { video_mode = 0xfffd; } else { ret = qemu_strtoui(vmode, &end, 0, &video_mode); if (ret != 0 || (*end && *end != ' ')) { fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); exit(1); } } stw_p(header + 0x1fa, video_mode); } /* loader type */ /* * High nybble = B reserved for QEMU; low nybble is revision number. * If this code is substantially changed, you may want to consider * incrementing the revision. */ if (protocol >= 0x200) { header[0x210] = 0xB0; } /* heap */ if (protocol >= 0x201) { header[0x211] |= 0x80; /* CAN_USE_HEAP */ stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); } /* load initrd */ if (initrd_filename) { GMappedFile *mapped_file; gsize initrd_size; gchar *initrd_data; GError *gerr = NULL; if (protocol < 0x200) { fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); exit(1); } mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); if (!mapped_file) { fprintf(stderr, "qemu: error reading initrd %s: %s\n", initrd_filename, gerr->message); exit(1); } x86ms->initrd_mapped_file = mapped_file; initrd_data = g_mapped_file_get_contents(mapped_file); initrd_size = g_mapped_file_get_length(mapped_file); if (initrd_size >= initrd_max) { fprintf(stderr, "qemu: initrd is too large, cannot support." "(max: %"PRIu32", need %"PRId64")\n", initrd_max, (uint64_t)initrd_size); exit(1); } initrd_addr = (initrd_max - initrd_size) & ~4095; fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); sev_load_ctx.initrd_data = initrd_data; sev_load_ctx.initrd_size = initrd_size; stl_p(header + 0x218, initrd_addr); stl_p(header + 0x21c, initrd_size); } /* load kernel and setup */ setup_size = header[0x1f1]; if (setup_size == 0) { setup_size = 4; } setup_size = (setup_size + 1) * 512; if (setup_size > kernel_size) { fprintf(stderr, "qemu: invalid kernel header\n"); exit(1); } kernel_size -= setup_size; setup = g_malloc(setup_size); kernel = g_malloc(kernel_size); fseek(f, 0, SEEK_SET); if (fread(setup, 1, setup_size, f) != setup_size) { fprintf(stderr, "fread() failed\n"); exit(1); } if (fread(kernel, 1, kernel_size, f) != kernel_size) { fprintf(stderr, "fread() failed\n"); exit(1); } fclose(f); /* append dtb to kernel */ if (dtb_filename) { if (protocol < 0x209) { fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); exit(1); } dtb_size = get_image_size(dtb_filename); if (dtb_size <= 0) { fprintf(stderr, "qemu: error reading dtb %s: %s\n", dtb_filename, strerror(errno)); exit(1); } setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; kernel = g_realloc(kernel, kernel_size); stq_p(header + 0x250, prot_addr + setup_data_offset); setup_data = (struct setup_data *)(kernel + setup_data_offset); setup_data->next = 0; setup_data->type = cpu_to_le32(SETUP_DTB); setup_data->len = cpu_to_le32(dtb_size); load_image_size(dtb_filename, setup_data->data, dtb_size); } /* * If we're starting an encrypted VM, it will be OVMF based, which uses the * efi stub for booting and doesn't require any values to be placed in the * kernel header. We therefore don't update the header so the hash of the * kernel on the other side of the fw_cfg interface matches the hash of the * file the user passed in. */ if (!sev_enabled()) { memcpy(setup, header, MIN(sizeof(header), setup_size)); } fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); sev_load_ctx.kernel_data = (char *)kernel; sev_load_ctx.kernel_size = kernel_size; fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); sev_load_ctx.setup_data = (char *)setup; sev_load_ctx.setup_size = setup_size; if (sev_enabled()) { sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal); } option_rom[nb_option_roms].bootindex = 0; option_rom[nb_option_roms].name = "linuxboot.bin"; if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { option_rom[nb_option_roms].name = "linuxboot_dma.bin"; } nb_option_roms++; } void x86_isa_bios_init(MemoryRegion *isa_bios, MemoryRegion *isa_memory, MemoryRegion *bios, bool read_only) { uint64_t bios_size = memory_region_size(bios); uint64_t isa_bios_size = MIN(bios_size, 128 * KiB); memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, bios_size - isa_bios_size, isa_bios_size); memory_region_add_subregion_overlap(isa_memory, 1 * MiB - isa_bios_size, isa_bios, 1); memory_region_set_readonly(isa_bios, read_only); } void x86_bios_rom_init(X86MachineState *x86ms, const char *default_firmware, MemoryRegion *rom_memory, bool isapc_ram_fw) { const char *bios_name; char *filename; int bios_size; ssize_t ret; /* BIOS load */ bios_name = MACHINE(x86ms)->firmware ?: default_firmware; filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); if (filename) { bios_size = get_image_size(filename); } else { bios_size = -1; } if (bios_size <= 0 || (bios_size % 65536) != 0) { goto bios_error; } memory_region_init_ram(&x86ms->bios, NULL, "pc.bios", bios_size, &error_fatal); if (sev_enabled()) { /* * The concept of a "reset" simply doesn't exist for * confidential computing guests, we have to destroy and * re-launch them instead. So there is no need to register * the firmware as rom to properly re-initialize on reset. * Just go for a straight file load instead. */ void *ptr = memory_region_get_ram_ptr(&x86ms->bios); load_image_size(filename, ptr, bios_size); x86_firmware_configure(ptr, bios_size); } else { memory_region_set_readonly(&x86ms->bios, !isapc_ram_fw); ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); if (ret != 0) { goto bios_error; } } g_free(filename); /* map the last 128KB of the BIOS in ISA space */ x86_isa_bios_init(&x86ms->isa_bios, rom_memory, &x86ms->bios, !isapc_ram_fw); /* map all the bios at the top of memory */ memory_region_add_subregion(rom_memory, (uint32_t)(-bios_size), &x86ms->bios); return; bios_error: fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); exit(1); }