/* * RISC-V implementation of KVM hooks * * Copyright (c) 2020 Huawei Technologies Co., Ltd * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include #include #include #include "qemu/timer.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "qemu/main-loop.h" #include "qapi/visitor.h" #include "sysemu/sysemu.h" #include "sysemu/kvm.h" #include "sysemu/kvm_int.h" #include "cpu.h" #include "trace.h" #include "hw/core/accel-cpu.h" #include "hw/pci/pci.h" #include "exec/memattrs.h" #include "exec/address-spaces.h" #include "hw/boards.h" #include "hw/irq.h" #include "hw/intc/riscv_imsic.h" #include "qemu/log.h" #include "hw/loader.h" #include "kvm_riscv.h" #include "sbi_ecall_interface.h" #include "chardev/char-fe.h" #include "migration/misc.h" #include "sysemu/runstate.h" #include "hw/riscv/numa.h" #define PR_RISCV_V_SET_CONTROL 69 #define PR_RISCV_V_VSTATE_CTRL_ON 2 void riscv_kvm_aplic_request(void *opaque, int irq, int level) { kvm_set_irq(kvm_state, irq, !!level); } static bool cap_has_mp_state; static uint64_t kvm_riscv_reg_id_ulong(CPURISCVState *env, uint64_t type, uint64_t idx) { uint64_t id = KVM_REG_RISCV | type | idx; switch (riscv_cpu_mxl(env)) { case MXL_RV32: id |= KVM_REG_SIZE_U32; break; case MXL_RV64: id |= KVM_REG_SIZE_U64; break; default: g_assert_not_reached(); } return id; } static uint64_t kvm_riscv_reg_id_u32(uint64_t type, uint64_t idx) { return KVM_REG_RISCV | KVM_REG_SIZE_U32 | type | idx; } static uint64_t kvm_riscv_reg_id_u64(uint64_t type, uint64_t idx) { return KVM_REG_RISCV | KVM_REG_SIZE_U64 | type | idx; } static uint64_t kvm_encode_reg_size_id(uint64_t id, size_t size_b) { uint64_t size_ctz = __builtin_ctz(size_b); return id | (size_ctz << KVM_REG_SIZE_SHIFT); } static uint64_t kvm_riscv_vector_reg_id(RISCVCPU *cpu, uint64_t idx) { uint64_t id; size_t size_b; g_assert(idx < 32); id = KVM_REG_RISCV | KVM_REG_RISCV_VECTOR | KVM_REG_RISCV_VECTOR_REG(idx); size_b = cpu->cfg.vlenb; return kvm_encode_reg_size_id(id, size_b); } #define RISCV_CORE_REG(env, name) \ kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, \ KVM_REG_RISCV_CORE_REG(name)) #define RISCV_CSR_REG(env, name) \ kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CSR, \ KVM_REG_RISCV_CSR_REG(name)) #define RISCV_CONFIG_REG(env, name) \ kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, \ KVM_REG_RISCV_CONFIG_REG(name)) #define RISCV_TIMER_REG(name) kvm_riscv_reg_id_u64(KVM_REG_RISCV_TIMER, \ KVM_REG_RISCV_TIMER_REG(name)) #define RISCV_FP_F_REG(idx) kvm_riscv_reg_id_u32(KVM_REG_RISCV_FP_F, idx) #define RISCV_FP_D_REG(idx) kvm_riscv_reg_id_u64(KVM_REG_RISCV_FP_D, idx) #define RISCV_VECTOR_CSR_REG(env, name) \ kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_VECTOR, \ KVM_REG_RISCV_VECTOR_CSR_REG(name)) #define KVM_RISCV_GET_CSR(cs, env, csr, reg) \ do { \ int _ret = kvm_get_one_reg(cs, RISCV_CSR_REG(env, csr), ®); \ if (_ret) { \ return _ret; \ } \ } while (0) #define KVM_RISCV_SET_CSR(cs, env, csr, reg) \ do { \ int _ret = kvm_set_one_reg(cs, RISCV_CSR_REG(env, csr), ®); \ if (_ret) { \ return _ret; \ } \ } while (0) #define KVM_RISCV_GET_TIMER(cs, name, reg) \ do { \ int ret = kvm_get_one_reg(cs, RISCV_TIMER_REG(name), ®); \ if (ret) { \ abort(); \ } \ } while (0) #define KVM_RISCV_SET_TIMER(cs, name, reg) \ do { \ int ret = kvm_set_one_reg(cs, RISCV_TIMER_REG(name), ®); \ if (ret) { \ abort(); \ } \ } while (0) typedef struct KVMCPUConfig { const char *name; const char *description; target_ulong offset; uint64_t kvm_reg_id; bool user_set; bool supported; } KVMCPUConfig; #define KVM_MISA_CFG(_bit, _reg_id) \ {.offset = _bit, .kvm_reg_id = _reg_id} /* KVM ISA extensions */ static KVMCPUConfig kvm_misa_ext_cfgs[] = { KVM_MISA_CFG(RVA, KVM_RISCV_ISA_EXT_A), KVM_MISA_CFG(RVC, KVM_RISCV_ISA_EXT_C), KVM_MISA_CFG(RVD, KVM_RISCV_ISA_EXT_D), KVM_MISA_CFG(RVF, KVM_RISCV_ISA_EXT_F), KVM_MISA_CFG(RVH, KVM_RISCV_ISA_EXT_H), KVM_MISA_CFG(RVI, KVM_RISCV_ISA_EXT_I), KVM_MISA_CFG(RVM, KVM_RISCV_ISA_EXT_M), KVM_MISA_CFG(RVV, KVM_RISCV_ISA_EXT_V), }; static void kvm_cpu_get_misa_ext_cfg(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { KVMCPUConfig *misa_ext_cfg = opaque; target_ulong misa_bit = misa_ext_cfg->offset; RISCVCPU *cpu = RISCV_CPU(obj); CPURISCVState *env = &cpu->env; bool value = env->misa_ext_mask & misa_bit; visit_type_bool(v, name, &value, errp); } static void kvm_cpu_set_misa_ext_cfg(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { KVMCPUConfig *misa_ext_cfg = opaque; target_ulong misa_bit = misa_ext_cfg->offset; RISCVCPU *cpu = RISCV_CPU(obj); CPURISCVState *env = &cpu->env; bool value, host_bit; if (!visit_type_bool(v, name, &value, errp)) { return; } host_bit = env->misa_ext_mask & misa_bit; if (value == host_bit) { return; } if (!value) { misa_ext_cfg->user_set = true; return; } /* * Forbid users to enable extensions that aren't * available in the hart. */ error_setg(errp, "Enabling MISA bit '%s' is not allowed: it's not " "enabled in the host", misa_ext_cfg->name); } static void kvm_riscv_update_cpu_misa_ext(RISCVCPU *cpu, CPUState *cs) { CPURISCVState *env = &cpu->env; uint64_t id, reg; int i, ret; for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) { KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i]; target_ulong misa_bit = misa_cfg->offset; if (!misa_cfg->user_set) { continue; } /* If we're here we're going to disable the MISA bit */ reg = 0; id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT, misa_cfg->kvm_reg_id); ret = kvm_set_one_reg(cs, id, ®); if (ret != 0) { /* * We're not checking for -EINVAL because if the bit is about * to be disabled, it means that it was already enabled by * KVM. We determined that by fetching the 'isa' register * during init() time. Any error at this point is worth * aborting. */ error_report("Unable to set KVM reg %s, error %d", misa_cfg->name, ret); exit(EXIT_FAILURE); } env->misa_ext &= ~misa_bit; } } #define KVM_EXT_CFG(_name, _prop, _reg_id) \ {.name = _name, .offset = CPU_CFG_OFFSET(_prop), \ .kvm_reg_id = _reg_id} static KVMCPUConfig kvm_multi_ext_cfgs[] = { KVM_EXT_CFG("zicbom", ext_zicbom, KVM_RISCV_ISA_EXT_ZICBOM), KVM_EXT_CFG("zicboz", ext_zicboz, KVM_RISCV_ISA_EXT_ZICBOZ), KVM_EXT_CFG("zicntr", ext_zicntr, KVM_RISCV_ISA_EXT_ZICNTR), KVM_EXT_CFG("zicond", ext_zicond, KVM_RISCV_ISA_EXT_ZICOND), KVM_EXT_CFG("zicsr", ext_zicsr, KVM_RISCV_ISA_EXT_ZICSR), KVM_EXT_CFG("zifencei", ext_zifencei, KVM_RISCV_ISA_EXT_ZIFENCEI), KVM_EXT_CFG("zihintntl", ext_zihintntl, KVM_RISCV_ISA_EXT_ZIHINTNTL), KVM_EXT_CFG("zihintpause", ext_zihintpause, KVM_RISCV_ISA_EXT_ZIHINTPAUSE), KVM_EXT_CFG("zihpm", ext_zihpm, KVM_RISCV_ISA_EXT_ZIHPM), KVM_EXT_CFG("zacas", ext_zacas, KVM_RISCV_ISA_EXT_ZACAS), KVM_EXT_CFG("zfa", ext_zfa, KVM_RISCV_ISA_EXT_ZFA), KVM_EXT_CFG("zfh", ext_zfh, KVM_RISCV_ISA_EXT_ZFH), KVM_EXT_CFG("zfhmin", ext_zfhmin, KVM_RISCV_ISA_EXT_ZFHMIN), KVM_EXT_CFG("zba", ext_zba, KVM_RISCV_ISA_EXT_ZBA), KVM_EXT_CFG("zbb", ext_zbb, KVM_RISCV_ISA_EXT_ZBB), KVM_EXT_CFG("zbc", ext_zbc, KVM_RISCV_ISA_EXT_ZBC), KVM_EXT_CFG("zbkb", ext_zbkb, KVM_RISCV_ISA_EXT_ZBKB), KVM_EXT_CFG("zbkc", ext_zbkc, KVM_RISCV_ISA_EXT_ZBKC), KVM_EXT_CFG("zbkx", ext_zbkx, KVM_RISCV_ISA_EXT_ZBKX), KVM_EXT_CFG("zbs", ext_zbs, KVM_RISCV_ISA_EXT_ZBS), KVM_EXT_CFG("zknd", ext_zknd, KVM_RISCV_ISA_EXT_ZKND), KVM_EXT_CFG("zkne", ext_zkne, KVM_RISCV_ISA_EXT_ZKNE), KVM_EXT_CFG("zknh", ext_zknh, KVM_RISCV_ISA_EXT_ZKNH), KVM_EXT_CFG("zkr", ext_zkr, KVM_RISCV_ISA_EXT_ZKR), KVM_EXT_CFG("zksed", ext_zksed, KVM_RISCV_ISA_EXT_ZKSED), KVM_EXT_CFG("zksh", ext_zksh, KVM_RISCV_ISA_EXT_ZKSH), KVM_EXT_CFG("zkt", ext_zkt, KVM_RISCV_ISA_EXT_ZKT), KVM_EXT_CFG("ztso", ext_ztso, KVM_RISCV_ISA_EXT_ZTSO), KVM_EXT_CFG("zvbb", ext_zvbb, KVM_RISCV_ISA_EXT_ZVBB), KVM_EXT_CFG("zvbc", ext_zvbc, KVM_RISCV_ISA_EXT_ZVBC), KVM_EXT_CFG("zvfh", ext_zvfh, KVM_RISCV_ISA_EXT_ZVFH), KVM_EXT_CFG("zvfhmin", ext_zvfhmin, KVM_RISCV_ISA_EXT_ZVFHMIN), KVM_EXT_CFG("zvkb", ext_zvkb, KVM_RISCV_ISA_EXT_ZVKB), KVM_EXT_CFG("zvkg", ext_zvkg, KVM_RISCV_ISA_EXT_ZVKG), KVM_EXT_CFG("zvkned", ext_zvkned, KVM_RISCV_ISA_EXT_ZVKNED), KVM_EXT_CFG("zvknha", ext_zvknha, KVM_RISCV_ISA_EXT_ZVKNHA), KVM_EXT_CFG("zvknhb", ext_zvknhb, KVM_RISCV_ISA_EXT_ZVKNHB), KVM_EXT_CFG("zvksed", ext_zvksed, KVM_RISCV_ISA_EXT_ZVKSED), KVM_EXT_CFG("zvksh", ext_zvksh, KVM_RISCV_ISA_EXT_ZVKSH), KVM_EXT_CFG("zvkt", ext_zvkt, KVM_RISCV_ISA_EXT_ZVKT), KVM_EXT_CFG("smstateen", ext_smstateen, KVM_RISCV_ISA_EXT_SMSTATEEN), KVM_EXT_CFG("ssaia", ext_ssaia, KVM_RISCV_ISA_EXT_SSAIA), KVM_EXT_CFG("sstc", ext_sstc, KVM_RISCV_ISA_EXT_SSTC), KVM_EXT_CFG("svinval", ext_svinval, KVM_RISCV_ISA_EXT_SVINVAL), KVM_EXT_CFG("svnapot", ext_svnapot, KVM_RISCV_ISA_EXT_SVNAPOT), KVM_EXT_CFG("svpbmt", ext_svpbmt, KVM_RISCV_ISA_EXT_SVPBMT), }; static void *kvmconfig_get_cfg_addr(RISCVCPU *cpu, KVMCPUConfig *kvmcfg) { return (void *)&cpu->cfg + kvmcfg->offset; } static void kvm_cpu_cfg_set(RISCVCPU *cpu, KVMCPUConfig *multi_ext, uint32_t val) { bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext); *ext_enabled = val; } static uint32_t kvm_cpu_cfg_get(RISCVCPU *cpu, KVMCPUConfig *multi_ext) { bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext); return *ext_enabled; } static void kvm_cpu_get_multi_ext_cfg(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { KVMCPUConfig *multi_ext_cfg = opaque; RISCVCPU *cpu = RISCV_CPU(obj); bool value = kvm_cpu_cfg_get(cpu, multi_ext_cfg); visit_type_bool(v, name, &value, errp); } static void kvm_cpu_set_multi_ext_cfg(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { KVMCPUConfig *multi_ext_cfg = opaque; RISCVCPU *cpu = RISCV_CPU(obj); bool value, host_val; if (!visit_type_bool(v, name, &value, errp)) { return; } host_val = kvm_cpu_cfg_get(cpu, multi_ext_cfg); /* * Ignore if the user is setting the same value * as the host. */ if (value == host_val) { return; } if (!multi_ext_cfg->supported) { /* * Error out if the user is trying to enable an * extension that KVM doesn't support. Ignore * option otherwise. */ if (value) { error_setg(errp, "KVM does not support disabling extension %s", multi_ext_cfg->name); } return; } multi_ext_cfg->user_set = true; kvm_cpu_cfg_set(cpu, multi_ext_cfg, value); } static KVMCPUConfig kvm_cbom_blocksize = { .name = "cbom_blocksize", .offset = CPU_CFG_OFFSET(cbom_blocksize), .kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicbom_block_size) }; static KVMCPUConfig kvm_cboz_blocksize = { .name = "cboz_blocksize", .offset = CPU_CFG_OFFSET(cboz_blocksize), .kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicboz_block_size) }; static KVMCPUConfig kvm_v_vlenb = { .name = "vlenb", .offset = CPU_CFG_OFFSET(vlenb), .kvm_reg_id = KVM_REG_RISCV | KVM_REG_SIZE_U64 | KVM_REG_RISCV_VECTOR | KVM_REG_RISCV_VECTOR_CSR_REG(vlenb) }; static KVMCPUConfig kvm_sbi_dbcn = { .name = "sbi_dbcn", .kvm_reg_id = KVM_REG_RISCV | KVM_REG_SIZE_U64 | KVM_REG_RISCV_SBI_EXT | KVM_RISCV_SBI_EXT_DBCN }; static void kvm_riscv_update_cpu_cfg_isa_ext(RISCVCPU *cpu, CPUState *cs) { CPURISCVState *env = &cpu->env; uint64_t id, reg; int i, ret; for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) { KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i]; if (!multi_ext_cfg->user_set) { continue; } id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT, multi_ext_cfg->kvm_reg_id); reg = kvm_cpu_cfg_get(cpu, multi_ext_cfg); ret = kvm_set_one_reg(cs, id, ®); if (ret != 0) { if (!reg && ret == -EINVAL) { warn_report("KVM cannot disable extension %s", multi_ext_cfg->name); } else { error_report("Unable to enable extension %s in KVM, error %d", multi_ext_cfg->name, ret); exit(EXIT_FAILURE); } } } } static void cpu_get_cfg_unavailable(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { bool value = false; visit_type_bool(v, name, &value, errp); } static void cpu_set_cfg_unavailable(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { const char *propname = opaque; bool value; if (!visit_type_bool(v, name, &value, errp)) { return; } if (value) { error_setg(errp, "'%s' is not available with KVM", propname); } } static void riscv_cpu_add_kvm_unavail_prop(Object *obj, const char *prop_name) { /* Check if KVM created the property already */ if (object_property_find(obj, prop_name)) { return; } /* * Set the default to disabled for every extension * unknown to KVM and error out if the user attempts * to enable any of them. */ object_property_add(obj, prop_name, "bool", cpu_get_cfg_unavailable, cpu_set_cfg_unavailable, NULL, (void *)prop_name); } static void riscv_cpu_add_kvm_unavail_prop_array(Object *obj, const RISCVCPUMultiExtConfig *array) { const RISCVCPUMultiExtConfig *prop; g_assert(array); for (prop = array; prop && prop->name; prop++) { riscv_cpu_add_kvm_unavail_prop(obj, prop->name); } } static void kvm_riscv_add_cpu_user_properties(Object *cpu_obj) { int i; riscv_add_satp_mode_properties(cpu_obj); for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) { KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i]; int bit = misa_cfg->offset; misa_cfg->name = riscv_get_misa_ext_name(bit); misa_cfg->description = riscv_get_misa_ext_description(bit); object_property_add(cpu_obj, misa_cfg->name, "bool", kvm_cpu_get_misa_ext_cfg, kvm_cpu_set_misa_ext_cfg, NULL, misa_cfg); object_property_set_description(cpu_obj, misa_cfg->name, misa_cfg->description); } for (i = 0; misa_bits[i] != 0; i++) { const char *ext_name = riscv_get_misa_ext_name(misa_bits[i]); riscv_cpu_add_kvm_unavail_prop(cpu_obj, ext_name); } for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) { KVMCPUConfig *multi_cfg = &kvm_multi_ext_cfgs[i]; object_property_add(cpu_obj, multi_cfg->name, "bool", kvm_cpu_get_multi_ext_cfg, kvm_cpu_set_multi_ext_cfg, NULL, multi_cfg); } riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_extensions); riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_vendor_exts); riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_experimental_exts); /* We don't have the needed KVM support for profiles */ for (i = 0; riscv_profiles[i] != NULL; i++) { riscv_cpu_add_kvm_unavail_prop(cpu_obj, riscv_profiles[i]->name); } } static int kvm_riscv_get_regs_core(CPUState *cs) { int ret = 0; int i; target_ulong reg; CPURISCVState *env = &RISCV_CPU(cs)->env; ret = kvm_get_one_reg(cs, RISCV_CORE_REG(env, regs.pc), ®); if (ret) { return ret; } env->pc = reg; for (i = 1; i < 32; i++) { uint64_t id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, i); ret = kvm_get_one_reg(cs, id, ®); if (ret) { return ret; } env->gpr[i] = reg; } return ret; } static int kvm_riscv_put_regs_core(CPUState *cs) { int ret = 0; int i; target_ulong reg; CPURISCVState *env = &RISCV_CPU(cs)->env; reg = env->pc; ret = kvm_set_one_reg(cs, RISCV_CORE_REG(env, regs.pc), ®); if (ret) { return ret; } for (i = 1; i < 32; i++) { uint64_t id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, i); reg = env->gpr[i]; ret = kvm_set_one_reg(cs, id, ®); if (ret) { return ret; } } return ret; } static int kvm_riscv_get_regs_csr(CPUState *cs) { CPURISCVState *env = &RISCV_CPU(cs)->env; KVM_RISCV_GET_CSR(cs, env, sstatus, env->mstatus); KVM_RISCV_GET_CSR(cs, env, sie, env->mie); KVM_RISCV_GET_CSR(cs, env, stvec, env->stvec); KVM_RISCV_GET_CSR(cs, env, sscratch, env->sscratch); KVM_RISCV_GET_CSR(cs, env, sepc, env->sepc); KVM_RISCV_GET_CSR(cs, env, scause, env->scause); KVM_RISCV_GET_CSR(cs, env, stval, env->stval); KVM_RISCV_GET_CSR(cs, env, sip, env->mip); KVM_RISCV_GET_CSR(cs, env, satp, env->satp); return 0; } static int kvm_riscv_put_regs_csr(CPUState *cs) { CPURISCVState *env = &RISCV_CPU(cs)->env; KVM_RISCV_SET_CSR(cs, env, sstatus, env->mstatus); KVM_RISCV_SET_CSR(cs, env, sie, env->mie); KVM_RISCV_SET_CSR(cs, env, stvec, env->stvec); KVM_RISCV_SET_CSR(cs, env, sscratch, env->sscratch); KVM_RISCV_SET_CSR(cs, env, sepc, env->sepc); KVM_RISCV_SET_CSR(cs, env, scause, env->scause); KVM_RISCV_SET_CSR(cs, env, stval, env->stval); KVM_RISCV_SET_CSR(cs, env, sip, env->mip); KVM_RISCV_SET_CSR(cs, env, satp, env->satp); return 0; } static int kvm_riscv_get_regs_fp(CPUState *cs) { int ret = 0; int i; CPURISCVState *env = &RISCV_CPU(cs)->env; if (riscv_has_ext(env, RVD)) { uint64_t reg; for (i = 0; i < 32; i++) { ret = kvm_get_one_reg(cs, RISCV_FP_D_REG(i), ®); if (ret) { return ret; } env->fpr[i] = reg; } return ret; } if (riscv_has_ext(env, RVF)) { uint32_t reg; for (i = 0; i < 32; i++) { ret = kvm_get_one_reg(cs, RISCV_FP_F_REG(i), ®); if (ret) { return ret; } env->fpr[i] = reg; } return ret; } return ret; } static int kvm_riscv_put_regs_fp(CPUState *cs) { int ret = 0; int i; CPURISCVState *env = &RISCV_CPU(cs)->env; if (riscv_has_ext(env, RVD)) { uint64_t reg; for (i = 0; i < 32; i++) { reg = env->fpr[i]; ret = kvm_set_one_reg(cs, RISCV_FP_D_REG(i), ®); if (ret) { return ret; } } return ret; } if (riscv_has_ext(env, RVF)) { uint32_t reg; for (i = 0; i < 32; i++) { reg = env->fpr[i]; ret = kvm_set_one_reg(cs, RISCV_FP_F_REG(i), ®); if (ret) { return ret; } } return ret; } return ret; } static void kvm_riscv_get_regs_timer(CPUState *cs) { CPURISCVState *env = &RISCV_CPU(cs)->env; if (env->kvm_timer_dirty) { return; } KVM_RISCV_GET_TIMER(cs, time, env->kvm_timer_time); KVM_RISCV_GET_TIMER(cs, compare, env->kvm_timer_compare); KVM_RISCV_GET_TIMER(cs, state, env->kvm_timer_state); KVM_RISCV_GET_TIMER(cs, frequency, env->kvm_timer_frequency); env->kvm_timer_dirty = true; } static void kvm_riscv_put_regs_timer(CPUState *cs) { uint64_t reg; CPURISCVState *env = &RISCV_CPU(cs)->env; if (!env->kvm_timer_dirty) { return; } KVM_RISCV_SET_TIMER(cs, time, env->kvm_timer_time); KVM_RISCV_SET_TIMER(cs, compare, env->kvm_timer_compare); /* * To set register of RISCV_TIMER_REG(state) will occur a error from KVM * on env->kvm_timer_state == 0, It's better to adapt in KVM, but it * doesn't matter that adaping in QEMU now. * TODO If KVM changes, adapt here. */ if (env->kvm_timer_state) { KVM_RISCV_SET_TIMER(cs, state, env->kvm_timer_state); } /* * For now, migration will not work between Hosts with different timer * frequency. Therefore, we should check whether they are the same here * during the migration. */ if (migration_is_running()) { KVM_RISCV_GET_TIMER(cs, frequency, reg); if (reg != env->kvm_timer_frequency) { error_report("Dst Hosts timer frequency != Src Hosts"); } } env->kvm_timer_dirty = false; } uint64_t kvm_riscv_get_timebase_frequency(CPUState *cs) { uint64_t reg; KVM_RISCV_GET_TIMER(cs, frequency, reg); return reg; } static int kvm_riscv_get_regs_vector(CPUState *cs) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; target_ulong reg; uint64_t vreg_id; int vreg_idx, ret = 0; if (!riscv_has_ext(env, RVV)) { return 0; } ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vstart), ®); if (ret) { return ret; } env->vstart = reg; ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vl), ®); if (ret) { return ret; } env->vl = reg; ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vtype), ®); if (ret) { return ret; } env->vtype = reg; if (kvm_v_vlenb.supported) { ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vlenb), ®); if (ret) { return ret; } cpu->cfg.vlenb = reg; for (int i = 0; i < 32; i++) { /* * vreg[] is statically allocated using RV_VLEN_MAX. * Use it instead of vlenb to calculate vreg_idx for * simplicity. */ vreg_idx = i * RV_VLEN_MAX / 64; vreg_id = kvm_riscv_vector_reg_id(cpu, i); ret = kvm_get_one_reg(cs, vreg_id, &env->vreg[vreg_idx]); if (ret) { return ret; } } } return 0; } static int kvm_riscv_put_regs_vector(CPUState *cs) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; target_ulong reg; uint64_t vreg_id; int vreg_idx, ret = 0; if (!riscv_has_ext(env, RVV)) { return 0; } reg = env->vstart; ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vstart), ®); if (ret) { return ret; } reg = env->vl; ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vl), ®); if (ret) { return ret; } reg = env->vtype; ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vtype), ®); if (ret) { return ret; } if (kvm_v_vlenb.supported) { reg = cpu->cfg.vlenb; ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vlenb), ®); for (int i = 0; i < 32; i++) { /* * vreg[] is statically allocated using RV_VLEN_MAX. * Use it instead of vlenb to calculate vreg_idx for * simplicity. */ vreg_idx = i * RV_VLEN_MAX / 64; vreg_id = kvm_riscv_vector_reg_id(cpu, i); ret = kvm_set_one_reg(cs, vreg_id, &env->vreg[vreg_idx]); if (ret) { return ret; } } } return ret; } typedef struct KVMScratchCPU { int kvmfd; int vmfd; int cpufd; } KVMScratchCPU; /* * Heavily inspired by kvm_arm_create_scratch_host_vcpu() * from target/arm/kvm.c. */ static bool kvm_riscv_create_scratch_vcpu(KVMScratchCPU *scratch) { int kvmfd = -1, vmfd = -1, cpufd = -1; kvmfd = qemu_open_old("/dev/kvm", O_RDWR); if (kvmfd < 0) { goto err; } do { vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); } while (vmfd == -1 && errno == EINTR); if (vmfd < 0) { goto err; } cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); if (cpufd < 0) { goto err; } scratch->kvmfd = kvmfd; scratch->vmfd = vmfd; scratch->cpufd = cpufd; return true; err: if (cpufd >= 0) { close(cpufd); } if (vmfd >= 0) { close(vmfd); } if (kvmfd >= 0) { close(kvmfd); } return false; } static void kvm_riscv_destroy_scratch_vcpu(KVMScratchCPU *scratch) { close(scratch->cpufd); close(scratch->vmfd); close(scratch->kvmfd); } static void kvm_riscv_init_machine_ids(RISCVCPU *cpu, KVMScratchCPU *kvmcpu) { CPURISCVState *env = &cpu->env; struct kvm_one_reg reg; int ret; reg.id = RISCV_CONFIG_REG(env, mvendorid); reg.addr = (uint64_t)&cpu->cfg.mvendorid; ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); if (ret != 0) { error_report("Unable to retrieve mvendorid from host, error %d", ret); } reg.id = RISCV_CONFIG_REG(env, marchid); reg.addr = (uint64_t)&cpu->cfg.marchid; ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); if (ret != 0) { error_report("Unable to retrieve marchid from host, error %d", ret); } reg.id = RISCV_CONFIG_REG(env, mimpid); reg.addr = (uint64_t)&cpu->cfg.mimpid; ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); if (ret != 0) { error_report("Unable to retrieve mimpid from host, error %d", ret); } } static void kvm_riscv_init_misa_ext_mask(RISCVCPU *cpu, KVMScratchCPU *kvmcpu) { CPURISCVState *env = &cpu->env; struct kvm_one_reg reg; int ret; reg.id = RISCV_CONFIG_REG(env, isa); reg.addr = (uint64_t)&env->misa_ext_mask; ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); if (ret) { error_report("Unable to fetch ISA register from KVM, " "error %d", ret); kvm_riscv_destroy_scratch_vcpu(kvmcpu); exit(EXIT_FAILURE); } env->misa_ext = env->misa_ext_mask; } static void kvm_riscv_read_cbomz_blksize(RISCVCPU *cpu, KVMScratchCPU *kvmcpu, KVMCPUConfig *cbomz_cfg) { CPURISCVState *env = &cpu->env; struct kvm_one_reg reg; int ret; reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, cbomz_cfg->kvm_reg_id); reg.addr = (uint64_t)kvmconfig_get_cfg_addr(cpu, cbomz_cfg); ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); if (ret != 0) { error_report("Unable to read KVM reg %s, error %d", cbomz_cfg->name, ret); exit(EXIT_FAILURE); } } static void kvm_riscv_read_multiext_legacy(RISCVCPU *cpu, KVMScratchCPU *kvmcpu) { CPURISCVState *env = &cpu->env; uint64_t val; int i, ret; for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) { KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i]; struct kvm_one_reg reg; reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT, multi_ext_cfg->kvm_reg_id); reg.addr = (uint64_t)&val; ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); if (ret != 0) { if (errno == EINVAL) { /* Silently default to 'false' if KVM does not support it. */ multi_ext_cfg->supported = false; val = false; } else { error_report("Unable to read ISA_EXT KVM register %s: %s", multi_ext_cfg->name, strerror(errno)); exit(EXIT_FAILURE); } } else { multi_ext_cfg->supported = true; } kvm_cpu_cfg_set(cpu, multi_ext_cfg, val); } if (cpu->cfg.ext_zicbom) { kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize); } if (cpu->cfg.ext_zicboz) { kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize); } } static int uint64_cmp(const void *a, const void *b) { uint64_t val1 = *(const uint64_t *)a; uint64_t val2 = *(const uint64_t *)b; if (val1 < val2) { return -1; } if (val1 > val2) { return 1; } return 0; } static void kvm_riscv_check_sbi_dbcn_support(RISCVCPU *cpu, KVMScratchCPU *kvmcpu, struct kvm_reg_list *reglist) { struct kvm_reg_list *reg_search; reg_search = bsearch(&kvm_sbi_dbcn.kvm_reg_id, reglist->reg, reglist->n, sizeof(uint64_t), uint64_cmp); if (reg_search) { kvm_sbi_dbcn.supported = true; } } static void kvm_riscv_read_vlenb(RISCVCPU *cpu, KVMScratchCPU *kvmcpu, struct kvm_reg_list *reglist) { struct kvm_one_reg reg; struct kvm_reg_list *reg_search; uint64_t val; int ret; reg_search = bsearch(&kvm_v_vlenb.kvm_reg_id, reglist->reg, reglist->n, sizeof(uint64_t), uint64_cmp); if (reg_search) { reg.id = kvm_v_vlenb.kvm_reg_id; reg.addr = (uint64_t)&val; ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); if (ret != 0) { error_report("Unable to read vlenb register, error code: %d", errno); exit(EXIT_FAILURE); } kvm_v_vlenb.supported = true; cpu->cfg.vlenb = val; } } static void kvm_riscv_init_multiext_cfg(RISCVCPU *cpu, KVMScratchCPU *kvmcpu) { KVMCPUConfig *multi_ext_cfg; struct kvm_one_reg reg; struct kvm_reg_list rl_struct; struct kvm_reg_list *reglist; uint64_t val, reg_id, *reg_search; int i, ret; rl_struct.n = 0; ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, &rl_struct); /* * If KVM_GET_REG_LIST isn't supported we'll get errno 22 * (EINVAL). Use read_legacy() in this case. */ if (errno == EINVAL) { return kvm_riscv_read_multiext_legacy(cpu, kvmcpu); } else if (errno != E2BIG) { /* * E2BIG is an expected error message for the API since we * don't know the number of registers. The right amount will * be written in rl_struct.n. * * Error out if we get any other errno. */ error_report("Error when accessing get-reg-list: %s", strerror(errno)); exit(EXIT_FAILURE); } reglist = g_malloc(sizeof(struct kvm_reg_list) + rl_struct.n * sizeof(uint64_t)); reglist->n = rl_struct.n; ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, reglist); if (ret) { error_report("Error when reading KVM_GET_REG_LIST: %s", strerror(errno)); exit(EXIT_FAILURE); } /* sort reglist to use bsearch() */ qsort(®list->reg, reglist->n, sizeof(uint64_t), uint64_cmp); for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) { multi_ext_cfg = &kvm_multi_ext_cfgs[i]; reg_id = kvm_riscv_reg_id_ulong(&cpu->env, KVM_REG_RISCV_ISA_EXT, multi_ext_cfg->kvm_reg_id); reg_search = bsearch(®_id, reglist->reg, reglist->n, sizeof(uint64_t), uint64_cmp); if (!reg_search) { continue; } reg.id = reg_id; reg.addr = (uint64_t)&val; ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); if (ret != 0) { error_report("Unable to read ISA_EXT KVM register %s: %s", multi_ext_cfg->name, strerror(errno)); exit(EXIT_FAILURE); } multi_ext_cfg->supported = true; kvm_cpu_cfg_set(cpu, multi_ext_cfg, val); } if (cpu->cfg.ext_zicbom) { kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize); } if (cpu->cfg.ext_zicboz) { kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize); } if (riscv_has_ext(&cpu->env, RVV)) { kvm_riscv_read_vlenb(cpu, kvmcpu, reglist); } kvm_riscv_check_sbi_dbcn_support(cpu, kvmcpu, reglist); } static void riscv_init_kvm_registers(Object *cpu_obj) { RISCVCPU *cpu = RISCV_CPU(cpu_obj); KVMScratchCPU kvmcpu; if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) { return; } kvm_riscv_init_machine_ids(cpu, &kvmcpu); kvm_riscv_init_misa_ext_mask(cpu, &kvmcpu); kvm_riscv_init_multiext_cfg(cpu, &kvmcpu); kvm_riscv_destroy_scratch_vcpu(&kvmcpu); } const KVMCapabilityInfo kvm_arch_required_capabilities[] = { KVM_CAP_LAST_INFO }; int kvm_arch_get_registers(CPUState *cs, Error **errp) { int ret = 0; ret = kvm_riscv_get_regs_core(cs); if (ret) { return ret; } ret = kvm_riscv_get_regs_csr(cs); if (ret) { return ret; } ret = kvm_riscv_get_regs_fp(cs); if (ret) { return ret; } ret = kvm_riscv_get_regs_vector(cs); if (ret) { return ret; } return ret; } int kvm_riscv_sync_mpstate_to_kvm(RISCVCPU *cpu, int state) { if (cap_has_mp_state) { struct kvm_mp_state mp_state = { .mp_state = state }; int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); if (ret) { fprintf(stderr, "%s: failed to sync MP_STATE %d/%s\n", __func__, ret, strerror(-ret)); return -1; } } return 0; } int kvm_arch_put_registers(CPUState *cs, int level, Error **errp) { int ret = 0; ret = kvm_riscv_put_regs_core(cs); if (ret) { return ret; } ret = kvm_riscv_put_regs_csr(cs); if (ret) { return ret; } ret = kvm_riscv_put_regs_fp(cs); if (ret) { return ret; } ret = kvm_riscv_put_regs_vector(cs); if (ret) { return ret; } if (KVM_PUT_RESET_STATE == level) { RISCVCPU *cpu = RISCV_CPU(cs); if (cs->cpu_index == 0) { ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_RUNNABLE); } else { ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_STOPPED); } if (ret) { return ret; } } return ret; } int kvm_arch_release_virq_post(int virq) { return 0; } int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, uint64_t address, uint32_t data, PCIDevice *dev) { return 0; } int kvm_arch_destroy_vcpu(CPUState *cs) { return 0; } unsigned long kvm_arch_vcpu_id(CPUState *cpu) { return cpu->cpu_index; } static void kvm_riscv_vm_state_change(void *opaque, bool running, RunState state) { CPUState *cs = opaque; if (running) { kvm_riscv_put_regs_timer(cs); } else { kvm_riscv_get_regs_timer(cs); } } void kvm_arch_init_irq_routing(KVMState *s) { } static int kvm_vcpu_set_machine_ids(RISCVCPU *cpu, CPUState *cs) { CPURISCVState *env = &cpu->env; target_ulong reg; uint64_t id; int ret; id = RISCV_CONFIG_REG(env, mvendorid); /* * cfg.mvendorid is an uint32 but a target_ulong will * be written. Assign it to a target_ulong var to avoid * writing pieces of other cpu->cfg fields in the reg. */ reg = cpu->cfg.mvendorid; ret = kvm_set_one_reg(cs, id, ®); if (ret != 0) { return ret; } id = RISCV_CONFIG_REG(env, marchid); ret = kvm_set_one_reg(cs, id, &cpu->cfg.marchid); if (ret != 0) { return ret; } id = RISCV_CONFIG_REG(env, mimpid); ret = kvm_set_one_reg(cs, id, &cpu->cfg.mimpid); return ret; } static int kvm_vcpu_enable_sbi_dbcn(RISCVCPU *cpu, CPUState *cs) { target_ulong reg = 1; if (!kvm_sbi_dbcn.supported) { return 0; } return kvm_set_one_reg(cs, kvm_sbi_dbcn.kvm_reg_id, ®); } int kvm_arch_init_vcpu(CPUState *cs) { int ret = 0; RISCVCPU *cpu = RISCV_CPU(cs); qemu_add_vm_change_state_handler(kvm_riscv_vm_state_change, cs); if (!object_dynamic_cast(OBJECT(cpu), TYPE_RISCV_CPU_HOST)) { ret = kvm_vcpu_set_machine_ids(cpu, cs); if (ret != 0) { return ret; } } kvm_riscv_update_cpu_misa_ext(cpu, cs); kvm_riscv_update_cpu_cfg_isa_ext(cpu, cs); ret = kvm_vcpu_enable_sbi_dbcn(cpu, cs); return ret; } int kvm_arch_msi_data_to_gsi(uint32_t data) { abort(); } int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, int vector, PCIDevice *dev) { return 0; } int kvm_arch_get_default_type(MachineState *ms) { return 0; } int kvm_arch_init(MachineState *ms, KVMState *s) { cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); return 0; } int kvm_arch_irqchip_create(KVMState *s) { if (kvm_kernel_irqchip_split()) { error_report("-machine kernel_irqchip=split is not supported on RISC-V."); exit(1); } /* * We can create the VAIA using the newer device control API. */ return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); } int kvm_arch_process_async_events(CPUState *cs) { return 0; } void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) { } MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) { return MEMTXATTRS_UNSPECIFIED; } bool kvm_arch_stop_on_emulation_error(CPUState *cs) { return true; } static void kvm_riscv_handle_sbi_dbcn(CPUState *cs, struct kvm_run *run) { g_autofree uint8_t *buf = NULL; RISCVCPU *cpu = RISCV_CPU(cs); target_ulong num_bytes; uint64_t addr; unsigned char ch; int ret; switch (run->riscv_sbi.function_id) { case SBI_EXT_DBCN_CONSOLE_READ: case SBI_EXT_DBCN_CONSOLE_WRITE: num_bytes = run->riscv_sbi.args[0]; if (num_bytes == 0) { run->riscv_sbi.ret[0] = SBI_SUCCESS; run->riscv_sbi.ret[1] = 0; break; } addr = run->riscv_sbi.args[1]; /* * Handle the case where a 32 bit CPU is running in a * 64 bit addressing env. */ if (riscv_cpu_mxl(&cpu->env) == MXL_RV32) { addr |= (uint64_t)run->riscv_sbi.args[2] << 32; } buf = g_malloc0(num_bytes); if (run->riscv_sbi.function_id == SBI_EXT_DBCN_CONSOLE_READ) { ret = qemu_chr_fe_read_all(serial_hd(0)->be, buf, num_bytes); if (ret < 0) { error_report("SBI_EXT_DBCN_CONSOLE_READ: error when " "reading chardev"); exit(1); } cpu_physical_memory_write(addr, buf, ret); } else { cpu_physical_memory_read(addr, buf, num_bytes); ret = qemu_chr_fe_write_all(serial_hd(0)->be, buf, num_bytes); if (ret < 0) { error_report("SBI_EXT_DBCN_CONSOLE_WRITE: error when " "writing chardev"); exit(1); } } run->riscv_sbi.ret[0] = SBI_SUCCESS; run->riscv_sbi.ret[1] = ret; break; case SBI_EXT_DBCN_CONSOLE_WRITE_BYTE: ch = run->riscv_sbi.args[0]; ret = qemu_chr_fe_write(serial_hd(0)->be, &ch, sizeof(ch)); if (ret < 0) { error_report("SBI_EXT_DBCN_CONSOLE_WRITE_BYTE: error when " "writing chardev"); exit(1); } run->riscv_sbi.ret[0] = SBI_SUCCESS; run->riscv_sbi.ret[1] = 0; break; default: run->riscv_sbi.ret[0] = SBI_ERR_NOT_SUPPORTED; } } static int kvm_riscv_handle_sbi(CPUState *cs, struct kvm_run *run) { int ret = 0; unsigned char ch; switch (run->riscv_sbi.extension_id) { case SBI_EXT_0_1_CONSOLE_PUTCHAR: ch = run->riscv_sbi.args[0]; qemu_chr_fe_write(serial_hd(0)->be, &ch, sizeof(ch)); break; case SBI_EXT_0_1_CONSOLE_GETCHAR: ret = qemu_chr_fe_read_all(serial_hd(0)->be, &ch, sizeof(ch)); if (ret == sizeof(ch)) { run->riscv_sbi.ret[0] = ch; } else { run->riscv_sbi.ret[0] = -1; } ret = 0; break; case SBI_EXT_DBCN: kvm_riscv_handle_sbi_dbcn(cs, run); break; default: qemu_log_mask(LOG_UNIMP, "%s: un-handled SBI EXIT, specific reasons is %lu\n", __func__, run->riscv_sbi.extension_id); ret = -1; break; } return ret; } static int kvm_riscv_handle_csr(CPUState *cs, struct kvm_run *run) { target_ulong csr_num = run->riscv_csr.csr_num; target_ulong new_value = run->riscv_csr.new_value; target_ulong write_mask = run->riscv_csr.write_mask; int ret = 0; switch (csr_num) { case CSR_SEED: run->riscv_csr.ret_value = riscv_new_csr_seed(new_value, write_mask); break; default: qemu_log_mask(LOG_UNIMP, "%s: un-handled CSR EXIT for CSR %lx\n", __func__, csr_num); ret = -1; break; } return ret; } static bool kvm_riscv_handle_debug(CPUState *cs) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; /* Ensure PC is synchronised */ kvm_cpu_synchronize_state(cs); if (kvm_find_sw_breakpoint(cs, env->pc)) { return true; } return false; } int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) { int ret = 0; switch (run->exit_reason) { case KVM_EXIT_RISCV_SBI: ret = kvm_riscv_handle_sbi(cs, run); break; case KVM_EXIT_RISCV_CSR: ret = kvm_riscv_handle_csr(cs, run); break; case KVM_EXIT_DEBUG: if (kvm_riscv_handle_debug(cs)) { ret = EXCP_DEBUG; } break; default: qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", __func__, run->exit_reason); ret = -1; break; } return ret; } void kvm_riscv_reset_vcpu(RISCVCPU *cpu) { CPURISCVState *env = &cpu->env; int i; if (!kvm_enabled()) { return; } for (i = 0; i < 32; i++) { env->gpr[i] = 0; } env->pc = cpu->env.kernel_addr; env->gpr[10] = kvm_arch_vcpu_id(CPU(cpu)); /* a0 */ env->gpr[11] = cpu->env.fdt_addr; /* a1 */ env->satp = 0; env->mie = 0; env->stvec = 0; env->sscratch = 0; env->sepc = 0; env->scause = 0; env->stval = 0; env->mip = 0; } void kvm_riscv_set_irq(RISCVCPU *cpu, int irq, int level) { int ret; unsigned virq = level ? KVM_INTERRUPT_SET : KVM_INTERRUPT_UNSET; if (irq != IRQ_S_EXT) { perror("kvm riscv set irq != IRQ_S_EXT\n"); abort(); } ret = kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); if (ret < 0) { perror("Set irq failed"); abort(); } } static int aia_mode; static const char *kvm_aia_mode_str(uint64_t mode) { switch (mode) { case KVM_DEV_RISCV_AIA_MODE_EMUL: return "emul"; case KVM_DEV_RISCV_AIA_MODE_HWACCEL: return "hwaccel"; case KVM_DEV_RISCV_AIA_MODE_AUTO: default: return "auto"; }; } static char *riscv_get_kvm_aia(Object *obj, Error **errp) { return g_strdup(kvm_aia_mode_str(aia_mode)); } static void riscv_set_kvm_aia(Object *obj, const char *val, Error **errp) { if (!strcmp(val, "emul")) { aia_mode = KVM_DEV_RISCV_AIA_MODE_EMUL; } else if (!strcmp(val, "hwaccel")) { aia_mode = KVM_DEV_RISCV_AIA_MODE_HWACCEL; } else if (!strcmp(val, "auto")) { aia_mode = KVM_DEV_RISCV_AIA_MODE_AUTO; } else { error_setg(errp, "Invalid KVM AIA mode"); error_append_hint(errp, "Valid values are emul, hwaccel, and auto.\n"); } } void kvm_arch_accel_class_init(ObjectClass *oc) { object_class_property_add_str(oc, "riscv-aia", riscv_get_kvm_aia, riscv_set_kvm_aia); object_class_property_set_description(oc, "riscv-aia", "Set KVM AIA mode. Valid values are " "emul, hwaccel, and auto. Default " "is auto."); object_property_set_default_str(object_class_property_find(oc, "riscv-aia"), "auto"); } void kvm_riscv_aia_create(MachineState *machine, uint64_t group_shift, uint64_t aia_irq_num, uint64_t aia_msi_num, uint64_t aplic_base, uint64_t imsic_base, uint64_t guest_num) { int ret, i; int aia_fd = -1; uint64_t default_aia_mode; uint64_t socket_count = riscv_socket_count(machine); uint64_t max_hart_per_socket = 0; uint64_t socket, base_hart, hart_count, socket_imsic_base, imsic_addr; uint64_t socket_bits, hart_bits, guest_bits; uint64_t max_group_id; aia_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_RISCV_AIA, false); if (aia_fd < 0) { error_report("Unable to create in-kernel irqchip"); exit(1); } ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, KVM_DEV_RISCV_AIA_CONFIG_MODE, &default_aia_mode, false, NULL); if (ret < 0) { error_report("KVM AIA: failed to get current KVM AIA mode"); exit(1); } qemu_log("KVM AIA: default mode is %s\n", kvm_aia_mode_str(default_aia_mode)); if (default_aia_mode != aia_mode) { ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, KVM_DEV_RISCV_AIA_CONFIG_MODE, &aia_mode, true, NULL); if (ret < 0) warn_report("KVM AIA: failed to set KVM AIA mode"); else qemu_log("KVM AIA: set current mode to %s\n", kvm_aia_mode_str(aia_mode)); } ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, KVM_DEV_RISCV_AIA_CONFIG_SRCS, &aia_irq_num, true, NULL); if (ret < 0) { error_report("KVM AIA: failed to set number of input irq lines"); exit(1); } ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, KVM_DEV_RISCV_AIA_CONFIG_IDS, &aia_msi_num, true, NULL); if (ret < 0) { error_report("KVM AIA: failed to set number of msi"); exit(1); } if (socket_count > 1) { max_group_id = socket_count - 1; socket_bits = find_last_bit(&max_group_id, BITS_PER_LONG) + 1; ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, KVM_DEV_RISCV_AIA_CONFIG_GROUP_BITS, &socket_bits, true, NULL); if (ret < 0) { error_report("KVM AIA: failed to set group_bits"); exit(1); } ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, KVM_DEV_RISCV_AIA_CONFIG_GROUP_SHIFT, &group_shift, true, NULL); if (ret < 0) { error_report("KVM AIA: failed to set group_shift"); exit(1); } } guest_bits = guest_num == 0 ? 0 : find_last_bit(&guest_num, BITS_PER_LONG) + 1; ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, KVM_DEV_RISCV_AIA_CONFIG_GUEST_BITS, &guest_bits, true, NULL); if (ret < 0) { error_report("KVM AIA: failed to set guest_bits"); exit(1); } ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR, KVM_DEV_RISCV_AIA_ADDR_APLIC, &aplic_base, true, NULL); if (ret < 0) { error_report("KVM AIA: failed to set the base address of APLIC"); exit(1); } for (socket = 0; socket < socket_count; socket++) { socket_imsic_base = imsic_base + socket * (1U << group_shift); hart_count = riscv_socket_hart_count(machine, socket); base_hart = riscv_socket_first_hartid(machine, socket); if (max_hart_per_socket < hart_count) { max_hart_per_socket = hart_count; } for (i = 0; i < hart_count; i++) { imsic_addr = socket_imsic_base + i * IMSIC_HART_SIZE(guest_bits); ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR, KVM_DEV_RISCV_AIA_ADDR_IMSIC(i + base_hart), &imsic_addr, true, NULL); if (ret < 0) { error_report("KVM AIA: failed to set the IMSIC address for hart %d", i); exit(1); } } } if (max_hart_per_socket > 1) { max_hart_per_socket--; hart_bits = find_last_bit(&max_hart_per_socket, BITS_PER_LONG) + 1; } else { hart_bits = 0; } ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, KVM_DEV_RISCV_AIA_CONFIG_HART_BITS, &hart_bits, true, NULL); if (ret < 0) { error_report("KVM AIA: failed to set hart_bits"); exit(1); } if (kvm_has_gsi_routing()) { for (uint64_t idx = 0; idx < aia_irq_num + 1; ++idx) { /* KVM AIA only has one APLIC instance */ kvm_irqchip_add_irq_route(kvm_state, idx, 0, idx); } kvm_gsi_routing_allowed = true; kvm_irqchip_commit_routes(kvm_state); } ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CTRL, KVM_DEV_RISCV_AIA_CTRL_INIT, NULL, true, NULL); if (ret < 0) { error_report("KVM AIA: initialized fail"); exit(1); } kvm_msi_via_irqfd_allowed = true; } static void kvm_cpu_instance_init(CPUState *cs) { Object *obj = OBJECT(RISCV_CPU(cs)); riscv_init_kvm_registers(obj); kvm_riscv_add_cpu_user_properties(obj); } /* * We'll get here via the following path: * * riscv_cpu_realize() * -> cpu_exec_realizefn() * -> kvm_cpu_realize() (via accel_cpu_common_realize()) */ static bool kvm_cpu_realize(CPUState *cs, Error **errp) { RISCVCPU *cpu = RISCV_CPU(cs); int ret; if (riscv_has_ext(&cpu->env, RVV)) { ret = prctl(PR_RISCV_V_SET_CONTROL, PR_RISCV_V_VSTATE_CTRL_ON); if (ret) { error_setg(errp, "Error in prctl PR_RISCV_V_SET_CONTROL, code: %s", strerrorname_np(errno)); return false; } } return true; } void riscv_kvm_cpu_finalize_features(RISCVCPU *cpu, Error **errp) { CPURISCVState *env = &cpu->env; KVMScratchCPU kvmcpu; struct kvm_one_reg reg; uint64_t val; int ret; /* short-circuit without spinning the scratch CPU */ if (!cpu->cfg.ext_zicbom && !cpu->cfg.ext_zicboz && !riscv_has_ext(env, RVV)) { return; } if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) { error_setg(errp, "Unable to create scratch KVM cpu"); return; } if (cpu->cfg.ext_zicbom && riscv_cpu_option_set(kvm_cbom_blocksize.name)) { reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, kvm_cbom_blocksize.kvm_reg_id); reg.addr = (uint64_t)&val; ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®); if (ret != 0) { error_setg(errp, "Unable to read cbom_blocksize, error %d", errno); return; } if (cpu->cfg.cbom_blocksize != val) { error_setg(errp, "Unable to set cbom_blocksize to a different " "value than the host (%lu)", val); return; } } if (cpu->cfg.ext_zicboz && riscv_cpu_option_set(kvm_cboz_blocksize.name)) { reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, kvm_cboz_blocksize.kvm_reg_id); reg.addr = (uint64_t)&val; ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®); if (ret != 0) { error_setg(errp, "Unable to read cboz_blocksize, error %d", errno); return; } if (cpu->cfg.cboz_blocksize != val) { error_setg(errp, "Unable to set cboz_blocksize to a different " "value than the host (%lu)", val); return; } } /* Users are setting vlen, not vlenb */ if (riscv_has_ext(env, RVV) && riscv_cpu_option_set("vlen")) { if (!kvm_v_vlenb.supported) { error_setg(errp, "Unable to set 'vlenb': register not supported"); return; } reg.id = kvm_v_vlenb.kvm_reg_id; reg.addr = (uint64_t)&val; ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®); if (ret != 0) { error_setg(errp, "Unable to read vlenb register, error %d", errno); return; } if (cpu->cfg.vlenb != val) { error_setg(errp, "Unable to set 'vlen' to a different " "value than the host (%lu)", val * 8); return; } } kvm_riscv_destroy_scratch_vcpu(&kvmcpu); } static void kvm_cpu_accel_class_init(ObjectClass *oc, void *data) { AccelCPUClass *acc = ACCEL_CPU_CLASS(oc); acc->cpu_instance_init = kvm_cpu_instance_init; acc->cpu_target_realize = kvm_cpu_realize; } static const TypeInfo kvm_cpu_accel_type_info = { .name = ACCEL_CPU_NAME("kvm"), .parent = TYPE_ACCEL_CPU, .class_init = kvm_cpu_accel_class_init, .abstract = true, }; static void kvm_cpu_accel_register_types(void) { type_register_static(&kvm_cpu_accel_type_info); } type_init(kvm_cpu_accel_register_types); static void riscv_host_cpu_class_init(ObjectClass *c, void *data) { RISCVCPUClass *mcc = RISCV_CPU_CLASS(c); #if defined(TARGET_RISCV32) mcc->misa_mxl_max = MXL_RV32; #elif defined(TARGET_RISCV64) mcc->misa_mxl_max = MXL_RV64; #endif } static const TypeInfo riscv_kvm_cpu_type_infos[] = { { .name = TYPE_RISCV_CPU_HOST, .parent = TYPE_RISCV_CPU, .class_init = riscv_host_cpu_class_init, } }; DEFINE_TYPES(riscv_kvm_cpu_type_infos) static const uint32_t ebreak_insn = 0x00100073; static const uint16_t c_ebreak_insn = 0x9002; int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 2, 0)) { return -EINVAL; } if ((bp->saved_insn & 0x3) == 0x3) { if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&ebreak_insn, 4, 1)) { return -EINVAL; } } else { if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&c_ebreak_insn, 2, 1)) { return -EINVAL; } } return 0; } int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { uint32_t ebreak; uint16_t c_ebreak; if ((bp->saved_insn & 0x3) == 0x3) { if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&ebreak, 4, 0) || ebreak != ebreak_insn || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) { return -EINVAL; } } else { if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&c_ebreak, 2, 0) || c_ebreak != c_ebreak_insn || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 2, 1)) { return -EINVAL; } } return 0; } int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) { /* TODO; To be implemented later. */ return -EINVAL; } int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) { /* TODO; To be implemented later. */ return -EINVAL; } void kvm_arch_remove_all_hw_breakpoints(void) { /* TODO; To be implemented later. */ } void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) { if (kvm_sw_breakpoints_active(cs)) { dbg->control |= KVM_GUESTDBG_ENABLE; } }