#include "exec.h" //#define DEBUG_MMU void raise_exception(int tt) { env->exception_index = tt; cpu_loop_exit(); } #ifdef USE_INT_TO_FLOAT_HELPERS void do_fitos(void) { FT0 = (float) *((int32_t *)&FT1); } void do_fitod(void) { DT0 = (double) *((int32_t *)&FT1); } #endif void do_fabss(void) { FT0 = float32_abs(FT1); } #ifdef TARGET_SPARC64 void do_fabsd(void) { DT0 = float64_abs(DT1); } #endif void do_fsqrts(void) { FT0 = float32_sqrt(FT1, &env->fp_status); } void do_fsqrtd(void) { DT0 = float64_sqrt(DT1, &env->fp_status); } #define FS 0 void do_fcmps (void) { env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); if (isnan(FT0) || isnan(FT1)) { T0 = (FSR_FCC1 | FSR_FCC0) << FS; if (env->fsr & FSR_NVM) { env->fsr |= T0; raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (FT0 < FT1) { T0 = FSR_FCC0 << FS; } else if (FT0 > FT1) { T0 = FSR_FCC1 << FS; } else { T0 = 0; } env->fsr |= T0; } void do_fcmpd (void) { env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); if (isnan(DT0) || isnan(DT1)) { T0 = (FSR_FCC1 | FSR_FCC0) << FS; if (env->fsr & FSR_NVM) { env->fsr |= T0; raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (DT0 < DT1) { T0 = FSR_FCC0 << FS; } else if (DT0 > DT1) { T0 = FSR_FCC1 << FS; } else { T0 = 0; } env->fsr |= T0; } #ifdef TARGET_SPARC64 #undef FS #define FS 22 void do_fcmps_fcc1 (void) { env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); if (isnan(FT0) || isnan(FT1)) { T0 = (FSR_FCC1 | FSR_FCC0) << FS; if (env->fsr & FSR_NVM) { env->fsr |= T0; raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (FT0 < FT1) { T0 = FSR_FCC0 << FS; } else if (FT0 > FT1) { T0 = FSR_FCC1 << FS; } else { T0 = 0; } env->fsr |= T0; } void do_fcmpd_fcc1 (void) { env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); if (isnan(DT0) || isnan(DT1)) { T0 = (FSR_FCC1 | FSR_FCC0) << FS; if (env->fsr & FSR_NVM) { env->fsr |= T0; raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (DT0 < DT1) { T0 = FSR_FCC0 << FS; } else if (DT0 > DT1) { T0 = FSR_FCC1 << FS; } else { T0 = 0; } env->fsr |= T0; } #undef FS #define FS 24 void do_fcmps_fcc2 (void) { env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); if (isnan(FT0) || isnan(FT1)) { T0 = (FSR_FCC1 | FSR_FCC0) << FS; if (env->fsr & FSR_NVM) { env->fsr |= T0; raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (FT0 < FT1) { T0 = FSR_FCC0 << FS; } else if (FT0 > FT1) { T0 = FSR_FCC1 << FS; } else { T0 = 0; } env->fsr |= T0; } void do_fcmpd_fcc2 (void) { env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); if (isnan(DT0) || isnan(DT1)) { T0 = (FSR_FCC1 | FSR_FCC0) << FS; if (env->fsr & FSR_NVM) { env->fsr |= T0; raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (DT0 < DT1) { T0 = FSR_FCC0 << FS; } else if (DT0 > DT1) { T0 = FSR_FCC1 << FS; } else { T0 = 0; } env->fsr |= T0; } #undef FS #define FS 26 void do_fcmps_fcc3 (void) { env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); if (isnan(FT0) || isnan(FT1)) { T0 = (FSR_FCC1 | FSR_FCC0) << FS; if (env->fsr & FSR_NVM) { env->fsr |= T0; raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (FT0 < FT1) { T0 = FSR_FCC0 << FS; } else if (FT0 > FT1) { T0 = FSR_FCC1 << FS; } else { T0 = 0; } env->fsr |= T0; } void do_fcmpd_fcc3 (void) { env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); if (isnan(DT0) || isnan(DT1)) { T0 = (FSR_FCC1 | FSR_FCC0) << FS; if (env->fsr & FSR_NVM) { env->fsr |= T0; raise_exception(TT_FP_EXCP); } else { env->fsr |= FSR_NVA; } } else if (DT0 < DT1) { T0 = FSR_FCC0 << FS; } else if (DT0 > DT1) { T0 = FSR_FCC1 << FS; } else { T0 = 0; } env->fsr |= T0; } #undef FS #endif #ifndef TARGET_SPARC64 void helper_ld_asi(int asi, int size, int sign) { uint32_t ret; switch (asi) { case 3: /* MMU probe */ { int mmulev; mmulev = (T0 >> 8) & 15; if (mmulev > 4) ret = 0; else { ret = mmu_probe(T0, mmulev); //bswap32s(&ret); } #ifdef DEBUG_MMU printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret); #endif } break; case 4: /* read MMU regs */ { int reg = (T0 >> 8) & 0xf; ret = env->mmuregs[reg]; if (reg == 3) /* Fault status cleared on read */ env->mmuregs[reg] = 0; #ifdef DEBUG_MMU printf("mmu_read: reg[%d] = 0x%08x\n", reg, ret); #endif } break; case 0x20 ... 0x2f: /* MMU passthrough */ cpu_physical_memory_read(T0, (void *) &ret, size); if (size == 4) tswap32s(&ret); else if (size == 2) tswap16s((uint16_t *)&ret); break; default: ret = 0; break; } T1 = ret; } void helper_st_asi(int asi, int size, int sign) { switch(asi) { case 3: /* MMU flush */ { int mmulev; mmulev = (T0 >> 8) & 15; #ifdef DEBUG_MMU printf("mmu flush level %d\n", mmulev); #endif switch (mmulev) { case 0: // flush page tlb_flush_page(env, T0 & 0xfffff000); break; case 1: // flush segment (256k) case 2: // flush region (16M) case 3: // flush context (4G) case 4: // flush entire tlb_flush(env, 1); break; default: break; } #ifdef DEBUG_MMU dump_mmu(); #endif return; } case 4: /* write MMU regs */ { int reg = (T0 >> 8) & 0xf, oldreg; oldreg = env->mmuregs[reg]; switch(reg) { case 0: env->mmuregs[reg] &= ~(MMU_E | MMU_NF); env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF); // Mappings generated during no-fault mode or MMU // disabled mode are invalid in normal mode if (oldreg != env->mmuregs[reg]) tlb_flush(env, 1); break; case 2: env->mmuregs[reg] = T1; if (oldreg != env->mmuregs[reg]) { /* we flush when the MMU context changes because QEMU has no MMU context support */ tlb_flush(env, 1); } break; case 3: case 4: break; default: env->mmuregs[reg] = T1; break; } #ifdef DEBUG_MMU if (oldreg != env->mmuregs[reg]) { printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]); } dump_mmu(); #endif return; } case 0x17: /* Block copy, sta access */ { // value (T1) = src // address (T0) = dst // copy 32 bytes int src = T1, dst = T0; uint8_t temp[32]; tswap32s(&src); cpu_physical_memory_read(src, (void *) &temp, 32); cpu_physical_memory_write(dst, (void *) &temp, 32); } return; case 0x1f: /* Block fill, stda access */ { // value (T1, T2) // address (T0) = dst // fill 32 bytes int i, dst = T0; uint64_t val; val = (((uint64_t)T1) << 32) | T2; tswap64s(&val); for (i = 0; i < 32; i += 8, dst += 8) { cpu_physical_memory_write(dst, (void *) &val, 8); } } return; case 0x20 ... 0x2f: /* MMU passthrough */ { int temp = T1; if (size == 4) tswap32s(&temp); else if (size == 2) tswap16s((uint16_t *)&temp); cpu_physical_memory_write(T0, (void *) &temp, size); } return; default: return; } } #else void helper_ld_asi(int asi, int size, int sign) { uint64_t ret; if (asi < 0x80 && (env->pstate & PS_PRIV) == 0) raise_exception(TT_PRIV_INSN); switch (asi) { case 0x14: // Bypass case 0x15: // Bypass, non-cacheable { cpu_physical_memory_read(T0, (void *) &ret, size); if (size == 8) tswap64s(&ret); if (size == 4) tswap32s((uint32_t *)&ret); else if (size == 2) tswap16s((uint16_t *)&ret); break; } case 0x1c: // Bypass LE case 0x1d: // Bypass, non-cacheable LE // XXX break; case 0x45: // LSU ret = env->lsu; break; case 0x50: // I-MMU regs { int reg = (T0 >> 3) & 0xf; ret = env->immuregs[reg]; break; } case 0x51: // I-MMU 8k TSB pointer case 0x52: // I-MMU 64k TSB pointer case 0x55: // I-MMU data access case 0x56: // I-MMU tag read break; case 0x58: // D-MMU regs { int reg = (T0 >> 3) & 0xf; ret = env->dmmuregs[reg]; break; } case 0x59: // D-MMU 8k TSB pointer case 0x5a: // D-MMU 64k TSB pointer case 0x5b: // D-MMU data pointer case 0x5d: // D-MMU data access case 0x5e: // D-MMU tag read break; case 0x54: // I-MMU data in, WO case 0x57: // I-MMU demap, WO case 0x5c: // D-MMU data in, WO case 0x5f: // D-MMU demap, WO default: ret = 0; break; } T1 = ret; } void helper_st_asi(int asi, int size, int sign) { if (asi < 0x80 && (env->pstate & PS_PRIV) == 0) raise_exception(TT_PRIV_INSN); switch(asi) { case 0x14: // Bypass case 0x15: // Bypass, non-cacheable { target_ulong temp = T1; if (size == 8) tswap64s(&temp); else if (size == 4) tswap32s((uint32_t *)&temp); else if (size == 2) tswap16s((uint16_t *)&temp); cpu_physical_memory_write(T0, (void *) &temp, size); } return; case 0x1c: // Bypass LE case 0x1d: // Bypass, non-cacheable LE // XXX return; case 0x45: // LSU { uint64_t oldreg; oldreg = env->lsu; env->lsu = T1 & (DMMU_E | IMMU_E); // Mappings generated during D/I MMU disabled mode are // invalid in normal mode if (oldreg != env->lsu) tlb_flush(env, 1); return; } case 0x50: // I-MMU regs { int reg = (T0 >> 3) & 0xf; uint64_t oldreg; oldreg = env->immuregs[reg]; switch(reg) { case 0: // RO case 4: return; case 1: // Not in I-MMU case 2: case 7: case 8: return; case 3: // SFSR if ((T1 & 1) == 0) T1 = 0; // Clear SFSR break; case 5: // TSB access case 6: // Tag access default: break; } env->immuregs[reg] = T1; #ifdef DEBUG_MMU if (oldreg != env->immuregs[reg]) { printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->immuregs[reg]); } dump_mmu(); #endif return; } case 0x54: // I-MMU data in { unsigned int i; // Try finding an invalid entry for (i = 0; i < 64; i++) { if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) { env->itlb_tag[i] = env->immuregs[6]; env->itlb_tte[i] = T1; return; } } // Try finding an unlocked entry for (i = 0; i < 64; i++) { if ((env->itlb_tte[i] & 0x40) == 0) { env->itlb_tag[i] = env->immuregs[6]; env->itlb_tte[i] = T1; return; } } // error state? return; } case 0x55: // I-MMU data access { unsigned int i = (T0 >> 3) & 0x3f; env->itlb_tag[i] = env->immuregs[6]; env->itlb_tte[i] = T1; return; } case 0x57: // I-MMU demap return; case 0x58: // D-MMU regs { int reg = (T0 >> 3) & 0xf; uint64_t oldreg; oldreg = env->dmmuregs[reg]; switch(reg) { case 0: // RO case 4: return; case 3: // SFSR if ((T1 & 1) == 0) { T1 = 0; // Clear SFSR, Fault address env->dmmuregs[4] = 0; } env->dmmuregs[reg] = T1; break; case 1: // Primary context case 2: // Secondary context case 5: // TSB access case 6: // Tag access case 7: // Virtual Watchpoint case 8: // Physical Watchpoint default: break; } env->dmmuregs[reg] = T1; #ifdef DEBUG_MMU if (oldreg != env->dmmuregs[reg]) { printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->dmmuregs[reg]); } dump_mmu(); #endif return; } case 0x5c: // D-MMU data in { unsigned int i; // Try finding an invalid entry for (i = 0; i < 64; i++) { if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) { env->dtlb_tag[i] = env->dmmuregs[6]; env->dtlb_tte[i] = T1; return; } } // Try finding an unlocked entry for (i = 0; i < 64; i++) { if ((env->dtlb_tte[i] & 0x40) == 0) { env->dtlb_tag[i] = env->dmmuregs[6]; env->dtlb_tte[i] = T1; return; } } // error state? return; } case 0x5d: // D-MMU data access { unsigned int i = (T0 >> 3) & 0x3f; env->dtlb_tag[i] = env->dmmuregs[6]; env->dtlb_tte[i] = T1; return; } case 0x5f: // D-MMU demap return; case 0x51: // I-MMU 8k TSB pointer, RO case 0x52: // I-MMU 64k TSB pointer, RO case 0x56: // I-MMU tag read, RO case 0x59: // D-MMU 8k TSB pointer, RO case 0x5a: // D-MMU 64k TSB pointer, RO case 0x5b: // D-MMU data pointer, RO case 0x5e: // D-MMU tag read, RO default: return; } } #endif #ifndef TARGET_SPARC64 void helper_rett() { unsigned int cwp; env->psret = 1; cwp = (env->cwp + 1) & (NWINDOWS - 1); if (env->wim & (1 << cwp)) { raise_exception(TT_WIN_UNF); } set_cwp(cwp); env->psrs = env->psrps; } #endif void helper_ldfsr(void) { int rnd_mode; switch (env->fsr & FSR_RD_MASK) { case FSR_RD_NEAREST: rnd_mode = float_round_nearest_even; break; default: case FSR_RD_ZERO: rnd_mode = float_round_to_zero; break; case FSR_RD_POS: rnd_mode = float_round_up; break; case FSR_RD_NEG: rnd_mode = float_round_down; break; } set_float_rounding_mode(rnd_mode, &env->fp_status); } void cpu_get_fp64(uint64_t *pmant, uint16_t *pexp, double f) { int exptemp; *pmant = ldexp(frexp(f, &exptemp), 53); *pexp = exptemp; } double cpu_put_fp64(uint64_t mant, uint16_t exp) { return ldexp((double) mant, exp - 53); } void helper_debug() { env->exception_index = EXCP_DEBUG; cpu_loop_exit(); } #ifndef TARGET_SPARC64 void do_wrpsr() { PUT_PSR(env, T0); } void do_rdpsr() { T0 = GET_PSR(env); } #else void do_popc() { T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL); T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL); T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL); T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL); T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL); T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL); } #endif