// Copyright 2013, ARM Limited // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of ARM Limited nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef VIXL_UTILS_H #define VIXL_UTILS_H #include <string.h> #include "globals.h" namespace vixl { // Check number width. inline bool is_intn(unsigned n, int64_t x) { ASSERT((0 < n) && (n < 64)); int64_t limit = 1ULL << (n - 1); return (-limit <= x) && (x < limit); } inline bool is_uintn(unsigned n, int64_t x) { ASSERT((0 < n) && (n < 64)); return !(x >> n); } inline unsigned truncate_to_intn(unsigned n, int64_t x) { ASSERT((0 < n) && (n < 64)); return (x & ((1ULL << n) - 1)); } #define INT_1_TO_63_LIST(V) \ V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) \ V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16) \ V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24) \ V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32) \ V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \ V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) \ V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56) \ V(57) V(58) V(59) V(60) V(61) V(62) V(63) #define DECLARE_IS_INT_N(N) \ inline bool is_int##N(int64_t x) { return is_intn(N, x); } #define DECLARE_IS_UINT_N(N) \ inline bool is_uint##N(int64_t x) { return is_uintn(N, x); } #define DECLARE_TRUNCATE_TO_INT_N(N) \ inline int truncate_to_int##N(int x) { return truncate_to_intn(N, x); } INT_1_TO_63_LIST(DECLARE_IS_INT_N) INT_1_TO_63_LIST(DECLARE_IS_UINT_N) INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N) #undef DECLARE_IS_INT_N #undef DECLARE_IS_UINT_N #undef DECLARE_TRUNCATE_TO_INT_N // Bit field extraction. inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) { return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1); } inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) { return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1); } inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) { return (x << (31 - msb)) >> (lsb + 31 - msb); } inline int64_t signed_bitextract_64(int msb, int lsb, int64_t x) { return (x << (63 - msb)) >> (lsb + 63 - msb); } // floating point representation uint32_t float_to_rawbits(float value); uint64_t double_to_rawbits(double value); float rawbits_to_float(uint32_t bits); double rawbits_to_double(uint64_t bits); // Bits counting. int CountLeadingZeros(uint64_t value, int width); int CountLeadingSignBits(int64_t value, int width); int CountTrailingZeros(uint64_t value, int width); int CountSetBits(uint64_t value, int width); // Pointer alignment // TODO: rename/refactor to make it specific to instructions. template<typename T> bool IsWordAligned(T pointer) { ASSERT(sizeof(pointer) == sizeof(intptr_t)); // NOLINT(runtime/sizeof) return (reinterpret_cast<intptr_t>(pointer) & 3) == 0; } // Increment a pointer until it has the specified alignment. template<class T> T AlignUp(T pointer, size_t alignment) { ASSERT(sizeof(pointer) == sizeof(uintptr_t)); uintptr_t pointer_raw = reinterpret_cast<uintptr_t>(pointer); size_t align_step = (alignment - pointer_raw) % alignment; ASSERT((pointer_raw + align_step) % alignment == 0); return reinterpret_cast<T>(pointer_raw + align_step); } } // namespace vixl #endif // VIXL_UTILS_H