/* * CRIS emulation for qemu: main translation routines. * * Copyright (c) 2008 AXIS Communications AB * Written by Edgar E. Iglesias. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ /* * FIXME: * The condition code translation is in need of attention. */ #include "qemu/osdep.h" #include "cpu.h" #include "disas/disas.h" #include "exec/exec-all.h" #include "tcg/tcg-op.h" #include "exec/helper-proto.h" #include "mmu.h" #include "exec/cpu_ldst.h" #include "exec/translator.h" #include "crisv32-decode.h" #include "qemu/qemu-print.h" #include "exec/helper-gen.h" #include "trace-tcg.h" #include "exec/log.h" #define DISAS_CRIS 0 #if DISAS_CRIS # define LOG_DIS(...) qemu_log_mask(CPU_LOG_TB_IN_ASM, ## __VA_ARGS__) #else # define LOG_DIS(...) do { } while (0) #endif #define D(x) #define BUG() (gen_BUG(dc, __FILE__, __LINE__)) #define BUG_ON(x) ({if (x) BUG();}) /* * Target-specific is_jmp field values */ /* Only pc was modified dynamically */ #define DISAS_JUMP DISAS_TARGET_0 /* Cpu state was modified dynamically, including pc */ #define DISAS_UPDATE DISAS_TARGET_1 /* Cpu state was modified dynamically, excluding pc -- use npc */ #define DISAS_UPDATE_NEXT DISAS_TARGET_2 /* PC update for delayed branch, see cpustate_changed otherwise */ #define DISAS_DBRANCH DISAS_TARGET_3 /* Used by the decoder. */ #define EXTRACT_FIELD(src, start, end) \ (((src) >> start) & ((1 << (end - start + 1)) - 1)) #define CC_MASK_NZ 0xc #define CC_MASK_NZV 0xe #define CC_MASK_NZVC 0xf #define CC_MASK_RNZV 0x10e static TCGv cpu_R[16]; static TCGv cpu_PR[16]; static TCGv cc_x; static TCGv cc_src; static TCGv cc_dest; static TCGv cc_result; static TCGv cc_op; static TCGv cc_size; static TCGv cc_mask; static TCGv env_btaken; static TCGv env_btarget; static TCGv env_pc; #include "exec/gen-icount.h" /* This is the state at translation time. */ typedef struct DisasContext { DisasContextBase base; CRISCPU *cpu; target_ulong pc, ppc; /* Decoder. */ unsigned int (*decoder)(CPUCRISState *env, struct DisasContext *dc); uint32_t ir; uint32_t opcode; unsigned int op1; unsigned int op2; unsigned int zsize, zzsize; unsigned int mode; unsigned int postinc; unsigned int size; unsigned int src; unsigned int dst; unsigned int cond; int update_cc; int cc_op; int cc_size; uint32_t cc_mask; int cc_size_uptodate; /* -1 invalid or last written value. */ int cc_x_uptodate; /* 1 - ccs, 2 - known | X_FLAG. 0 not up-to-date. */ int flags_uptodate; /* Whether or not $ccs is up-to-date. */ int flagx_known; /* Whether or not flags_x has the x flag known at translation time. */ int flags_x; int clear_x; /* Clear x after this insn? */ int clear_prefix; /* Clear prefix after this insn? */ int clear_locked_irq; /* Clear the irq lockout. */ int cpustate_changed; unsigned int tb_flags; /* tb dependent flags. */ #define JMP_NOJMP 0 #define JMP_DIRECT 1 #define JMP_DIRECT_CC 2 #define JMP_INDIRECT 3 int jmp; /* 0=nojmp, 1=direct, 2=indirect. */ uint32_t jmp_pc; int delayed_branch; } DisasContext; static void gen_BUG(DisasContext *dc, const char *file, int line) { cpu_abort(CPU(dc->cpu), "%s:%d pc=%x\n", file, line, dc->pc); } static const char * const regnames_v32[] = { "$r0", "$r1", "$r2", "$r3", "$r4", "$r5", "$r6", "$r7", "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$sp", "$acr", }; static const char * const pregnames_v32[] = { "$bz", "$vr", "$pid", "$srs", "$wz", "$exs", "$eda", "$mof", "$dz", "$ebp", "$erp", "$srp", "$nrp", "$ccs", "$usp", "$spc", }; /* We need this table to handle preg-moves with implicit width. */ static const int preg_sizes[] = { 1, /* bz. */ 1, /* vr. */ 4, /* pid. */ 1, /* srs. */ 2, /* wz. */ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, }; #define t_gen_mov_TN_env(tn, member) \ tcg_gen_ld_tl(tn, cpu_env, offsetof(CPUCRISState, member)) #define t_gen_mov_env_TN(member, tn) \ tcg_gen_st_tl(tn, cpu_env, offsetof(CPUCRISState, member)) #define t_gen_movi_env_TN(member, c) \ do { \ TCGv tc = tcg_const_tl(c); \ t_gen_mov_env_TN(member, tc); \ tcg_temp_free(tc); \ } while (0) static inline void t_gen_mov_TN_preg(TCGv tn, int r) { assert(r >= 0 && r <= 15); if (r == PR_BZ || r == PR_WZ || r == PR_DZ) { tcg_gen_movi_tl(tn, 0); } else if (r == PR_VR) { tcg_gen_movi_tl(tn, 32); } else { tcg_gen_mov_tl(tn, cpu_PR[r]); } } static inline void t_gen_mov_preg_TN(DisasContext *dc, int r, TCGv tn) { assert(r >= 0 && r <= 15); if (r == PR_BZ || r == PR_WZ || r == PR_DZ) { return; } else if (r == PR_SRS) { tcg_gen_andi_tl(cpu_PR[r], tn, 3); } else { if (r == PR_PID) { gen_helper_tlb_flush_pid(cpu_env, tn); } if (dc->tb_flags & S_FLAG && r == PR_SPC) { gen_helper_spc_write(cpu_env, tn); } else if (r == PR_CCS) { dc->cpustate_changed = 1; } tcg_gen_mov_tl(cpu_PR[r], tn); } } /* Sign extend at translation time. */ static int sign_extend(unsigned int val, unsigned int width) { int sval; /* LSL. */ val <<= 31 - width; sval = val; /* ASR. */ sval >>= 31 - width; return sval; } static int cris_fetch(CPUCRISState *env, DisasContext *dc, uint32_t addr, unsigned int size, unsigned int sign) { int r; switch (size) { case 4: { r = cpu_ldl_code(env, addr); break; } case 2: { if (sign) { r = cpu_ldsw_code(env, addr); } else { r = cpu_lduw_code(env, addr); } break; } case 1: { if (sign) { r = cpu_ldsb_code(env, addr); } else { r = cpu_ldub_code(env, addr); } break; } default: cpu_abort(CPU(dc->cpu), "Invalid fetch size %d\n", size); break; } return r; } static void cris_lock_irq(DisasContext *dc) { dc->clear_locked_irq = 0; t_gen_movi_env_TN(locked_irq, 1); } static inline void t_gen_raise_exception(uint32_t index) { TCGv_i32 tmp = tcg_const_i32(index); gen_helper_raise_exception(cpu_env, tmp); tcg_temp_free_i32(tmp); } static void t_gen_lsl(TCGv d, TCGv a, TCGv b) { TCGv t0, t_31; t0 = tcg_temp_new(); t_31 = tcg_const_tl(31); tcg_gen_shl_tl(d, a, b); tcg_gen_sub_tl(t0, t_31, b); tcg_gen_sar_tl(t0, t0, t_31); tcg_gen_and_tl(t0, t0, d); tcg_gen_xor_tl(d, d, t0); tcg_temp_free(t0); tcg_temp_free(t_31); } static void t_gen_lsr(TCGv d, TCGv a, TCGv b) { TCGv t0, t_31; t0 = tcg_temp_new(); t_31 = tcg_temp_new(); tcg_gen_shr_tl(d, a, b); tcg_gen_movi_tl(t_31, 31); tcg_gen_sub_tl(t0, t_31, b); tcg_gen_sar_tl(t0, t0, t_31); tcg_gen_and_tl(t0, t0, d); tcg_gen_xor_tl(d, d, t0); tcg_temp_free(t0); tcg_temp_free(t_31); } static void t_gen_asr(TCGv d, TCGv a, TCGv b) { TCGv t0, t_31; t0 = tcg_temp_new(); t_31 = tcg_temp_new(); tcg_gen_sar_tl(d, a, b); tcg_gen_movi_tl(t_31, 31); tcg_gen_sub_tl(t0, t_31, b); tcg_gen_sar_tl(t0, t0, t_31); tcg_gen_or_tl(d, d, t0); tcg_temp_free(t0); tcg_temp_free(t_31); } static void t_gen_cris_dstep(TCGv d, TCGv a, TCGv b) { TCGv t = tcg_temp_new(); /* * d <<= 1 * if (d >= s) * d -= s; */ tcg_gen_shli_tl(d, a, 1); tcg_gen_sub_tl(t, d, b); tcg_gen_movcond_tl(TCG_COND_GEU, d, d, b, t, d); tcg_temp_free(t); } static void t_gen_cris_mstep(TCGv d, TCGv a, TCGv b, TCGv ccs) { TCGv t; /* * d <<= 1 * if (n) * d += s; */ t = tcg_temp_new(); tcg_gen_shli_tl(d, a, 1); tcg_gen_shli_tl(t, ccs, 31 - 3); tcg_gen_sari_tl(t, t, 31); tcg_gen_and_tl(t, t, b); tcg_gen_add_tl(d, d, t); tcg_temp_free(t); } /* Extended arithmetics on CRIS. */ static inline void t_gen_add_flag(TCGv d, int flag) { TCGv c; c = tcg_temp_new(); t_gen_mov_TN_preg(c, PR_CCS); /* Propagate carry into d. */ tcg_gen_andi_tl(c, c, 1 << flag); if (flag) { tcg_gen_shri_tl(c, c, flag); } tcg_gen_add_tl(d, d, c); tcg_temp_free(c); } static inline void t_gen_addx_carry(DisasContext *dc, TCGv d) { if (dc->flagx_known) { if (dc->flags_x) { TCGv c; c = tcg_temp_new(); t_gen_mov_TN_preg(c, PR_CCS); /* C flag is already at bit 0. */ tcg_gen_andi_tl(c, c, C_FLAG); tcg_gen_add_tl(d, d, c); tcg_temp_free(c); } } else { TCGv x, c; x = tcg_temp_new(); c = tcg_temp_new(); t_gen_mov_TN_preg(x, PR_CCS); tcg_gen_mov_tl(c, x); /* Propagate carry into d if X is set. Branch free. */ tcg_gen_andi_tl(c, c, C_FLAG); tcg_gen_andi_tl(x, x, X_FLAG); tcg_gen_shri_tl(x, x, 4); tcg_gen_and_tl(x, x, c); tcg_gen_add_tl(d, d, x); tcg_temp_free(x); tcg_temp_free(c); } } static inline void t_gen_subx_carry(DisasContext *dc, TCGv d) { if (dc->flagx_known) { if (dc->flags_x) { TCGv c; c = tcg_temp_new(); t_gen_mov_TN_preg(c, PR_CCS); /* C flag is already at bit 0. */ tcg_gen_andi_tl(c, c, C_FLAG); tcg_gen_sub_tl(d, d, c); tcg_temp_free(c); } } else { TCGv x, c; x = tcg_temp_new(); c = tcg_temp_new(); t_gen_mov_TN_preg(x, PR_CCS); tcg_gen_mov_tl(c, x); /* Propagate carry into d if X is set. Branch free. */ tcg_gen_andi_tl(c, c, C_FLAG); tcg_gen_andi_tl(x, x, X_FLAG); tcg_gen_shri_tl(x, x, 4); tcg_gen_and_tl(x, x, c); tcg_gen_sub_tl(d, d, x); tcg_temp_free(x); tcg_temp_free(c); } } /* Swap the two bytes within each half word of the s operand. T0 = ((T0 << 8) & 0xff00ff00) | ((T0 >> 8) & 0x00ff00ff) */ static inline void t_gen_swapb(TCGv d, TCGv s) { TCGv t, org_s; t = tcg_temp_new(); org_s = tcg_temp_new(); /* d and s may refer to the same object. */ tcg_gen_mov_tl(org_s, s); tcg_gen_shli_tl(t, org_s, 8); tcg_gen_andi_tl(d, t, 0xff00ff00); tcg_gen_shri_tl(t, org_s, 8); tcg_gen_andi_tl(t, t, 0x00ff00ff); tcg_gen_or_tl(d, d, t); tcg_temp_free(t); tcg_temp_free(org_s); } /* Swap the halfwords of the s operand. */ static inline void t_gen_swapw(TCGv d, TCGv s) { TCGv t; /* d and s refer the same object. */ t = tcg_temp_new(); tcg_gen_mov_tl(t, s); tcg_gen_shli_tl(d, t, 16); tcg_gen_shri_tl(t, t, 16); tcg_gen_or_tl(d, d, t); tcg_temp_free(t); } /* Reverse the within each byte. T0 = (((T0 << 7) & 0x80808080) | ((T0 << 5) & 0x40404040) | ((T0 << 3) & 0x20202020) | ((T0 << 1) & 0x10101010) | ((T0 >> 1) & 0x08080808) | ((T0 >> 3) & 0x04040404) | ((T0 >> 5) & 0x02020202) | ((T0 >> 7) & 0x01010101)); */ static void t_gen_swapr(TCGv d, TCGv s) { static const struct { int shift; /* LSL when positive, LSR when negative. */ uint32_t mask; } bitrev[] = { {7, 0x80808080}, {5, 0x40404040}, {3, 0x20202020}, {1, 0x10101010}, {-1, 0x08080808}, {-3, 0x04040404}, {-5, 0x02020202}, {-7, 0x01010101} }; int i; TCGv t, org_s; /* d and s refer the same object. */ t = tcg_temp_new(); org_s = tcg_temp_new(); tcg_gen_mov_tl(org_s, s); tcg_gen_shli_tl(t, org_s, bitrev[0].shift); tcg_gen_andi_tl(d, t, bitrev[0].mask); for (i = 1; i < ARRAY_SIZE(bitrev); i++) { if (bitrev[i].shift >= 0) { tcg_gen_shli_tl(t, org_s, bitrev[i].shift); } else { tcg_gen_shri_tl(t, org_s, -bitrev[i].shift); } tcg_gen_andi_tl(t, t, bitrev[i].mask); tcg_gen_or_tl(d, d, t); } tcg_temp_free(t); tcg_temp_free(org_s); } static void t_gen_cc_jmp(TCGv pc_true, TCGv pc_false) { TCGLabel *l1 = gen_new_label(); /* Conditional jmp. */ tcg_gen_mov_tl(env_pc, pc_false); tcg_gen_brcondi_tl(TCG_COND_EQ, env_btaken, 0, l1); tcg_gen_mov_tl(env_pc, pc_true); gen_set_label(l1); } static bool use_goto_tb(DisasContext *dc, target_ulong dest) { return ((dest ^ dc->base.pc_first) & TARGET_PAGE_MASK) == 0; } static void gen_goto_tb(DisasContext *dc, int n, target_ulong dest) { if (use_goto_tb(dc, dest)) { tcg_gen_goto_tb(n); tcg_gen_movi_tl(env_pc, dest); tcg_gen_exit_tb(dc->base.tb, n); } else { tcg_gen_movi_tl(env_pc, dest); tcg_gen_exit_tb(NULL, 0); } } static inline void cris_clear_x_flag(DisasContext *dc) { if (dc->flagx_known && dc->flags_x) { dc->flags_uptodate = 0; } dc->flagx_known = 1; dc->flags_x = 0; } static void cris_flush_cc_state(DisasContext *dc) { if (dc->cc_size_uptodate != dc->cc_size) { tcg_gen_movi_tl(cc_size, dc->cc_size); dc->cc_size_uptodate = dc->cc_size; } tcg_gen_movi_tl(cc_op, dc->cc_op); tcg_gen_movi_tl(cc_mask, dc->cc_mask); } static void cris_evaluate_flags(DisasContext *dc) { if (dc->flags_uptodate) { return; } cris_flush_cc_state(dc); switch (dc->cc_op) { case CC_OP_MCP: gen_helper_evaluate_flags_mcp(cpu_PR[PR_CCS], cpu_env, cpu_PR[PR_CCS], cc_src, cc_dest, cc_result); break; case CC_OP_MULS: gen_helper_evaluate_flags_muls(cpu_PR[PR_CCS], cpu_env, cpu_PR[PR_CCS], cc_result, cpu_PR[PR_MOF]); break; case CC_OP_MULU: gen_helper_evaluate_flags_mulu(cpu_PR[PR_CCS], cpu_env, cpu_PR[PR_CCS], cc_result, cpu_PR[PR_MOF]); break; case CC_OP_MOVE: case CC_OP_AND: case CC_OP_OR: case CC_OP_XOR: case CC_OP_ASR: case CC_OP_LSR: case CC_OP_LSL: switch (dc->cc_size) { case 4: gen_helper_evaluate_flags_move_4(cpu_PR[PR_CCS], cpu_env, cpu_PR[PR_CCS], cc_result); break; case 2: gen_helper_evaluate_flags_move_2(cpu_PR[PR_CCS], cpu_env, cpu_PR[PR_CCS], cc_result); break; default: gen_helper_evaluate_flags(cpu_env); break; } break; case CC_OP_FLAGS: /* live. */ break; case CC_OP_SUB: case CC_OP_CMP: if (dc->cc_size == 4) { gen_helper_evaluate_flags_sub_4(cpu_PR[PR_CCS], cpu_env, cpu_PR[PR_CCS], cc_src, cc_dest, cc_result); } else { gen_helper_evaluate_flags(cpu_env); } break; default: switch (dc->cc_size) { case 4: gen_helper_evaluate_flags_alu_4(cpu_PR[PR_CCS], cpu_env, cpu_PR[PR_CCS], cc_src, cc_dest, cc_result); break; default: gen_helper_evaluate_flags(cpu_env); break; } break; } if (dc->flagx_known) { if (dc->flags_x) { tcg_gen_ori_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], X_FLAG); } else if (dc->cc_op == CC_OP_FLAGS) { tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~X_FLAG); } } dc->flags_uptodate = 1; } static void cris_cc_mask(DisasContext *dc, unsigned int mask) { uint32_t ovl; if (!mask) { dc->update_cc = 0; return; } /* Check if we need to evaluate the condition codes due to CC overlaying. */ ovl = (dc->cc_mask ^ mask) & ~mask; if (ovl) { /* TODO: optimize this case. It trigs all the time. */ cris_evaluate_flags(dc); } dc->cc_mask = mask; dc->update_cc = 1; } static void cris_update_cc_op(DisasContext *dc, int op, int size) { dc->cc_op = op; dc->cc_size = size; dc->flags_uptodate = 0; } static inline void cris_update_cc_x(DisasContext *dc) { /* Save the x flag state at the time of the cc snapshot. */ if (dc->flagx_known) { if (dc->cc_x_uptodate == (2 | dc->flags_x)) { return; } tcg_gen_movi_tl(cc_x, dc->flags_x); dc->cc_x_uptodate = 2 | dc->flags_x; } else { tcg_gen_andi_tl(cc_x, cpu_PR[PR_CCS], X_FLAG); dc->cc_x_uptodate = 1; } } /* Update cc prior to executing ALU op. Needs source operands untouched. */ static void cris_pre_alu_update_cc(DisasContext *dc, int op, TCGv dst, TCGv src, int size) { if (dc->update_cc) { cris_update_cc_op(dc, op, size); tcg_gen_mov_tl(cc_src, src); if (op != CC_OP_MOVE && op != CC_OP_AND && op != CC_OP_OR && op != CC_OP_XOR && op != CC_OP_ASR && op != CC_OP_LSR && op != CC_OP_LSL) { tcg_gen_mov_tl(cc_dest, dst); } cris_update_cc_x(dc); } } /* Update cc after executing ALU op. needs the result. */ static inline void cris_update_result(DisasContext *dc, TCGv res) { if (dc->update_cc) { tcg_gen_mov_tl(cc_result, res); } } /* Returns one if the write back stage should execute. */ static void cris_alu_op_exec(DisasContext *dc, int op, TCGv dst, TCGv a, TCGv b, int size) { /* Emit the ALU insns. */ switch (op) { case CC_OP_ADD: tcg_gen_add_tl(dst, a, b); /* Extended arithmetics. */ t_gen_addx_carry(dc, dst); break; case CC_OP_ADDC: tcg_gen_add_tl(dst, a, b); t_gen_add_flag(dst, 0); /* C_FLAG. */ break; case CC_OP_MCP: tcg_gen_add_tl(dst, a, b); t_gen_add_flag(dst, 8); /* R_FLAG. */ break; case CC_OP_SUB: tcg_gen_sub_tl(dst, a, b); /* Extended arithmetics. */ t_gen_subx_carry(dc, dst); break; case CC_OP_MOVE: tcg_gen_mov_tl(dst, b); break; case CC_OP_OR: tcg_gen_or_tl(dst, a, b); break; case CC_OP_AND: tcg_gen_and_tl(dst, a, b); break; case CC_OP_XOR: tcg_gen_xor_tl(dst, a, b); break; case CC_OP_LSL: t_gen_lsl(dst, a, b); break; case CC_OP_LSR: t_gen_lsr(dst, a, b); break; case CC_OP_ASR: t_gen_asr(dst, a, b); break; case CC_OP_NEG: tcg_gen_neg_tl(dst, b); /* Extended arithmetics. */ t_gen_subx_carry(dc, dst); break; case CC_OP_LZ: tcg_gen_clzi_tl(dst, b, TARGET_LONG_BITS); break; case CC_OP_MULS: tcg_gen_muls2_tl(dst, cpu_PR[PR_MOF], a, b); break; case CC_OP_MULU: tcg_gen_mulu2_tl(dst, cpu_PR[PR_MOF], a, b); break; case CC_OP_DSTEP: t_gen_cris_dstep(dst, a, b); break; case CC_OP_MSTEP: t_gen_cris_mstep(dst, a, b, cpu_PR[PR_CCS]); break; case CC_OP_BOUND: tcg_gen_movcond_tl(TCG_COND_LEU, dst, a, b, a, b); break; case CC_OP_CMP: tcg_gen_sub_tl(dst, a, b); /* Extended arithmetics. */ t_gen_subx_carry(dc, dst); break; default: qemu_log_mask(LOG_GUEST_ERROR, "illegal ALU op.\n"); BUG(); break; } if (size == 1) { tcg_gen_andi_tl(dst, dst, 0xff); } else if (size == 2) { tcg_gen_andi_tl(dst, dst, 0xffff); } } static void cris_alu(DisasContext *dc, int op, TCGv d, TCGv op_a, TCGv op_b, int size) { TCGv tmp; int writeback; writeback = 1; if (op == CC_OP_CMP) { tmp = tcg_temp_new(); writeback = 0; } else if (size == 4) { tmp = d; writeback = 0; } else { tmp = tcg_temp_new(); } cris_pre_alu_update_cc(dc, op, op_a, op_b, size); cris_alu_op_exec(dc, op, tmp, op_a, op_b, size); cris_update_result(dc, tmp); /* Writeback. */ if (writeback) { if (size == 1) { tcg_gen_andi_tl(d, d, ~0xff); } else { tcg_gen_andi_tl(d, d, ~0xffff); } tcg_gen_or_tl(d, d, tmp); } if (tmp != d) { tcg_temp_free(tmp); } } static int arith_cc(DisasContext *dc) { if (dc->update_cc) { switch (dc->cc_op) { case CC_OP_ADDC: return 1; case CC_OP_ADD: return 1; case CC_OP_SUB: return 1; case CC_OP_DSTEP: return 1; case CC_OP_LSL: return 1; case CC_OP_LSR: return 1; case CC_OP_ASR: return 1; case CC_OP_CMP: return 1; case CC_OP_NEG: return 1; case CC_OP_OR: return 1; case CC_OP_AND: return 1; case CC_OP_XOR: return 1; case CC_OP_MULU: return 1; case CC_OP_MULS: return 1; default: return 0; } } return 0; } static void gen_tst_cc (DisasContext *dc, TCGv cc, int cond) { int arith_opt, move_opt; /* TODO: optimize more condition codes. */ /* * If the flags are live, we've gotta look into the bits of CCS. * Otherwise, if we just did an arithmetic operation we try to * evaluate the condition code faster. * * When this function is done, T0 should be non-zero if the condition * code is true. */ arith_opt = arith_cc(dc) && !dc->flags_uptodate; move_opt = (dc->cc_op == CC_OP_MOVE); switch (cond) { case CC_EQ: if ((arith_opt || move_opt) && dc->cc_x_uptodate != (2 | X_FLAG)) { tcg_gen_setcondi_tl(TCG_COND_EQ, cc, cc_result, 0); } else { cris_evaluate_flags(dc); tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], Z_FLAG); } break; case CC_NE: if ((arith_opt || move_opt) && dc->cc_x_uptodate != (2 | X_FLAG)) { tcg_gen_mov_tl(cc, cc_result); } else { cris_evaluate_flags(dc); tcg_gen_xori_tl(cc, cpu_PR[PR_CCS], Z_FLAG); tcg_gen_andi_tl(cc, cc, Z_FLAG); } break; case CC_CS: cris_evaluate_flags(dc); tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], C_FLAG); break; case CC_CC: cris_evaluate_flags(dc); tcg_gen_xori_tl(cc, cpu_PR[PR_CCS], C_FLAG); tcg_gen_andi_tl(cc, cc, C_FLAG); break; case CC_VS: cris_evaluate_flags(dc); tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], V_FLAG); break; case CC_VC: cris_evaluate_flags(dc); tcg_gen_xori_tl(cc, cpu_PR[PR_CCS], V_FLAG); tcg_gen_andi_tl(cc, cc, V_FLAG); break; case CC_PL: if (arith_opt || move_opt) { int bits = 31; if (dc->cc_size == 1) { bits = 7; } else if (dc->cc_size == 2) { bits = 15; } tcg_gen_shri_tl(cc, cc_result, bits); tcg_gen_xori_tl(cc, cc, 1); } else { cris_evaluate_flags(dc); tcg_gen_xori_tl(cc, cpu_PR[PR_CCS], N_FLAG); tcg_gen_andi_tl(cc, cc, N_FLAG); } break; case CC_MI: if (arith_opt || move_opt) { int bits = 31; if (dc->cc_size == 1) { bits = 7; } else if (dc->cc_size == 2) { bits = 15; } tcg_gen_shri_tl(cc, cc_result, bits); tcg_gen_andi_tl(cc, cc, 1); } else { cris_evaluate_flags(dc); tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], N_FLAG); } break; case CC_LS: cris_evaluate_flags(dc); tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], C_FLAG | Z_FLAG); break; case CC_HI: cris_evaluate_flags(dc); { TCGv tmp; tmp = tcg_temp_new(); tcg_gen_xori_tl(tmp, cpu_PR[PR_CCS], C_FLAG | Z_FLAG); /* Overlay the C flag on top of the Z. */ tcg_gen_shli_tl(cc, tmp, 2); tcg_gen_and_tl(cc, tmp, cc); tcg_gen_andi_tl(cc, cc, Z_FLAG); tcg_temp_free(tmp); } break; case CC_GE: cris_evaluate_flags(dc); /* Overlay the V flag on top of the N. */ tcg_gen_shli_tl(cc, cpu_PR[PR_CCS], 2); tcg_gen_xor_tl(cc, cpu_PR[PR_CCS], cc); tcg_gen_andi_tl(cc, cc, N_FLAG); tcg_gen_xori_tl(cc, cc, N_FLAG); break; case CC_LT: cris_evaluate_flags(dc); /* Overlay the V flag on top of the N. */ tcg_gen_shli_tl(cc, cpu_PR[PR_CCS], 2); tcg_gen_xor_tl(cc, cpu_PR[PR_CCS], cc); tcg_gen_andi_tl(cc, cc, N_FLAG); break; case CC_GT: cris_evaluate_flags(dc); { TCGv n, z; n = tcg_temp_new(); z = tcg_temp_new(); /* To avoid a shift we overlay everything on the V flag. */ tcg_gen_shri_tl(n, cpu_PR[PR_CCS], 2); tcg_gen_shri_tl(z, cpu_PR[PR_CCS], 1); /* invert Z. */ tcg_gen_xori_tl(z, z, 2); tcg_gen_xor_tl(n, n, cpu_PR[PR_CCS]); tcg_gen_xori_tl(n, n, 2); tcg_gen_and_tl(cc, z, n); tcg_gen_andi_tl(cc, cc, 2); tcg_temp_free(n); tcg_temp_free(z); } break; case CC_LE: cris_evaluate_flags(dc); { TCGv n, z; n = tcg_temp_new(); z = tcg_temp_new(); /* To avoid a shift we overlay everything on the V flag. */ tcg_gen_shri_tl(n, cpu_PR[PR_CCS], 2); tcg_gen_shri_tl(z, cpu_PR[PR_CCS], 1); tcg_gen_xor_tl(n, n, cpu_PR[PR_CCS]); tcg_gen_or_tl(cc, z, n); tcg_gen_andi_tl(cc, cc, 2); tcg_temp_free(n); tcg_temp_free(z); } break; case CC_P: cris_evaluate_flags(dc); tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], P_FLAG); break; case CC_A: tcg_gen_movi_tl(cc, 1); break; default: BUG(); break; }; } static void cris_store_direct_jmp(DisasContext *dc) { /* Store the direct jmp state into the cpu-state. */ if (dc->jmp == JMP_DIRECT || dc->jmp == JMP_DIRECT_CC) { if (dc->jmp == JMP_DIRECT) { tcg_gen_movi_tl(env_btaken, 1); } tcg_gen_movi_tl(env_btarget, dc->jmp_pc); dc->jmp = JMP_INDIRECT; } } static void cris_prepare_cc_branch (DisasContext *dc, int offset, int cond) { /* This helps us re-schedule the micro-code to insns in delay-slots before the actual jump. */ dc->delayed_branch = 2; dc->jmp = JMP_DIRECT_CC; dc->jmp_pc = dc->pc + offset; gen_tst_cc(dc, env_btaken, cond); tcg_gen_movi_tl(env_btarget, dc->jmp_pc); } /* jumps, when the dest is in a live reg for example. Direct should be set when the dest addr is constant to allow tb chaining. */ static inline void cris_prepare_jmp (DisasContext *dc, unsigned int type) { /* This helps us re-schedule the micro-code to insns in delay-slots before the actual jump. */ dc->delayed_branch = 2; dc->jmp = type; if (type == JMP_INDIRECT) { tcg_gen_movi_tl(env_btaken, 1); } } static void gen_load64(DisasContext *dc, TCGv_i64 dst, TCGv addr) { int mem_index = cpu_mmu_index(&dc->cpu->env, false); /* If we get a fault on a delayslot we must keep the jmp state in the cpu-state to be able to re-execute the jmp. */ if (dc->delayed_branch == 1) { cris_store_direct_jmp(dc); } tcg_gen_qemu_ld_i64(dst, addr, mem_index, MO_TEQ); } static void gen_load(DisasContext *dc, TCGv dst, TCGv addr, unsigned int size, int sign) { int mem_index = cpu_mmu_index(&dc->cpu->env, false); /* If we get a fault on a delayslot we must keep the jmp state in the cpu-state to be able to re-execute the jmp. */ if (dc->delayed_branch == 1) { cris_store_direct_jmp(dc); } tcg_gen_qemu_ld_tl(dst, addr, mem_index, MO_TE + ctz32(size) + (sign ? MO_SIGN : 0)); } static void gen_store (DisasContext *dc, TCGv addr, TCGv val, unsigned int size) { int mem_index = cpu_mmu_index(&dc->cpu->env, false); /* If we get a fault on a delayslot we must keep the jmp state in the cpu-state to be able to re-execute the jmp. */ if (dc->delayed_branch == 1) { cris_store_direct_jmp(dc); } /* Conditional writes. We only support the kind were X and P are known at translation time. */ if (dc->flagx_known && dc->flags_x && (dc->tb_flags & P_FLAG)) { dc->postinc = 0; cris_evaluate_flags(dc); tcg_gen_ori_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], C_FLAG); return; } tcg_gen_qemu_st_tl(val, addr, mem_index, MO_TE + ctz32(size)); if (dc->flagx_known && dc->flags_x) { cris_evaluate_flags(dc); tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~C_FLAG); } } static inline void t_gen_sext(TCGv d, TCGv s, int size) { if (size == 1) { tcg_gen_ext8s_i32(d, s); } else if (size == 2) { tcg_gen_ext16s_i32(d, s); } else { tcg_gen_mov_tl(d, s); } } static inline void t_gen_zext(TCGv d, TCGv s, int size) { if (size == 1) { tcg_gen_ext8u_i32(d, s); } else if (size == 2) { tcg_gen_ext16u_i32(d, s); } else { tcg_gen_mov_tl(d, s); } } #if DISAS_CRIS static char memsize_char(int size) { switch (size) { case 1: return 'b'; case 2: return 'w'; case 4: return 'd'; default: return 'x'; } } #endif static inline unsigned int memsize_z(DisasContext *dc) { return dc->zsize + 1; } static inline unsigned int memsize_zz(DisasContext *dc) { switch (dc->zzsize) { case 0: return 1; case 1: return 2; default: return 4; } } static inline void do_postinc (DisasContext *dc, int size) { if (dc->postinc) { tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], size); } } static inline void dec_prep_move_r(DisasContext *dc, int rs, int rd, int size, int s_ext, TCGv dst) { if (s_ext) { t_gen_sext(dst, cpu_R[rs], size); } else { t_gen_zext(dst, cpu_R[rs], size); } } /* Prepare T0 and T1 for a register alu operation. s_ext decides if the operand1 should be sign-extended or zero-extended when needed. */ static void dec_prep_alu_r(DisasContext *dc, int rs, int rd, int size, int s_ext, TCGv dst, TCGv src) { dec_prep_move_r(dc, rs, rd, size, s_ext, src); if (s_ext) { t_gen_sext(dst, cpu_R[rd], size); } else { t_gen_zext(dst, cpu_R[rd], size); } } static int dec_prep_move_m(CPUCRISState *env, DisasContext *dc, int s_ext, int memsize, TCGv dst) { unsigned int rs; uint32_t imm; int is_imm; int insn_len = 2; rs = dc->op1; is_imm = rs == 15 && dc->postinc; /* Load [$rs] onto T1. */ if (is_imm) { insn_len = 2 + memsize; if (memsize == 1) { insn_len++; } imm = cris_fetch(env, dc, dc->pc + 2, memsize, s_ext); tcg_gen_movi_tl(dst, imm); dc->postinc = 0; } else { cris_flush_cc_state(dc); gen_load(dc, dst, cpu_R[rs], memsize, 0); if (s_ext) { t_gen_sext(dst, dst, memsize); } else { t_gen_zext(dst, dst, memsize); } } return insn_len; } /* Prepare T0 and T1 for a memory + alu operation. s_ext decides if the operand1 should be sign-extended or zero-extended when needed. */ static int dec_prep_alu_m(CPUCRISState *env, DisasContext *dc, int s_ext, int memsize, TCGv dst, TCGv src) { int insn_len; insn_len = dec_prep_move_m(env, dc, s_ext, memsize, src); tcg_gen_mov_tl(dst, cpu_R[dc->op2]); return insn_len; } #if DISAS_CRIS static const char *cc_name(int cc) { static const char * const cc_names[16] = { "cc", "cs", "ne", "eq", "vc", "vs", "pl", "mi", "ls", "hi", "ge", "lt", "gt", "le", "a", "p" }; assert(cc < 16); return cc_names[cc]; } #endif /* Start of insn decoders. */ static int dec_bccq(CPUCRISState *env, DisasContext *dc) { int32_t offset; int sign; uint32_t cond = dc->op2; offset = EXTRACT_FIELD(dc->ir, 1, 7); sign = EXTRACT_FIELD(dc->ir, 0, 0); offset *= 2; offset |= sign << 8; offset = sign_extend(offset, 8); LOG_DIS("b%s %x\n", cc_name(cond), dc->pc + offset); /* op2 holds the condition-code. */ cris_cc_mask(dc, 0); cris_prepare_cc_branch(dc, offset, cond); return 2; } static int dec_addoq(CPUCRISState *env, DisasContext *dc) { int32_t imm; dc->op1 = EXTRACT_FIELD(dc->ir, 0, 7); imm = sign_extend(dc->op1, 7); LOG_DIS("addoq %d, $r%u\n", imm, dc->op2); cris_cc_mask(dc, 0); /* Fetch register operand, */ tcg_gen_addi_tl(cpu_R[R_ACR], cpu_R[dc->op2], imm); return 2; } static int dec_addq(CPUCRISState *env, DisasContext *dc) { TCGv c; LOG_DIS("addq %u, $r%u\n", dc->op1, dc->op2); dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5); cris_cc_mask(dc, CC_MASK_NZVC); c = tcg_const_tl(dc->op1); cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], cpu_R[dc->op2], c, 4); tcg_temp_free(c); return 2; } static int dec_moveq(CPUCRISState *env, DisasContext *dc) { uint32_t imm; dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5); imm = sign_extend(dc->op1, 5); LOG_DIS("moveq %d, $r%u\n", imm, dc->op2); tcg_gen_movi_tl(cpu_R[dc->op2], imm); return 2; } static int dec_subq(CPUCRISState *env, DisasContext *dc) { TCGv c; dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5); LOG_DIS("subq %u, $r%u\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); c = tcg_const_tl(dc->op1); cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], cpu_R[dc->op2], c, 4); tcg_temp_free(c); return 2; } static int dec_cmpq(CPUCRISState *env, DisasContext *dc) { uint32_t imm; TCGv c; dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5); imm = sign_extend(dc->op1, 5); LOG_DIS("cmpq %d, $r%d\n", imm, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); c = tcg_const_tl(imm); cris_alu(dc, CC_OP_CMP, cpu_R[dc->op2], cpu_R[dc->op2], c, 4); tcg_temp_free(c); return 2; } static int dec_andq(CPUCRISState *env, DisasContext *dc) { uint32_t imm; TCGv c; dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5); imm = sign_extend(dc->op1, 5); LOG_DIS("andq %d, $r%d\n", imm, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); c = tcg_const_tl(imm); cris_alu(dc, CC_OP_AND, cpu_R[dc->op2], cpu_R[dc->op2], c, 4); tcg_temp_free(c); return 2; } static int dec_orq(CPUCRISState *env, DisasContext *dc) { uint32_t imm; TCGv c; dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5); imm = sign_extend(dc->op1, 5); LOG_DIS("orq %d, $r%d\n", imm, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); c = tcg_const_tl(imm); cris_alu(dc, CC_OP_OR, cpu_R[dc->op2], cpu_R[dc->op2], c, 4); tcg_temp_free(c); return 2; } static int dec_btstq(CPUCRISState *env, DisasContext *dc) { TCGv c; dc->op1 = EXTRACT_FIELD(dc->ir, 0, 4); LOG_DIS("btstq %u, $r%d\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); c = tcg_const_tl(dc->op1); cris_evaluate_flags(dc); gen_helper_btst(cpu_PR[PR_CCS], cpu_env, cpu_R[dc->op2], c, cpu_PR[PR_CCS]); tcg_temp_free(c); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op2], 4); cris_update_cc_op(dc, CC_OP_FLAGS, 4); dc->flags_uptodate = 1; return 2; } static int dec_asrq(CPUCRISState *env, DisasContext *dc) { dc->op1 = EXTRACT_FIELD(dc->ir, 0, 4); LOG_DIS("asrq %u, $r%d\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); tcg_gen_sari_tl(cpu_R[dc->op2], cpu_R[dc->op2], dc->op1); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op2], 4); return 2; } static int dec_lslq(CPUCRISState *env, DisasContext *dc) { dc->op1 = EXTRACT_FIELD(dc->ir, 0, 4); LOG_DIS("lslq %u, $r%d\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); tcg_gen_shli_tl(cpu_R[dc->op2], cpu_R[dc->op2], dc->op1); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op2], 4); return 2; } static int dec_lsrq(CPUCRISState *env, DisasContext *dc) { dc->op1 = EXTRACT_FIELD(dc->ir, 0, 4); LOG_DIS("lsrq %u, $r%d\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); tcg_gen_shri_tl(cpu_R[dc->op2], cpu_R[dc->op2], dc->op1); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op2], 4); return 2; } static int dec_move_r(CPUCRISState *env, DisasContext *dc) { int size = memsize_zz(dc); LOG_DIS("move.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); if (size == 4) { dec_prep_move_r(dc, dc->op1, dc->op2, size, 0, cpu_R[dc->op2]); cris_cc_mask(dc, CC_MASK_NZ); cris_update_cc_op(dc, CC_OP_MOVE, 4); cris_update_cc_x(dc); cris_update_result(dc, cpu_R[dc->op2]); } else { TCGv t0; t0 = tcg_temp_new(); dec_prep_move_r(dc, dc->op1, dc->op2, size, 0, t0); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], t0, size); tcg_temp_free(t0); } return 2; } static int dec_scc_r(CPUCRISState *env, DisasContext *dc) { int cond = dc->op2; LOG_DIS("s%s $r%u\n", cc_name(cond), dc->op1); gen_tst_cc(dc, cpu_R[dc->op1], cond); tcg_gen_setcondi_tl(TCG_COND_NE, cpu_R[dc->op1], cpu_R[dc->op1], 0); cris_cc_mask(dc, 0); return 2; } static inline void cris_alu_alloc_temps(DisasContext *dc, int size, TCGv *t) { if (size == 4) { t[0] = cpu_R[dc->op2]; t[1] = cpu_R[dc->op1]; } else { t[0] = tcg_temp_new(); t[1] = tcg_temp_new(); } } static inline void cris_alu_free_temps(DisasContext *dc, int size, TCGv *t) { if (size != 4) { tcg_temp_free(t[0]); tcg_temp_free(t[1]); } } static int dec_and_r(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("and.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); cris_alu(dc, CC_OP_AND, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } static int dec_lz_r(CPUCRISState *env, DisasContext *dc) { TCGv t0; LOG_DIS("lz $r%u, $r%u\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); t0 = tcg_temp_new(); dec_prep_alu_r(dc, dc->op1, dc->op2, 4, 0, cpu_R[dc->op2], t0); cris_alu(dc, CC_OP_LZ, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4); tcg_temp_free(t0); return 2; } static int dec_lsl_r(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("lsl.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); tcg_gen_andi_tl(t[1], t[1], 63); cris_alu(dc, CC_OP_LSL, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } static int dec_lsr_r(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("lsr.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); tcg_gen_andi_tl(t[1], t[1], 63); cris_alu(dc, CC_OP_LSR, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } static int dec_asr_r(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("asr.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 1, t[0], t[1]); tcg_gen_andi_tl(t[1], t[1], 63); cris_alu(dc, CC_OP_ASR, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } static int dec_muls_r(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("muls.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZV); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 1, t[0], t[1]); cris_alu(dc, CC_OP_MULS, cpu_R[dc->op2], t[0], t[1], 4); cris_alu_free_temps(dc, size, t); return 2; } static int dec_mulu_r(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("mulu.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZV); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); cris_alu(dc, CC_OP_MULU, cpu_R[dc->op2], t[0], t[1], 4); cris_alu_free_temps(dc, size, t); return 2; } static int dec_dstep_r(CPUCRISState *env, DisasContext *dc) { LOG_DIS("dstep $r%u, $r%u\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_alu(dc, CC_OP_DSTEP, cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op1], 4); return 2; } static int dec_xor_r(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("xor.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); BUG_ON(size != 4); /* xor is dword. */ cris_cc_mask(dc, CC_MASK_NZ); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); cris_alu(dc, CC_OP_XOR, cpu_R[dc->op2], t[0], t[1], 4); cris_alu_free_temps(dc, size, t); return 2; } static int dec_bound_r(CPUCRISState *env, DisasContext *dc) { TCGv l0; int size = memsize_zz(dc); LOG_DIS("bound.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); l0 = tcg_temp_local_new(); dec_prep_move_r(dc, dc->op1, dc->op2, size, 0, l0); cris_alu(dc, CC_OP_BOUND, cpu_R[dc->op2], cpu_R[dc->op2], l0, 4); tcg_temp_free(l0); return 2; } static int dec_cmp_r(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("cmp.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); cris_alu(dc, CC_OP_CMP, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } static int dec_abs_r(CPUCRISState *env, DisasContext *dc) { LOG_DIS("abs $r%u, $r%u\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); tcg_gen_abs_tl(cpu_R[dc->op2], cpu_R[dc->op1]); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op2], 4); return 2; } static int dec_add_r(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("add.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } static int dec_addc_r(CPUCRISState *env, DisasContext *dc) { LOG_DIS("addc $r%u, $r%u\n", dc->op1, dc->op2); cris_evaluate_flags(dc); /* Set for this insn. */ dc->flagx_known = 1; dc->flags_x = X_FLAG; cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_ADDC, cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op1], 4); return 2; } static int dec_mcp_r(CPUCRISState *env, DisasContext *dc) { LOG_DIS("mcp $p%u, $r%u\n", dc->op2, dc->op1); cris_evaluate_flags(dc); cris_cc_mask(dc, CC_MASK_RNZV); cris_alu(dc, CC_OP_MCP, cpu_R[dc->op1], cpu_R[dc->op1], cpu_PR[dc->op2], 4); return 2; } #if DISAS_CRIS static char * swapmode_name(int mode, char *modename) { int i = 0; if (mode & 8) { modename[i++] = 'n'; } if (mode & 4) { modename[i++] = 'w'; } if (mode & 2) { modename[i++] = 'b'; } if (mode & 1) { modename[i++] = 'r'; } modename[i++] = 0; return modename; } #endif static int dec_swap_r(CPUCRISState *env, DisasContext *dc) { TCGv t0; #if DISAS_CRIS char modename[4]; #endif LOG_DIS("swap%s $r%u\n", swapmode_name(dc->op2, modename), dc->op1); cris_cc_mask(dc, CC_MASK_NZ); t0 = tcg_temp_new(); tcg_gen_mov_tl(t0, cpu_R[dc->op1]); if (dc->op2 & 8) { tcg_gen_not_tl(t0, t0); } if (dc->op2 & 4) { t_gen_swapw(t0, t0); } if (dc->op2 & 2) { t_gen_swapb(t0, t0); } if (dc->op2 & 1) { t_gen_swapr(t0, t0); } cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op1], cpu_R[dc->op1], t0, 4); tcg_temp_free(t0); return 2; } static int dec_or_r(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("or.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); cris_alu(dc, CC_OP_OR, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } static int dec_addi_r(CPUCRISState *env, DisasContext *dc) { TCGv t0; LOG_DIS("addi.%c $r%u, $r%u\n", memsize_char(memsize_zz(dc)), dc->op2, dc->op1); cris_cc_mask(dc, 0); t0 = tcg_temp_new(); tcg_gen_shli_tl(t0, cpu_R[dc->op2], dc->zzsize); tcg_gen_add_tl(cpu_R[dc->op1], cpu_R[dc->op1], t0); tcg_temp_free(t0); return 2; } static int dec_addi_acr(CPUCRISState *env, DisasContext *dc) { TCGv t0; LOG_DIS("addi.%c $r%u, $r%u, $acr\n", memsize_char(memsize_zz(dc)), dc->op2, dc->op1); cris_cc_mask(dc, 0); t0 = tcg_temp_new(); tcg_gen_shli_tl(t0, cpu_R[dc->op2], dc->zzsize); tcg_gen_add_tl(cpu_R[R_ACR], cpu_R[dc->op1], t0); tcg_temp_free(t0); return 2; } static int dec_neg_r(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("neg.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); cris_alu(dc, CC_OP_NEG, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } static int dec_btst_r(CPUCRISState *env, DisasContext *dc) { LOG_DIS("btst $r%u, $r%u\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_evaluate_flags(dc); gen_helper_btst(cpu_PR[PR_CCS], cpu_env, cpu_R[dc->op2], cpu_R[dc->op1], cpu_PR[PR_CCS]); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op2], 4); cris_update_cc_op(dc, CC_OP_FLAGS, 4); dc->flags_uptodate = 1; return 2; } static int dec_sub_r(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("sub.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } /* Zero extension. From size to dword. */ static int dec_movu_r(CPUCRISState *env, DisasContext *dc) { TCGv t0; int size = memsize_z(dc); LOG_DIS("movu.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); t0 = tcg_temp_new(); dec_prep_move_r(dc, dc->op1, dc->op2, size, 0, t0); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4); tcg_temp_free(t0); return 2; } /* Sign extension. From size to dword. */ static int dec_movs_r(CPUCRISState *env, DisasContext *dc) { TCGv t0; int size = memsize_z(dc); LOG_DIS("movs.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); t0 = tcg_temp_new(); /* Size can only be qi or hi. */ t_gen_sext(t0, cpu_R[dc->op1], size); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op1], t0, 4); tcg_temp_free(t0); return 2; } /* zero extension. From size to dword. */ static int dec_addu_r(CPUCRISState *env, DisasContext *dc) { TCGv t0; int size = memsize_z(dc); LOG_DIS("addu.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); t0 = tcg_temp_new(); /* Size can only be qi or hi. */ t_gen_zext(t0, cpu_R[dc->op1], size); cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4); tcg_temp_free(t0); return 2; } /* Sign extension. From size to dword. */ static int dec_adds_r(CPUCRISState *env, DisasContext *dc) { TCGv t0; int size = memsize_z(dc); LOG_DIS("adds.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); t0 = tcg_temp_new(); /* Size can only be qi or hi. */ t_gen_sext(t0, cpu_R[dc->op1], size); cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4); tcg_temp_free(t0); return 2; } /* Zero extension. From size to dword. */ static int dec_subu_r(CPUCRISState *env, DisasContext *dc) { TCGv t0; int size = memsize_z(dc); LOG_DIS("subu.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); t0 = tcg_temp_new(); /* Size can only be qi or hi. */ t_gen_zext(t0, cpu_R[dc->op1], size); cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4); tcg_temp_free(t0); return 2; } /* Sign extension. From size to dword. */ static int dec_subs_r(CPUCRISState *env, DisasContext *dc) { TCGv t0; int size = memsize_z(dc); LOG_DIS("subs.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); t0 = tcg_temp_new(); /* Size can only be qi or hi. */ t_gen_sext(t0, cpu_R[dc->op1], size); cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4); tcg_temp_free(t0); return 2; } static int dec_setclrf(CPUCRISState *env, DisasContext *dc) { uint32_t flags; int set = (~dc->opcode >> 2) & 1; flags = (EXTRACT_FIELD(dc->ir, 12, 15) << 4) | EXTRACT_FIELD(dc->ir, 0, 3); if (set && flags == 0) { LOG_DIS("nop\n"); return 2; } else if (!set && (flags & 0x20)) { LOG_DIS("di\n"); } else { LOG_DIS("%sf %x\n", set ? "set" : "clr", flags); } /* User space is not allowed to touch these. Silently ignore. */ if (dc->tb_flags & U_FLAG) { flags &= ~(S_FLAG | I_FLAG | U_FLAG); } if (flags & X_FLAG) { dc->flagx_known = 1; if (set) { dc->flags_x = X_FLAG; } else { dc->flags_x = 0; } } /* Break the TB if any of the SPI flag changes. */ if (flags & (P_FLAG | S_FLAG)) { tcg_gen_movi_tl(env_pc, dc->pc + 2); dc->base.is_jmp = DISAS_UPDATE; dc->cpustate_changed = 1; } /* For the I flag, only act on posedge. */ if ((flags & I_FLAG)) { tcg_gen_movi_tl(env_pc, dc->pc + 2); dc->base.is_jmp = DISAS_UPDATE; dc->cpustate_changed = 1; } /* Simply decode the flags. */ cris_evaluate_flags(dc); cris_update_cc_op(dc, CC_OP_FLAGS, 4); cris_update_cc_x(dc); tcg_gen_movi_tl(cc_op, dc->cc_op); if (set) { if (!(dc->tb_flags & U_FLAG) && (flags & U_FLAG)) { /* Enter user mode. */ t_gen_mov_env_TN(ksp, cpu_R[R_SP]); tcg_gen_mov_tl(cpu_R[R_SP], cpu_PR[PR_USP]); dc->cpustate_changed = 1; } tcg_gen_ori_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], flags); } else { tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~flags); } dc->flags_uptodate = 1; dc->clear_x = 0; return 2; } static int dec_move_rs(CPUCRISState *env, DisasContext *dc) { TCGv c2, c1; LOG_DIS("move $r%u, $s%u\n", dc->op1, dc->op2); c1 = tcg_const_tl(dc->op1); c2 = tcg_const_tl(dc->op2); cris_cc_mask(dc, 0); gen_helper_movl_sreg_reg(cpu_env, c2, c1); tcg_temp_free(c1); tcg_temp_free(c2); return 2; } static int dec_move_sr(CPUCRISState *env, DisasContext *dc) { TCGv c2, c1; LOG_DIS("move $s%u, $r%u\n", dc->op2, dc->op1); c1 = tcg_const_tl(dc->op1); c2 = tcg_const_tl(dc->op2); cris_cc_mask(dc, 0); gen_helper_movl_reg_sreg(cpu_env, c1, c2); tcg_temp_free(c1); tcg_temp_free(c2); return 2; } static int dec_move_rp(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; LOG_DIS("move $r%u, $p%u\n", dc->op1, dc->op2); cris_cc_mask(dc, 0); t[0] = tcg_temp_new(); if (dc->op2 == PR_CCS) { cris_evaluate_flags(dc); tcg_gen_mov_tl(t[0], cpu_R[dc->op1]); if (dc->tb_flags & U_FLAG) { t[1] = tcg_temp_new(); /* User space is not allowed to touch all flags. */ tcg_gen_andi_tl(t[0], t[0], 0x39f); tcg_gen_andi_tl(t[1], cpu_PR[PR_CCS], ~0x39f); tcg_gen_or_tl(t[0], t[1], t[0]); tcg_temp_free(t[1]); } } else { tcg_gen_mov_tl(t[0], cpu_R[dc->op1]); } t_gen_mov_preg_TN(dc, dc->op2, t[0]); if (dc->op2 == PR_CCS) { cris_update_cc_op(dc, CC_OP_FLAGS, 4); dc->flags_uptodate = 1; } tcg_temp_free(t[0]); return 2; } static int dec_move_pr(CPUCRISState *env, DisasContext *dc) { TCGv t0; LOG_DIS("move $p%u, $r%u\n", dc->op2, dc->op1); cris_cc_mask(dc, 0); if (dc->op2 == PR_CCS) { cris_evaluate_flags(dc); } if (dc->op2 == PR_DZ) { tcg_gen_movi_tl(cpu_R[dc->op1], 0); } else { t0 = tcg_temp_new(); t_gen_mov_TN_preg(t0, dc->op2); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op1], cpu_R[dc->op1], t0, preg_sizes[dc->op2]); tcg_temp_free(t0); } return 2; } static int dec_move_mr(CPUCRISState *env, DisasContext *dc) { int memsize = memsize_zz(dc); int insn_len; LOG_DIS("move.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); if (memsize == 4) { insn_len = dec_prep_move_m(env, dc, 0, 4, cpu_R[dc->op2]); cris_cc_mask(dc, CC_MASK_NZ); cris_update_cc_op(dc, CC_OP_MOVE, 4); cris_update_cc_x(dc); cris_update_result(dc, cpu_R[dc->op2]); } else { TCGv t0; t0 = tcg_temp_new(); insn_len = dec_prep_move_m(env, dc, 0, memsize, t0); cris_cc_mask(dc, CC_MASK_NZ); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], t0, memsize); tcg_temp_free(t0); } do_postinc(dc, memsize); return insn_len; } static inline void cris_alu_m_alloc_temps(TCGv *t) { t[0] = tcg_temp_new(); t[1] = tcg_temp_new(); } static inline void cris_alu_m_free_temps(TCGv *t) { tcg_temp_free(t[0]); tcg_temp_free(t[1]); } static int dec_movs_m(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int memsize = memsize_z(dc); int insn_len; LOG_DIS("movs.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); /* sign extend. */ insn_len = dec_prep_alu_m(env, dc, 1, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZ); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_addu_m(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int memsize = memsize_z(dc); int insn_len; LOG_DIS("addu.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); /* sign extend. */ insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_adds_m(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int memsize = memsize_z(dc); int insn_len; LOG_DIS("adds.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); /* sign extend. */ insn_len = dec_prep_alu_m(env, dc, 1, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_subu_m(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int memsize = memsize_z(dc); int insn_len; LOG_DIS("subu.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); /* sign extend. */ insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_subs_m(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int memsize = memsize_z(dc); int insn_len; LOG_DIS("subs.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); /* sign extend. */ insn_len = dec_prep_alu_m(env, dc, 1, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_movu_m(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int memsize = memsize_z(dc); int insn_len; LOG_DIS("movu.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZ); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_cmpu_m(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int memsize = memsize_z(dc); int insn_len; LOG_DIS("cmpu.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_CMP, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_cmps_m(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int memsize = memsize_z(dc); int insn_len; LOG_DIS("cmps.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(env, dc, 1, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_CMP, cpu_R[dc->op2], cpu_R[dc->op2], t[1], memsize_zz(dc)); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_cmp_m(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int memsize = memsize_zz(dc); int insn_len; LOG_DIS("cmp.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_CMP, cpu_R[dc->op2], cpu_R[dc->op2], t[1], memsize_zz(dc)); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_test_m(CPUCRISState *env, DisasContext *dc) { TCGv t[2], c; int memsize = memsize_zz(dc); int insn_len; LOG_DIS("test.%c [$r%u%s] op2=%x\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_evaluate_flags(dc); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZ); tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~3); c = tcg_const_tl(0); cris_alu(dc, CC_OP_CMP, cpu_R[dc->op2], t[1], c, memsize_zz(dc)); tcg_temp_free(c); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_and_m(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int memsize = memsize_zz(dc); int insn_len; LOG_DIS("and.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZ); cris_alu(dc, CC_OP_AND, cpu_R[dc->op2], t[0], t[1], memsize_zz(dc)); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_add_m(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int memsize = memsize_zz(dc); int insn_len; LOG_DIS("add.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], t[0], t[1], memsize_zz(dc)); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_addo_m(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int memsize = memsize_zz(dc); int insn_len; LOG_DIS("add.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(env, dc, 1, memsize, t[0], t[1]); cris_cc_mask(dc, 0); cris_alu(dc, CC_OP_ADD, cpu_R[R_ACR], t[0], t[1], 4); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_bound_m(CPUCRISState *env, DisasContext *dc) { TCGv l[2]; int memsize = memsize_zz(dc); int insn_len; LOG_DIS("bound.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); l[0] = tcg_temp_local_new(); l[1] = tcg_temp_local_new(); insn_len = dec_prep_alu_m(env, dc, 0, memsize, l[0], l[1]); cris_cc_mask(dc, CC_MASK_NZ); cris_alu(dc, CC_OP_BOUND, cpu_R[dc->op2], l[0], l[1], 4); do_postinc(dc, memsize); tcg_temp_free(l[0]); tcg_temp_free(l[1]); return insn_len; } static int dec_addc_mr(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int insn_len = 2; LOG_DIS("addc [$r%u%s, $r%u\n", dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_evaluate_flags(dc); /* Set for this insn. */ dc->flagx_known = 1; dc->flags_x = X_FLAG; cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(env, dc, 0, 4, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_ADDC, cpu_R[dc->op2], t[0], t[1], 4); do_postinc(dc, 4); cris_alu_m_free_temps(t); return insn_len; } static int dec_sub_m(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int memsize = memsize_zz(dc); int insn_len; LOG_DIS("sub.%c [$r%u%s, $r%u ir=%x zz=%x\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2, dc->ir, dc->zzsize); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], t[0], t[1], memsize); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_or_m(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int memsize = memsize_zz(dc); int insn_len; LOG_DIS("or.%c [$r%u%s, $r%u pc=%x\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2, dc->pc); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZ); cris_alu(dc, CC_OP_OR, cpu_R[dc->op2], t[0], t[1], memsize_zz(dc)); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_move_mp(CPUCRISState *env, DisasContext *dc) { TCGv t[2]; int memsize = memsize_zz(dc); int insn_len = 2; LOG_DIS("move.%c [$r%u%s, $p%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(env, dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, 0); if (dc->op2 == PR_CCS) { cris_evaluate_flags(dc); if (dc->tb_flags & U_FLAG) { /* User space is not allowed to touch all flags. */ tcg_gen_andi_tl(t[1], t[1], 0x39f); tcg_gen_andi_tl(t[0], cpu_PR[PR_CCS], ~0x39f); tcg_gen_or_tl(t[1], t[0], t[1]); } } t_gen_mov_preg_TN(dc, dc->op2, t[1]); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_move_pm(CPUCRISState *env, DisasContext *dc) { TCGv t0; int memsize; memsize = preg_sizes[dc->op2]; LOG_DIS("move.%c $p%u, [$r%u%s\n", memsize_char(memsize), dc->op2, dc->op1, dc->postinc ? "+]" : "]"); /* prepare store. Address in T0, value in T1. */ if (dc->op2 == PR_CCS) { cris_evaluate_flags(dc); } t0 = tcg_temp_new(); t_gen_mov_TN_preg(t0, dc->op2); cris_flush_cc_state(dc); gen_store(dc, cpu_R[dc->op1], t0, memsize); tcg_temp_free(t0); cris_cc_mask(dc, 0); if (dc->postinc) { tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], memsize); } return 2; } static int dec_movem_mr(CPUCRISState *env, DisasContext *dc) { TCGv_i64 tmp[16]; TCGv tmp32; TCGv addr; int i; int nr = dc->op2 + 1; LOG_DIS("movem [$r%u%s, $r%u\n", dc->op1, dc->postinc ? "+]" : "]", dc->op2); addr = tcg_temp_new(); /* There are probably better ways of doing this. */ cris_flush_cc_state(dc); for (i = 0; i < (nr >> 1); i++) { tmp[i] = tcg_temp_new_i64(); tcg_gen_addi_tl(addr, cpu_R[dc->op1], i * 8); gen_load64(dc, tmp[i], addr); } if (nr & 1) { tmp32 = tcg_temp_new_i32(); tcg_gen_addi_tl(addr, cpu_R[dc->op1], i * 8); gen_load(dc, tmp32, addr, 4, 0); } else { tmp32 = NULL; } tcg_temp_free(addr); for (i = 0; i < (nr >> 1); i++) { tcg_gen_extrl_i64_i32(cpu_R[i * 2], tmp[i]); tcg_gen_shri_i64(tmp[i], tmp[i], 32); tcg_gen_extrl_i64_i32(cpu_R[i * 2 + 1], tmp[i]); tcg_temp_free_i64(tmp[i]); } if (nr & 1) { tcg_gen_mov_tl(cpu_R[dc->op2], tmp32); tcg_temp_free(tmp32); } /* writeback the updated pointer value. */ if (dc->postinc) { tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], nr * 4); } /* gen_load might want to evaluate the previous insns flags. */ cris_cc_mask(dc, 0); return 2; } static int dec_movem_rm(CPUCRISState *env, DisasContext *dc) { TCGv tmp; TCGv addr; int i; LOG_DIS("movem $r%u, [$r%u%s\n", dc->op2, dc->op1, dc->postinc ? "+]" : "]"); cris_flush_cc_state(dc); tmp = tcg_temp_new(); addr = tcg_temp_new(); tcg_gen_movi_tl(tmp, 4); tcg_gen_mov_tl(addr, cpu_R[dc->op1]); for (i = 0; i <= dc->op2; i++) { /* Displace addr. */ /* Perform the store. */ gen_store(dc, addr, cpu_R[i], 4); tcg_gen_add_tl(addr, addr, tmp); } if (dc->postinc) { tcg_gen_mov_tl(cpu_R[dc->op1], addr); } cris_cc_mask(dc, 0); tcg_temp_free(tmp); tcg_temp_free(addr); return 2; } static int dec_move_rm(CPUCRISState *env, DisasContext *dc) { int memsize; memsize = memsize_zz(dc); LOG_DIS("move.%c $r%u, [$r%u]\n", memsize_char(memsize), dc->op2, dc->op1); /* prepare store. */ cris_flush_cc_state(dc); gen_store(dc, cpu_R[dc->op1], cpu_R[dc->op2], memsize); if (dc->postinc) { tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], memsize); } cris_cc_mask(dc, 0); return 2; } static int dec_lapcq(CPUCRISState *env, DisasContext *dc) { LOG_DIS("lapcq %x, $r%u\n", dc->pc + dc->op1*2, dc->op2); cris_cc_mask(dc, 0); tcg_gen_movi_tl(cpu_R[dc->op2], dc->pc + dc->op1 * 2); return 2; } static int dec_lapc_im(CPUCRISState *env, DisasContext *dc) { unsigned int rd; int32_t imm; int32_t pc; rd = dc->op2; cris_cc_mask(dc, 0); imm = cris_fetch(env, dc, dc->pc + 2, 4, 0); LOG_DIS("lapc 0x%x, $r%u\n", imm + dc->pc, dc->op2); pc = dc->pc; pc += imm; tcg_gen_movi_tl(cpu_R[rd], pc); return 6; } /* Jump to special reg. */ static int dec_jump_p(CPUCRISState *env, DisasContext *dc) { LOG_DIS("jump $p%u\n", dc->op2); if (dc->op2 == PR_CCS) { cris_evaluate_flags(dc); } t_gen_mov_TN_preg(env_btarget, dc->op2); /* rete will often have low bit set to indicate delayslot. */ tcg_gen_andi_tl(env_btarget, env_btarget, ~1); cris_cc_mask(dc, 0); cris_prepare_jmp(dc, JMP_INDIRECT); return 2; } /* Jump and save. */ static int dec_jas_r(CPUCRISState *env, DisasContext *dc) { TCGv c; LOG_DIS("jas $r%u, $p%u\n", dc->op1, dc->op2); cris_cc_mask(dc, 0); /* Store the return address in Pd. */ tcg_gen_mov_tl(env_btarget, cpu_R[dc->op1]); if (dc->op2 > 15) { abort(); } c = tcg_const_tl(dc->pc + 4); t_gen_mov_preg_TN(dc, dc->op2, c); tcg_temp_free(c); cris_prepare_jmp(dc, JMP_INDIRECT); return 2; } static int dec_jas_im(CPUCRISState *env, DisasContext *dc) { uint32_t imm; TCGv c; imm = cris_fetch(env, dc, dc->pc + 2, 4, 0); LOG_DIS("jas 0x%x\n", imm); cris_cc_mask(dc, 0); c = tcg_const_tl(dc->pc + 8); /* Store the return address in Pd. */ t_gen_mov_preg_TN(dc, dc->op2, c); tcg_temp_free(c); dc->jmp_pc = imm; cris_prepare_jmp(dc, JMP_DIRECT); return 6; } static int dec_jasc_im(CPUCRISState *env, DisasContext *dc) { uint32_t imm; TCGv c; imm = cris_fetch(env, dc, dc->pc + 2, 4, 0); LOG_DIS("jasc 0x%x\n", imm); cris_cc_mask(dc, 0); c = tcg_const_tl(dc->pc + 8 + 4); /* Store the return address in Pd. */ t_gen_mov_preg_TN(dc, dc->op2, c); tcg_temp_free(c); dc->jmp_pc = imm; cris_prepare_jmp(dc, JMP_DIRECT); return 6; } static int dec_jasc_r(CPUCRISState *env, DisasContext *dc) { TCGv c; LOG_DIS("jasc_r $r%u, $p%u\n", dc->op1, dc->op2); cris_cc_mask(dc, 0); /* Store the return address in Pd. */ tcg_gen_mov_tl(env_btarget, cpu_R[dc->op1]); c = tcg_const_tl(dc->pc + 4 + 4); t_gen_mov_preg_TN(dc, dc->op2, c); tcg_temp_free(c); cris_prepare_jmp(dc, JMP_INDIRECT); return 2; } static int dec_bcc_im(CPUCRISState *env, DisasContext *dc) { int32_t offset; uint32_t cond = dc->op2; offset = cris_fetch(env, dc, dc->pc + 2, 2, 1); LOG_DIS("b%s %d pc=%x dst=%x\n", cc_name(cond), offset, dc->pc, dc->pc + offset); cris_cc_mask(dc, 0); /* op2 holds the condition-code. */ cris_prepare_cc_branch(dc, offset, cond); return 4; } static int dec_bas_im(CPUCRISState *env, DisasContext *dc) { int32_t simm; TCGv c; simm = cris_fetch(env, dc, dc->pc + 2, 4, 0); LOG_DIS("bas 0x%x, $p%u\n", dc->pc + simm, dc->op2); cris_cc_mask(dc, 0); c = tcg_const_tl(dc->pc + 8); /* Store the return address in Pd. */ t_gen_mov_preg_TN(dc, dc->op2, c); tcg_temp_free(c); dc->jmp_pc = dc->pc + simm; cris_prepare_jmp(dc, JMP_DIRECT); return 6; } static int dec_basc_im(CPUCRISState *env, DisasContext *dc) { int32_t simm; TCGv c; simm = cris_fetch(env, dc, dc->pc + 2, 4, 0); LOG_DIS("basc 0x%x, $p%u\n", dc->pc + simm, dc->op2); cris_cc_mask(dc, 0); c = tcg_const_tl(dc->pc + 12); /* Store the return address in Pd. */ t_gen_mov_preg_TN(dc, dc->op2, c); tcg_temp_free(c); dc->jmp_pc = dc->pc + simm; cris_prepare_jmp(dc, JMP_DIRECT); return 6; } static int dec_rfe_etc(CPUCRISState *env, DisasContext *dc) { cris_cc_mask(dc, 0); if (dc->op2 == 15) { tcg_gen_st_i32(tcg_const_i32(1), cpu_env, -offsetof(CRISCPU, env) + offsetof(CPUState, halted)); tcg_gen_movi_tl(env_pc, dc->pc + 2); t_gen_raise_exception(EXCP_HLT); dc->base.is_jmp = DISAS_NORETURN; return 2; } switch (dc->op2 & 7) { case 2: /* rfe. */ LOG_DIS("rfe\n"); cris_evaluate_flags(dc); gen_helper_rfe(cpu_env); dc->base.is_jmp = DISAS_UPDATE; dc->cpustate_changed = true; break; case 5: /* rfn. */ LOG_DIS("rfn\n"); cris_evaluate_flags(dc); gen_helper_rfn(cpu_env); dc->base.is_jmp = DISAS_UPDATE; dc->cpustate_changed = true; break; case 6: LOG_DIS("break %d\n", dc->op1); cris_evaluate_flags(dc); /* break. */ tcg_gen_movi_tl(env_pc, dc->pc + 2); /* Breaks start at 16 in the exception vector. */ t_gen_movi_env_TN(trap_vector, dc->op1 + 16); t_gen_raise_exception(EXCP_BREAK); dc->base.is_jmp = DISAS_NORETURN; break; default: printf("op2=%x\n", dc->op2); BUG(); break; } return 2; } static int dec_ftag_fidx_d_m(CPUCRISState *env, DisasContext *dc) { return 2; } static int dec_ftag_fidx_i_m(CPUCRISState *env, DisasContext *dc) { return 2; } static int dec_null(CPUCRISState *env, DisasContext *dc) { printf("unknown insn pc=%x opc=%x op1=%x op2=%x\n", dc->pc, dc->opcode, dc->op1, dc->op2); fflush(NULL); BUG(); return 2; } static const struct decoder_info { struct { uint32_t bits; uint32_t mask; }; int (*dec)(CPUCRISState *env, DisasContext *dc); } decinfo[] = { /* Order matters here. */ {DEC_MOVEQ, dec_moveq}, {DEC_BTSTQ, dec_btstq}, {DEC_CMPQ, dec_cmpq}, {DEC_ADDOQ, dec_addoq}, {DEC_ADDQ, dec_addq}, {DEC_SUBQ, dec_subq}, {DEC_ANDQ, dec_andq}, {DEC_ORQ, dec_orq}, {DEC_ASRQ, dec_asrq}, {DEC_LSLQ, dec_lslq}, {DEC_LSRQ, dec_lsrq}, {DEC_BCCQ, dec_bccq}, {DEC_BCC_IM, dec_bcc_im}, {DEC_JAS_IM, dec_jas_im}, {DEC_JAS_R, dec_jas_r}, {DEC_JASC_IM, dec_jasc_im}, {DEC_JASC_R, dec_jasc_r}, {DEC_BAS_IM, dec_bas_im}, {DEC_BASC_IM, dec_basc_im}, {DEC_JUMP_P, dec_jump_p}, {DEC_LAPC_IM, dec_lapc_im}, {DEC_LAPCQ, dec_lapcq}, {DEC_RFE_ETC, dec_rfe_etc}, {DEC_ADDC_MR, dec_addc_mr}, {DEC_MOVE_MP, dec_move_mp}, {DEC_MOVE_PM, dec_move_pm}, {DEC_MOVEM_MR, dec_movem_mr}, {DEC_MOVEM_RM, dec_movem_rm}, {DEC_MOVE_PR, dec_move_pr}, {DEC_SCC_R, dec_scc_r}, {DEC_SETF, dec_setclrf}, {DEC_CLEARF, dec_setclrf}, {DEC_MOVE_SR, dec_move_sr}, {DEC_MOVE_RP, dec_move_rp}, {DEC_SWAP_R, dec_swap_r}, {DEC_ABS_R, dec_abs_r}, {DEC_LZ_R, dec_lz_r}, {DEC_MOVE_RS, dec_move_rs}, {DEC_BTST_R, dec_btst_r}, {DEC_ADDC_R, dec_addc_r}, {DEC_DSTEP_R, dec_dstep_r}, {DEC_XOR_R, dec_xor_r}, {DEC_MCP_R, dec_mcp_r}, {DEC_CMP_R, dec_cmp_r}, {DEC_ADDI_R, dec_addi_r}, {DEC_ADDI_ACR, dec_addi_acr}, {DEC_ADD_R, dec_add_r}, {DEC_SUB_R, dec_sub_r}, {DEC_ADDU_R, dec_addu_r}, {DEC_ADDS_R, dec_adds_r}, {DEC_SUBU_R, dec_subu_r}, {DEC_SUBS_R, dec_subs_r}, {DEC_LSL_R, dec_lsl_r}, {DEC_AND_R, dec_and_r}, {DEC_OR_R, dec_or_r}, {DEC_BOUND_R, dec_bound_r}, {DEC_ASR_R, dec_asr_r}, {DEC_LSR_R, dec_lsr_r}, {DEC_MOVU_R, dec_movu_r}, {DEC_MOVS_R, dec_movs_r}, {DEC_NEG_R, dec_neg_r}, {DEC_MOVE_R, dec_move_r}, {DEC_FTAG_FIDX_I_M, dec_ftag_fidx_i_m}, {DEC_FTAG_FIDX_D_M, dec_ftag_fidx_d_m}, {DEC_MULS_R, dec_muls_r}, {DEC_MULU_R, dec_mulu_r}, {DEC_ADDU_M, dec_addu_m}, {DEC_ADDS_M, dec_adds_m}, {DEC_SUBU_M, dec_subu_m}, {DEC_SUBS_M, dec_subs_m}, {DEC_CMPU_M, dec_cmpu_m}, {DEC_CMPS_M, dec_cmps_m}, {DEC_MOVU_M, dec_movu_m}, {DEC_MOVS_M, dec_movs_m}, {DEC_CMP_M, dec_cmp_m}, {DEC_ADDO_M, dec_addo_m}, {DEC_BOUND_M, dec_bound_m}, {DEC_ADD_M, dec_add_m}, {DEC_SUB_M, dec_sub_m}, {DEC_AND_M, dec_and_m}, {DEC_OR_M, dec_or_m}, {DEC_MOVE_RM, dec_move_rm}, {DEC_TEST_M, dec_test_m}, {DEC_MOVE_MR, dec_move_mr}, {{0, 0}, dec_null} }; static unsigned int crisv32_decoder(CPUCRISState *env, DisasContext *dc) { int insn_len = 2; int i; /* Load a halfword onto the instruction register. */ dc->ir = cris_fetch(env, dc, dc->pc, 2, 0); /* Now decode it. */ dc->opcode = EXTRACT_FIELD(dc->ir, 4, 11); dc->op1 = EXTRACT_FIELD(dc->ir, 0, 3); dc->op2 = EXTRACT_FIELD(dc->ir, 12, 15); dc->zsize = EXTRACT_FIELD(dc->ir, 4, 4); dc->zzsize = EXTRACT_FIELD(dc->ir, 4, 5); dc->postinc = EXTRACT_FIELD(dc->ir, 10, 10); /* Large switch for all insns. */ for (i = 0; i < ARRAY_SIZE(decinfo); i++) { if ((dc->opcode & decinfo[i].mask) == decinfo[i].bits) { insn_len = decinfo[i].dec(env, dc); break; } } #if !defined(CONFIG_USER_ONLY) /* Single-stepping ? */ if (dc->tb_flags & S_FLAG) { TCGLabel *l1 = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_NE, cpu_PR[PR_SPC], dc->pc, l1); /* We treat SPC as a break with an odd trap vector. */ cris_evaluate_flags(dc); t_gen_movi_env_TN(trap_vector, 3); tcg_gen_movi_tl(env_pc, dc->pc + insn_len); tcg_gen_movi_tl(cpu_PR[PR_SPC], dc->pc + insn_len); t_gen_raise_exception(EXCP_BREAK); gen_set_label(l1); } #endif return insn_len; } #include "translate_v10.c.inc" /* * Delay slots on QEMU/CRIS. * * If an exception hits on a delayslot, the core will let ERP (the Exception * Return Pointer) point to the branch (the previous) insn and set the lsb to * to give SW a hint that the exception actually hit on the dslot. * * CRIS expects all PC addresses to be 16-bit aligned. The lsb is ignored by * the core and any jmp to an odd addresses will mask off that lsb. It is * simply there to let sw know there was an exception on a dslot. * * When the software returns from an exception, the branch will re-execute. * On QEMU care needs to be taken when a branch+delayslot sequence is broken * and the branch and delayslot don't share pages. * * The TB contaning the branch insn will set up env->btarget and evaluate * env->btaken. When the translation loop exits we will note that the branch * sequence is broken and let env->dslot be the size of the branch insn (those * vary in length). * * The TB contaning the delayslot will have the PC of its real insn (i.e no lsb * set). It will also expect to have env->dslot setup with the size of the * delay slot so that env->pc - env->dslot point to the branch insn. This TB * will execute the dslot and take the branch, either to btarget or just one * insn ahead. * * When exceptions occur, we check for env->dslot in do_interrupt to detect * broken branch sequences and setup $erp accordingly (i.e let it point to the * branch and set lsb). Then env->dslot gets cleared so that the exception * handler can enter. When returning from exceptions (jump $erp) the lsb gets * masked off and we will reexecute the branch insn. * */ static void cris_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) { DisasContext *dc = container_of(dcbase, DisasContext, base); CPUCRISState *env = cs->env_ptr; uint32_t tb_flags = dc->base.tb->flags; uint32_t pc_start; if (env->pregs[PR_VR] == 32) { dc->decoder = crisv32_decoder; dc->clear_locked_irq = 0; } else { dc->decoder = crisv10_decoder; dc->clear_locked_irq = 1; } /* * Odd PC indicates that branch is rexecuting due to exception in the * delayslot, like in real hw. */ pc_start = dc->base.pc_first & ~1; dc->base.pc_first = pc_start; dc->base.pc_next = pc_start; dc->cpu = env_archcpu(env); dc->ppc = pc_start; dc->pc = pc_start; dc->flags_uptodate = 1; dc->flagx_known = 1; dc->flags_x = tb_flags & X_FLAG; dc->cc_x_uptodate = 0; dc->cc_mask = 0; dc->update_cc = 0; dc->clear_prefix = 0; dc->cpustate_changed = 0; cris_update_cc_op(dc, CC_OP_FLAGS, 4); dc->cc_size_uptodate = -1; /* Decode TB flags. */ dc->tb_flags = tb_flags & (S_FLAG | P_FLAG | U_FLAG | X_FLAG | PFIX_FLAG); dc->delayed_branch = !!(tb_flags & 7); if (dc->delayed_branch) { dc->jmp = JMP_INDIRECT; } else { dc->jmp = JMP_NOJMP; } } static void cris_tr_tb_start(DisasContextBase *db, CPUState *cpu) { } static void cris_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) { DisasContext *dc = container_of(dcbase, DisasContext, base); tcg_gen_insn_start(dc->delayed_branch == 1 ? dc->ppc | 1 : dc->pc); } static bool cris_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu, const CPUBreakpoint *bp) { DisasContext *dc = container_of(dcbase, DisasContext, base); cris_evaluate_flags(dc); tcg_gen_movi_tl(env_pc, dc->pc); t_gen_raise_exception(EXCP_DEBUG); dc->base.is_jmp = DISAS_NORETURN; /* * The address covered by the breakpoint must be included in * [tb->pc, tb->pc + tb->size) in order to for it to be * properly cleared -- thus we increment the PC here so that * the logic setting tb->size below does the right thing. */ dc->pc += 2; return true; } static void cris_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs) { DisasContext *dc = container_of(dcbase, DisasContext, base); CPUCRISState *env = cs->env_ptr; unsigned int insn_len; /* Pretty disas. */ LOG_DIS("%8.8x:\t", dc->pc); dc->clear_x = 1; insn_len = dc->decoder(env, dc); dc->ppc = dc->pc; dc->pc += insn_len; dc->base.pc_next += insn_len; if (dc->base.is_jmp == DISAS_NORETURN) { return; } if (dc->clear_x) { cris_clear_x_flag(dc); } /* Fold unhandled changes to X_FLAG into cpustate_changed. */ dc->cpustate_changed |= !dc->flagx_known; dc->cpustate_changed |= dc->flags_x != (dc->base.tb->flags & X_FLAG); /* * All branches are delayed branches, handled immediately below. * We don't expect to see odd combinations of exit conditions. */ assert(dc->base.is_jmp == DISAS_NEXT || dc->cpustate_changed); if (dc->delayed_branch && --dc->delayed_branch == 0) { dc->base.is_jmp = DISAS_DBRANCH; return; } if (dc->base.is_jmp != DISAS_NEXT) { return; } /* Force an update if the per-tb cpu state has changed. */ if (dc->cpustate_changed) { dc->base.is_jmp = DISAS_UPDATE_NEXT; return; } /* * FIXME: Only the first insn in the TB should cross a page boundary. * If we can detect the length of the next insn easily, we should. * In the meantime, simply stop when we do cross. */ if ((dc->pc ^ dc->base.pc_first) & TARGET_PAGE_MASK) { dc->base.is_jmp = DISAS_TOO_MANY; } } static void cris_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) { DisasContext *dc = container_of(dcbase, DisasContext, base); DisasJumpType is_jmp = dc->base.is_jmp; target_ulong npc = dc->pc; if (is_jmp == DISAS_NORETURN) { /* If we have a broken branch+delayslot sequence, it's too late. */ assert(dc->delayed_branch != 1); return; } if (dc->clear_locked_irq) { t_gen_movi_env_TN(locked_irq, 0); } /* Broken branch+delayslot sequence. */ if (dc->delayed_branch == 1) { /* Set env->dslot to the size of the branch insn. */ t_gen_movi_env_TN(dslot, dc->pc - dc->ppc); cris_store_direct_jmp(dc); } cris_evaluate_flags(dc); /* Evaluate delayed branch destination and fold to another is_jmp case. */ if (is_jmp == DISAS_DBRANCH) { if (dc->base.tb->flags & 7) { t_gen_movi_env_TN(dslot, 0); } switch (dc->jmp) { case JMP_DIRECT: npc = dc->jmp_pc; is_jmp = dc->cpustate_changed ? DISAS_UPDATE_NEXT : DISAS_TOO_MANY; break; case JMP_DIRECT_CC: /* * Use a conditional branch if either taken or not-taken path * can use goto_tb. If neither can, then treat it as indirect. */ if (likely(!dc->base.singlestep_enabled) && likely(!dc->cpustate_changed) && (use_goto_tb(dc, dc->jmp_pc) || use_goto_tb(dc, npc))) { TCGLabel *not_taken = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, env_btaken, 0, not_taken); gen_goto_tb(dc, 1, dc->jmp_pc); gen_set_label(not_taken); /* not-taken case handled below. */ is_jmp = DISAS_TOO_MANY; break; } tcg_gen_movi_tl(env_btarget, dc->jmp_pc); /* fall through */ case JMP_INDIRECT: t_gen_cc_jmp(env_btarget, tcg_constant_tl(npc)); is_jmp = dc->cpustate_changed ? DISAS_UPDATE : DISAS_JUMP; break; default: g_assert_not_reached(); } } if (unlikely(dc->base.singlestep_enabled)) { switch (is_jmp) { case DISAS_TOO_MANY: case DISAS_UPDATE_NEXT: tcg_gen_movi_tl(env_pc, npc); /* fall through */ case DISAS_JUMP: case DISAS_UPDATE: t_gen_raise_exception(EXCP_DEBUG); return; default: break; } g_assert_not_reached(); } switch (is_jmp) { case DISAS_TOO_MANY: gen_goto_tb(dc, 0, npc); break; case DISAS_UPDATE_NEXT: tcg_gen_movi_tl(env_pc, npc); /* fall through */ case DISAS_JUMP: case DISAS_UPDATE: /* Indicate that interupts must be re-evaluated before the next TB. */ tcg_gen_exit_tb(NULL, 0); break; default: g_assert_not_reached(); } } static void cris_tr_disas_log(const DisasContextBase *dcbase, CPUState *cpu) { if (!DISAS_CRIS) { qemu_log("IN: %s\n", lookup_symbol(dcbase->pc_first)); log_target_disas(cpu, dcbase->pc_first, dcbase->tb->size); } } static const TranslatorOps cris_tr_ops = { .init_disas_context = cris_tr_init_disas_context, .tb_start = cris_tr_tb_start, .insn_start = cris_tr_insn_start, .breakpoint_check = cris_tr_breakpoint_check, .translate_insn = cris_tr_translate_insn, .tb_stop = cris_tr_tb_stop, .disas_log = cris_tr_disas_log, }; void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns) { DisasContext dc; translator_loop(&cris_tr_ops, &dc.base, cs, tb, max_insns); } void cris_cpu_dump_state(CPUState *cs, FILE *f, int flags) { CRISCPU *cpu = CRIS_CPU(cs); CPUCRISState *env = &cpu->env; const char * const *regnames; const char * const *pregnames; int i; if (!env) { return; } if (env->pregs[PR_VR] < 32) { pregnames = pregnames_v10; regnames = regnames_v10; } else { pregnames = pregnames_v32; regnames = regnames_v32; } qemu_fprintf(f, "PC=%x CCS=%x btaken=%d btarget=%x\n" "cc_op=%d cc_src=%d cc_dest=%d cc_result=%x cc_mask=%x\n", env->pc, env->pregs[PR_CCS], env->btaken, env->btarget, env->cc_op, env->cc_src, env->cc_dest, env->cc_result, env->cc_mask); for (i = 0; i < 16; i++) { qemu_fprintf(f, "%s=%8.8x ", regnames[i], env->regs[i]); if ((i + 1) % 4 == 0) { qemu_fprintf(f, "\n"); } } qemu_fprintf(f, "\nspecial regs:\n"); for (i = 0; i < 16; i++) { qemu_fprintf(f, "%s=%8.8x ", pregnames[i], env->pregs[i]); if ((i + 1) % 4 == 0) { qemu_fprintf(f, "\n"); } } if (env->pregs[PR_VR] >= 32) { uint32_t srs = env->pregs[PR_SRS]; qemu_fprintf(f, "\nsupport function regs bank %x:\n", srs); if (srs < ARRAY_SIZE(env->sregs)) { for (i = 0; i < 16; i++) { qemu_fprintf(f, "s%2.2d=%8.8x ", i, env->sregs[srs][i]); if ((i + 1) % 4 == 0) { qemu_fprintf(f, "\n"); } } } } qemu_fprintf(f, "\n\n"); } void cris_initialize_tcg(void) { int i; cc_x = tcg_global_mem_new(cpu_env, offsetof(CPUCRISState, cc_x), "cc_x"); cc_src = tcg_global_mem_new(cpu_env, offsetof(CPUCRISState, cc_src), "cc_src"); cc_dest = tcg_global_mem_new(cpu_env, offsetof(CPUCRISState, cc_dest), "cc_dest"); cc_result = tcg_global_mem_new(cpu_env, offsetof(CPUCRISState, cc_result), "cc_result"); cc_op = tcg_global_mem_new(cpu_env, offsetof(CPUCRISState, cc_op), "cc_op"); cc_size = tcg_global_mem_new(cpu_env, offsetof(CPUCRISState, cc_size), "cc_size"); cc_mask = tcg_global_mem_new(cpu_env, offsetof(CPUCRISState, cc_mask), "cc_mask"); env_pc = tcg_global_mem_new(cpu_env, offsetof(CPUCRISState, pc), "pc"); env_btarget = tcg_global_mem_new(cpu_env, offsetof(CPUCRISState, btarget), "btarget"); env_btaken = tcg_global_mem_new(cpu_env, offsetof(CPUCRISState, btaken), "btaken"); for (i = 0; i < 16; i++) { cpu_R[i] = tcg_global_mem_new(cpu_env, offsetof(CPUCRISState, regs[i]), regnames_v32[i]); } for (i = 0; i < 16; i++) { cpu_PR[i] = tcg_global_mem_new(cpu_env, offsetof(CPUCRISState, pregs[i]), pregnames_v32[i]); } } void restore_state_to_opc(CPUCRISState *env, TranslationBlock *tb, target_ulong *data) { env->pc = data[0]; }