/*
 *  PowerPC emulation micro-operations for qemu.
 * 
 *  Copyright (c) 2003-2007 Jocelyn Mayer
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

//#define DEBUG_OP

#include "config.h"
#include "exec.h"
#include "op_helper.h"

/* XXX: this is to be suppressed */
#define regs (env)

#define FT0 (env->ft0)
#define FT1 (env->ft1)
#define FT2 (env->ft2)

/* XXX: this is to be suppressed... */
#define PPC_OP(name) void OPPROTO glue(op_, name)(void)

#define REG 0
#include "op_template.h"

#define REG 1
#include "op_template.h"

#define REG 2
#include "op_template.h"

#define REG 3
#include "op_template.h"

#define REG 4
#include "op_template.h"

#define REG 5
#include "op_template.h"

#define REG 6
#include "op_template.h"

#define REG 7
#include "op_template.h"

#define REG 8
#include "op_template.h"

#define REG 9
#include "op_template.h"

#define REG 10
#include "op_template.h"

#define REG 11
#include "op_template.h"

#define REG 12
#include "op_template.h"

#define REG 13
#include "op_template.h"

#define REG 14
#include "op_template.h"

#define REG 15
#include "op_template.h"

#define REG 16
#include "op_template.h"

#define REG 17
#include "op_template.h"

#define REG 18
#include "op_template.h"

#define REG 19
#include "op_template.h"

#define REG 20
#include "op_template.h"

#define REG 21
#include "op_template.h"

#define REG 22
#include "op_template.h"

#define REG 23
#include "op_template.h"

#define REG 24
#include "op_template.h"

#define REG 25
#include "op_template.h"

#define REG 26
#include "op_template.h"

#define REG 27
#include "op_template.h"

#define REG 28
#include "op_template.h"

#define REG 29
#include "op_template.h"

#define REG 30
#include "op_template.h"

#define REG 31
#include "op_template.h"


void OPPROTO op_print_mem_EA (void)
{
    do_print_mem_EA(T0);
    RETURN();
}

/* PowerPC state maintenance operations */
/* set_Rc0 */
PPC_OP(set_Rc0)
{
    env->crf[0] = T0 | xer_ov;
    RETURN();
}

/* Set Rc1 (for floating point arithmetic) */
PPC_OP(set_Rc1)
{
    env->crf[1] = regs->fpscr[7];
    RETURN();
}

/* Constants load */
void OPPROTO op_reset_T0 (void)
{
    T0 = 0;
    RETURN();
}

PPC_OP(set_T0)
{
    T0 = (uint32_t)PARAM1;
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_set_T0_64 (void)
{
    T0 = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
    RETURN();
}
#endif

PPC_OP(set_T1)
{
    T1 = (uint32_t)PARAM1;
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_set_T1_64 (void)
{
    T1 = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
    RETURN();
}
#endif

#if 0 // unused
PPC_OP(set_T2)
{
    T2 = PARAM(1);
    RETURN();
}
#endif

void OPPROTO op_move_T1_T0 (void)
{
    T1 = T0;
    RETURN();
}

void OPPROTO op_move_T2_T0 (void)
{
    T2 = T0;
    RETURN();
}

/* Generate exceptions */
PPC_OP(raise_exception_err)
{
    do_raise_exception_err(PARAM(1), PARAM(2));
}

PPC_OP(update_nip)
{
    env->nip = (uint32_t)PARAM1;
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_update_nip_64 (void)
{
    env->nip = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
    RETURN();
}
#endif

PPC_OP(debug)
{
    do_raise_exception(EXCP_DEBUG);
}

PPC_OP(exit_tb)
{
    EXIT_TB();
}

/* Load/store special registers */
PPC_OP(load_cr)
{
    do_load_cr();
    RETURN();
}

PPC_OP(store_cr)
{
    do_store_cr(PARAM(1));
    RETURN();
}

void OPPROTO op_load_cro (void)
{
    T0 = env->crf[PARAM1];
    RETURN();
}

void OPPROTO op_store_cro (void)
{
    env->crf[PARAM1] = T0;
    RETURN();
}

PPC_OP(load_xer_cr)
{
    T0 = (xer_so << 3) | (xer_ov << 2) | (xer_ca << 1);
    RETURN();
}

PPC_OP(clear_xer_ov)
{
    xer_so = 0;
    xer_ov = 0;
    RETURN();
}

PPC_OP(clear_xer_ca)
{
    xer_ca = 0;
    RETURN();
}

PPC_OP(load_xer_bc)
{
    T1 = xer_bc;
    RETURN();
}

void OPPROTO op_store_xer_bc (void)
{
    xer_bc = T0;
    RETURN();
}

PPC_OP(load_xer)
{
    do_load_xer();
    RETURN();
}

PPC_OP(store_xer)
{
    do_store_xer();
    RETURN();
}

#if !defined(CONFIG_USER_ONLY)
/* Segment registers load and store */
PPC_OP(load_sr)
{
    T0 = regs->sr[T1];
    RETURN();
}

PPC_OP(store_sr)
{
    do_store_sr(env, T1, T0);
    RETURN();
}

PPC_OP(load_sdr1)
{
    T0 = regs->sdr1;
    RETURN();
}

PPC_OP(store_sdr1)
{
    do_store_sdr1(env, T0);
    RETURN();
}

#if defined (TARGET_PPC64)
void OPPROTO op_load_asr (void)
{
    T0 = env->asr;
    RETURN();
}

void OPPROTO op_store_asr (void)
{
    ppc_store_asr(env, T0);
    RETURN();
}
#endif

PPC_OP(load_msr)
{
    T0 = do_load_msr(env);
    RETURN();
}

PPC_OP(store_msr)
{
    do_store_msr(env, T0);
    RETURN();
}

#if defined (TARGET_PPC64)
void OPPROTO op_store_msr_32 (void)
{
    ppc_store_msr_32(env, T0);
    RETURN();
}
#endif
#endif

/* SPR */
void OPPROTO op_load_spr (void)
{
    T0 = env->spr[PARAM1];
    RETURN();
}

void OPPROTO op_store_spr (void)
{
    env->spr[PARAM1] = T0;
    RETURN();
}

void OPPROTO op_load_dump_spr (void)
{
    T0 = ppc_load_dump_spr(PARAM1);
    RETURN();
}

void OPPROTO op_store_dump_spr (void)
{
    ppc_store_dump_spr(PARAM1, T0);
    RETURN();
}

void OPPROTO op_mask_spr (void)
{
    env->spr[PARAM1] &= ~T0;
    RETURN();
}

PPC_OP(load_lr)
{
    T0 = regs->lr;
    RETURN();
}

PPC_OP(store_lr)
{
    regs->lr = T0;
    RETURN();
}

PPC_OP(load_ctr)
{
    T0 = regs->ctr;
    RETURN();
}

PPC_OP(store_ctr)
{
    regs->ctr = T0;
    RETURN();
}

PPC_OP(load_tbl)
{
    T0 = cpu_ppc_load_tbl(regs);
    RETURN();
}

PPC_OP(load_tbu)
{
    T0 = cpu_ppc_load_tbu(regs);
    RETURN();
}

#if !defined(CONFIG_USER_ONLY)
PPC_OP(store_tbl)
{
    cpu_ppc_store_tbl(regs, T0);
    RETURN();
}

PPC_OP(store_tbu)
{
    cpu_ppc_store_tbu(regs, T0);
    RETURN();
}

PPC_OP(load_decr)
{
    T0 = cpu_ppc_load_decr(regs);
    RETURN();
}

PPC_OP(store_decr)
{
    cpu_ppc_store_decr(regs, T0);
    RETURN();
}

PPC_OP(load_ibat)
{
    T0 = regs->IBAT[PARAM(1)][PARAM(2)];
    RETURN();
}

void OPPROTO op_store_ibatu (void)
{
    do_store_ibatu(env, PARAM1, T0);
    RETURN();
}

void OPPROTO op_store_ibatl (void)
{
#if 1
    env->IBAT[1][PARAM1] = T0;
#else
    do_store_ibatl(env, PARAM1, T0);
#endif
    RETURN();
}

PPC_OP(load_dbat)
{
    T0 = regs->DBAT[PARAM(1)][PARAM(2)];
    RETURN();
}

void OPPROTO op_store_dbatu (void)
{
    do_store_dbatu(env, PARAM1, T0);
    RETURN();
}

void OPPROTO op_store_dbatl (void)
{
#if 1
    env->DBAT[1][PARAM1] = T0;
#else
    do_store_dbatl(env, PARAM1, T0);
#endif
    RETURN();
}
#endif /* !defined(CONFIG_USER_ONLY) */

/* FPSCR */
PPC_OP(load_fpscr)
{
    do_load_fpscr();
    RETURN();
}

PPC_OP(store_fpscr)
{
    do_store_fpscr(PARAM1);
    RETURN();
}

PPC_OP(reset_scrfx)
{
    regs->fpscr[7] &= ~0x8;
    RETURN();
}

/* crf operations */
PPC_OP(getbit_T0)
{
    T0 = (T0 >> PARAM(1)) & 1;
    RETURN();
}

PPC_OP(getbit_T1)
{
    T1 = (T1 >> PARAM(1)) & 1;
    RETURN();
}

PPC_OP(setcrfbit)
{
    T1 = (T1 & PARAM(1)) | (T0 << PARAM(2));
    RETURN();
}

/* Branch */
#define EIP regs->nip

PPC_OP(setlr)
{
    regs->lr = (uint32_t)PARAM1;
    RETURN();
}

#if defined (TARGET_PPC64)
void OPPROTO op_setlr_64 (void)
{
    regs->lr = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
    RETURN();
}
#endif

PPC_OP(goto_tb0)
{
    GOTO_TB(op_goto_tb0, PARAM1, 0);
}

PPC_OP(goto_tb1)
{
    GOTO_TB(op_goto_tb1, PARAM1, 1);
}

void OPPROTO op_b_T1 (void)
{
    regs->nip = (uint32_t)(T1 & ~3);
    RETURN();
}

#if defined (TARGET_PPC64)
void OPPROTO op_b_T1_64 (void)
{
    regs->nip = (uint64_t)(T1 & ~3);
    RETURN();
}
#endif

PPC_OP(jz_T0)
{
    if (!T0)
        GOTO_LABEL_PARAM(1);
    RETURN();
}

void OPPROTO op_btest_T1 (void)
{
    if (T0) {
        regs->nip = (uint32_t)(T1 & ~3);
    } else {
        regs->nip = (uint32_t)PARAM1;
    }
    RETURN();
}

#if defined (TARGET_PPC64)
void OPPROTO op_btest_T1_64 (void)
{
    if (T0) {
        regs->nip = (uint64_t)(T1 & ~3);
    } else {
        regs->nip = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2;
    }
    RETURN();
}
#endif

PPC_OP(movl_T1_ctr)
{
    T1 = regs->ctr;
    RETURN();
}

PPC_OP(movl_T1_lr)
{
    T1 = regs->lr;
    RETURN();
}

/* tests with result in T0 */
void OPPROTO op_test_ctr (void)
{
    T0 = (uint32_t)regs->ctr;
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_test_ctr_64 (void)
{
    T0 = (uint64_t)regs->ctr;
    RETURN();
}
#endif

void OPPROTO op_test_ctr_true (void)
{
    T0 = ((uint32_t)regs->ctr != 0 && (T0 & PARAM1) != 0);
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_test_ctr_true_64 (void)
{
    T0 = ((uint64_t)regs->ctr != 0 && (T0 & PARAM1) != 0);
    RETURN();
}
#endif

void OPPROTO op_test_ctr_false (void)
{
    T0 = ((uint32_t)regs->ctr != 0 && (T0 & PARAM1) == 0);
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_test_ctr_false_64 (void)
{
    T0 = ((uint64_t)regs->ctr != 0 && (T0 & PARAM1) == 0);
    RETURN();
}
#endif

void OPPROTO op_test_ctrz (void)
{
    T0 = ((uint32_t)regs->ctr == 0);
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_test_ctrz_64 (void)
{
    T0 = ((uint64_t)regs->ctr == 0);
    RETURN();
}
#endif

void OPPROTO op_test_ctrz_true (void)
{
    T0 = ((uint32_t)regs->ctr == 0 && (T0 & PARAM1) != 0);
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_test_ctrz_true_64 (void)
{
    T0 = ((uint64_t)regs->ctr == 0 && (T0 & PARAM1) != 0);
    RETURN();
}
#endif

void OPPROTO op_test_ctrz_false (void)
{
    T0 = ((uint32_t)regs->ctr == 0 && (T0 & PARAM1) == 0);
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_test_ctrz_false_64 (void)
{
    T0 = ((uint64_t)regs->ctr == 0 && (T0 & PARAM1) == 0);
    RETURN();
}
#endif

PPC_OP(test_true)
{
    T0 = (T0 & PARAM(1));
    RETURN();
}

PPC_OP(test_false)
{
    T0 = ((T0 & PARAM(1)) == 0);
    RETURN();
}

/* CTR maintenance */
PPC_OP(dec_ctr)
{
    regs->ctr--;
    RETURN();
}

/***                           Integer arithmetic                          ***/
/* add */
PPC_OP(add)
{
    T0 += T1;
    RETURN();
}

void OPPROTO op_check_addo (void)
{
    if (likely(!(((uint32_t)T2 ^ (uint32_t)T1 ^ UINT32_MAX) &
                 ((uint32_t)T2 ^ (uint32_t)T0) & (1UL << 31)))) {
        xer_ov = 0;
    } else {
        xer_so = 1;
        xer_ov = 1;
    }
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_check_addo_64 (void)
{
    if (likely(!(((uint64_t)T2 ^ (uint64_t)T1 ^ UINT64_MAX) &
                 ((uint64_t)T2 ^ (uint64_t)T0) & (1ULL << 63)))) {
        xer_ov = 0;
    } else {
        xer_so = 1;
        xer_ov = 1;
    }
    RETURN();
}
#endif

/* add carrying */
void OPPROTO op_check_addc (void)
{
    if (likely((uint32_t)T0 >= (uint32_t)T2)) {
        xer_ca = 0;
    } else {
        xer_ca = 1;
    }
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_check_addc_64 (void)
{
    if (likely((uint64_t)T0 >= (uint64_t)T2)) {
        xer_ca = 0;
    } else {
        xer_ca = 1;
    }
    RETURN();
}
#endif

/* add extended */
void OPPROTO op_adde (void)
{
    do_adde();
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_adde_64 (void)
{
    do_adde_64();
    RETURN();
}
#endif

/* add immediate */
PPC_OP(addi)
{
    T0 += (int32_t)PARAM(1);
    RETURN();
}

/* add to minus one extended */
void OPPROTO op_add_me (void)
{
    T0 += xer_ca + (-1);
    if (likely((uint32_t)T1 != 0))
        xer_ca = 1;
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_add_me_64 (void)
{
    T0 += xer_ca + (-1);
    if (likely((uint64_t)T1 != 0))
        xer_ca = 1;
    RETURN();
}
#endif

void OPPROTO op_addmeo (void)
{
    do_addmeo();
    RETURN();
}

void OPPROTO op_addmeo_64 (void)
{
    do_addmeo();
    RETURN();
}

/* add to zero extended */
void OPPROTO op_add_ze (void)
{
    T0 += xer_ca;
    RETURN();
}

/* divide word */
void OPPROTO op_divw (void)
{
    if (unlikely(((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) ||
                 (int32_t)T1 == 0)) {
        T0 = (int32_t)((-1) * ((uint32_t)T0 >> 31));
    } else {
        T0 = (int32_t)T0 / (int32_t)T1;
    }
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_divd (void)
{
    if (unlikely(((int64_t)T0 == INT64_MIN && (int64_t)T1 == -1) ||
                 (int64_t)T1 == 0)) {
        T0 = (int64_t)((-1ULL) * ((uint64_t)T0 >> 63));
    } else {
        T0 = (int64_t)T0 / (int64_t)T1;
    }
    RETURN();
}
#endif

void OPPROTO op_divwo (void)
{
    do_divwo();
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_divdo (void)
{
    do_divdo();
    RETURN();
}
#endif

/* divide word unsigned */
void OPPROTO op_divwu (void)
{
    if (unlikely(T1 == 0)) {
        T0 = 0;
    } else {
        T0 = (uint32_t)T0 / (uint32_t)T1;
    }
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_divdu (void)
{
    if (unlikely(T1 == 0)) {
        T0 = 0;
    } else {
        T0 /= T1;
    }
    RETURN();
}
#endif

void OPPROTO op_divwuo (void)
{
    do_divwuo();
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_divduo (void)
{
    do_divduo();
    RETURN();
}
#endif

/* multiply high word */
void OPPROTO op_mulhw (void)
{
    T0 = ((int64_t)((int32_t)T0) * (int64_t)((int32_t)T1)) >> 32;
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_mulhd (void)
{
    uint64_t tl, th;

    do_imul64(&tl, &th);
    T0 = th;
    RETURN();
}
#endif

/* multiply high word unsigned */
void OPPROTO op_mulhwu (void)
{
    T0 = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1) >> 32;
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_mulhdu (void)
{
    uint64_t tl, th;

    do_mul64(&tl, &th);
    T0 = th;
    RETURN();
}
#endif

/* multiply low immediate */
PPC_OP(mulli)
{
    T0 = ((int32_t)T0 * (int32_t)PARAM1);
    RETURN();
}

/* multiply low word */
PPC_OP(mullw)
{
    T0 = (int32_t)(T0 * T1);
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_mulld (void)
{
    T0 *= T1;
    RETURN();
}
#endif

void OPPROTO op_mullwo (void)
{
    do_mullwo();
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_mulldo (void)
{
    do_mulldo();
    RETURN();
}
#endif

/* negate */
void OPPROTO op_neg (void)
{
    if (likely(T0 != INT32_MIN)) {
        T0 = -(int32_t)T0;
    }
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_neg_64 (void)
{
    if (likely(T0 != INT64_MIN)) {
        T0 = -(int64_t)T0;
    }
    RETURN();
}
#endif

void OPPROTO op_nego (void)
{
    do_nego();
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_nego_64 (void)
{
    do_nego_64();
    RETURN();
}
#endif

/* substract from */
PPC_OP(subf)
{
    T0 = T1 - T0;
    RETURN();
}

void OPPROTO op_check_subfo (void)
{
    if (likely(!(((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
                 ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)))) {
        xer_ov = 0;
    } else {
        xer_so = 1;
        xer_ov = 1;
    }
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_check_subfo_64 (void)
{
    if (likely(!(((uint64_t)(~T2) ^ (uint64_t)T1 ^ UINT64_MAX) &
                 ((uint64_t)(~T2) ^ (uint64_t)T0) & (1ULL << 63)))) {
        xer_ov = 0;
    } else {
        xer_so = 1;
        xer_ov = 1;
    }
    RETURN();
}
#endif

/* substract from carrying */
void OPPROTO op_check_subfc (void)
{
    if (likely((uint32_t)T0 > (uint32_t)T1)) {
        xer_ca = 0;
    } else {
        xer_ca = 1;
    }
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_check_subfc_64 (void)
{
    if (likely((uint64_t)T0 > (uint64_t)T1)) {
        xer_ca = 0;
    } else {
        xer_ca = 1;
    }
    RETURN();
}
#endif

/* substract from extended */
void OPPROTO op_subfe (void)
{
    do_subfe();
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_subfe_64 (void)
{
    do_subfe_64();
    RETURN();
}
#endif

/* substract from immediate carrying */
void OPPROTO op_subfic (void)
{
    T0 = (int32_t)PARAM1 + ~T0 + 1;
    if ((uint32_t)T0 <= (uint32_t)PARAM1) {
        xer_ca = 1;
    } else {
        xer_ca = 0;
    }
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_subfic_64 (void)
{
    T0 = PARAM1 + ~T0 + 1;
    if ((uint64_t)T0 <= (uint64_t)PARAM1) {
        xer_ca = 1;
    } else {
        xer_ca = 0;
    }
    RETURN();
}
#endif

/* substract from minus one extended */
void OPPROTO op_subfme (void)
{
    T0 = ~T0 + xer_ca - 1;
    if (likely((uint32_t)T0 != (uint32_t)-1))
        xer_ca = 1;
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_subfme_64 (void)
{
    T0 = ~T0 + xer_ca - 1;
    if (likely((uint64_t)T0 != (uint64_t)-1))
        xer_ca = 1;
    RETURN();
}
#endif

void OPPROTO op_subfmeo (void)
{
    do_subfmeo();
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_subfmeo_64 (void)
{
    do_subfmeo_64();
    RETURN();
}
#endif

/* substract from zero extended */
void OPPROTO op_subfze (void)
{
    T1 = ~T0;
    T0 = T1 + xer_ca;
    if ((uint32_t)T0 < (uint32_t)T1) {
        xer_ca = 1;
    } else {
        xer_ca = 0;
    }
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_subfze_64 (void)
{
    T1 = ~T0;
    T0 = T1 + xer_ca;
    if ((uint64_t)T0 < (uint64_t)T1) {
        xer_ca = 1;
    } else {
        xer_ca = 0;
    }
    RETURN();
}
#endif

void OPPROTO op_subfzeo (void)
{
    do_subfzeo();
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_subfzeo_64 (void)
{
    do_subfzeo_64();
    RETURN();
}
#endif

/***                           Integer comparison                          ***/
/* compare */
void OPPROTO op_cmp (void)
{
    if ((int32_t)T0 < (int32_t)T1) {
        T0 = 0x08;
    } else if ((int32_t)T0 > (int32_t)T1) {
        T0 = 0x04;
    } else {
        T0 = 0x02;
    }
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_cmp_64 (void)
{
    if ((int64_t)T0 < (int64_t)T1) {
        T0 = 0x08;
    } else if ((int64_t)T0 > (int64_t)T1) {
        T0 = 0x04;
    } else {
        T0 = 0x02;
    }
    RETURN();
}
#endif

/* compare immediate */
void OPPROTO op_cmpi (void)
{
    if ((int32_t)T0 < (int32_t)PARAM1) {
        T0 = 0x08;
    } else if ((int32_t)T0 > (int32_t)PARAM1) {
        T0 = 0x04;
    } else {
        T0 = 0x02;
    }
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_cmpi_64 (void)
{
    if ((int64_t)T0 < (int64_t)((int32_t)PARAM1)) {
        T0 = 0x08;
    } else if ((int64_t)T0 > (int64_t)((int32_t)PARAM1)) {
        T0 = 0x04;
    } else {
        T0 = 0x02;
    }
    RETURN();
}
#endif

/* compare logical */
void OPPROTO op_cmpl (void)
{
    if ((uint32_t)T0 < (uint32_t)T1) {
        T0 = 0x08;
    } else if ((uint32_t)T0 > (uint32_t)T1) {
        T0 = 0x04;
    } else {
        T0 = 0x02;
    }
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_cmpl_64 (void)
{
    if ((uint64_t)T0 < (uint64_t)T1) {
        T0 = 0x08;
    } else if ((uint64_t)T0 > (uint64_t)T1) {
        T0 = 0x04;
    } else {
        T0 = 0x02;
    }
    RETURN();
}
#endif

/* compare logical immediate */
void OPPROTO op_cmpli (void)
{
    if ((uint32_t)T0 < (uint32_t)PARAM1) {
        T0 = 0x08;
    } else if ((uint32_t)T0 > (uint32_t)PARAM1) {
        T0 = 0x04;
    } else {
        T0 = 0x02;
    }
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_cmpli_64 (void)
{
    if ((uint64_t)T0 < (uint64_t)PARAM1) {
        T0 = 0x08;
    } else if ((uint64_t)T0 > (uint64_t)PARAM1) {
        T0 = 0x04;
    } else {
        T0 = 0x02;
    }
    RETURN();
}
#endif

void OPPROTO op_isel (void)
{
    if (T0)
        T0 = T1;
    else
        T0 = T2;
    RETURN();
}

void OPPROTO op_popcntb (void)
{
    do_popcntb();
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_popcntb_64 (void)
{
    do_popcntb_64();
    RETURN();
}
#endif

/***                            Integer logical                            ***/
/* and */
PPC_OP(and)
{
    T0 &= T1;
    RETURN();
}

/* andc */
PPC_OP(andc)
{
    T0 &= ~T1;
    RETURN();
}

/* andi. */
void OPPROTO op_andi_T0 (void)
{
    T0 &= PARAM(1);
    RETURN();
}

void OPPROTO op_andi_T1 (void)
{
    T1 &= PARAM1;
    RETURN();
}

/* count leading zero */
void OPPROTO op_cntlzw (void)
{
    T0 = _do_cntlzw(T0);
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_cntlzd (void)
{
    T0 = _do_cntlzd(T0);
    RETURN();
}
#endif

/* eqv */
PPC_OP(eqv)
{
    T0 = ~(T0 ^ T1);
    RETURN();
}

/* extend sign byte */
void OPPROTO op_extsb (void)
{
#if defined (TARGET_PPC64)
    T0 = (int64_t)((int8_t)T0);
#else
    T0 = (int32_t)((int8_t)T0);
#endif
    RETURN();
}

/* extend sign half word */
void OPPROTO op_extsh (void)
{
#if defined (TARGET_PPC64)
    T0 = (int64_t)((int16_t)T0);
#else
    T0 = (int32_t)((int16_t)T0);
#endif
    RETURN();
}

#if defined (TARGET_PPC64)
void OPPROTO op_extsw (void)
{
    T0 = (int64_t)((int32_t)T0);
    RETURN();
}
#endif

/* nand */
PPC_OP(nand)
{
    T0 = ~(T0 & T1);
    RETURN();
}

/* nor */
PPC_OP(nor)
{
    T0 = ~(T0 | T1);
    RETURN();
}

/* or */
PPC_OP(or)
{
    T0 |= T1;
    RETURN();
}

/* orc */
PPC_OP(orc)
{
    T0 |= ~T1;
    RETURN();
}

/* ori */
PPC_OP(ori)
{
    T0 |= PARAM(1);
    RETURN();
}

/* xor */
PPC_OP(xor)
{
    T0 ^= T1;
    RETURN();
}

/* xori */
PPC_OP(xori)
{
    T0 ^= PARAM(1);
    RETURN();
}

/***                             Integer rotate                            ***/
void OPPROTO op_rotl32_T0_T1 (void)
{
    T0 = rotl32(T0, T1 & 0x1F);
    RETURN();
}

void OPPROTO op_rotli32_T0 (void)
{
    T0 = rotl32(T0, PARAM1);
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_rotl64_T0_T1 (void)
{
    T0 = rotl64(T0, T1 & 0x3F);
    RETURN();
}

void OPPROTO op_rotli64_T0 (void)
{
    T0 = rotl64(T0, PARAM1);
    RETURN();
}
#endif

/***                             Integer shift                             ***/
/* shift left word */
void OPPROTO op_slw (void)
{
    if (T1 & 0x20) {
        T0 = 0;
    } else {
        T0 = (uint32_t)(T0 << T1);
    }
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_sld (void)
{
    if (T1 & 0x40) {
        T0 = 0;
    } else {
        T0 = T0 << T1;
    }
    RETURN();
}
#endif

/* shift right algebraic word */
void OPPROTO op_sraw (void)
{
    do_sraw();
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_srad (void)
{
    do_srad();
    RETURN();
}
#endif

/* shift right algebraic word immediate */
void OPPROTO op_srawi (void)
{
    uint32_t mask = (uint32_t)PARAM2;

    T0 = (int32_t)T0 >> PARAM1;
    if ((int32_t)T1 < 0 && (T1 & mask) != 0) {
        xer_ca = 1;
    } else {
        xer_ca = 0;
    }
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_sradi (void)
{
    uint64_t mask = ((uint64_t)PARAM2 << 32) | (uint64_t)PARAM3;

    T0 = (int64_t)T0 >> PARAM1;
    if ((int64_t)T1 < 0 && ((uint64_t)T1 & mask) != 0) {
        xer_ca = 1;
    } else {
        xer_ca = 0;
    }
    RETURN();
}
#endif

/* shift right word */
void OPPROTO op_srw (void)
{
    if (T1 & 0x20) {
        T0 = 0;
    } else {
        T0 = (uint32_t)T0 >> T1;
    }
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_srd (void)
{
    if (T1 & 0x40) {
        T0 = 0;
    } else {
        T0 = (uint64_t)T0 >> T1;
    }
    RETURN();
}
#endif

void OPPROTO op_sl_T0_T1 (void)
{
    T0 = T0 << T1;
    RETURN();
}

void OPPROTO op_sli_T0 (void)
{
    T0 = T0 << PARAM1;
    RETURN();
}

void OPPROTO op_srl_T0_T1 (void)
{
    T0 = (uint32_t)T0 >> T1;
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_srl_T0_T1_64 (void)
{
    T0 = (uint32_t)T0 >> T1;
    RETURN();
}
#endif

void OPPROTO op_srli_T0 (void)
{
    T0 = (uint32_t)T0 >> PARAM1;
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_srli_T0_64 (void)
{
    T0 = (uint64_t)T0 >> PARAM1;
    RETURN();
}
#endif

void OPPROTO op_srli_T1 (void)
{
    T1 = (uint32_t)T1 >> PARAM1;
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_srli_T1_64 (void)
{
    T1 = (uint64_t)T1 >> PARAM1;
    RETURN();
}
#endif

/***                       Floating-Point arithmetic                       ***/
/* fadd - fadd. */
PPC_OP(fadd)
{
    FT0 = float64_add(FT0, FT1, &env->fp_status);
    RETURN();
}

/* fsub - fsub. */
PPC_OP(fsub)
{
    FT0 = float64_sub(FT0, FT1, &env->fp_status);
    RETURN();
}

/* fmul - fmul. */
PPC_OP(fmul)
{
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
    RETURN();
}

/* fdiv - fdiv. */
PPC_OP(fdiv)
{
    FT0 = float64_div(FT0, FT1, &env->fp_status);
    RETURN();
}

/* fsqrt - fsqrt. */
PPC_OP(fsqrt)
{
    do_fsqrt();
    RETURN();
}

/* fres - fres. */
PPC_OP(fres)
{
    do_fres();
    RETURN();
}

/* frsqrte  - frsqrte. */
PPC_OP(frsqrte)
{
    do_frsqrte();
    RETURN();
}

/* fsel - fsel. */
PPC_OP(fsel)
{
    do_fsel();
    RETURN();
}

/***                     Floating-Point multiply-and-add                   ***/
/* fmadd - fmadd. */
PPC_OP(fmadd)
{
#if USE_PRECISE_EMULATION
    do_fmadd();
#else
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
    FT0 = float64_add(FT0, FT2, &env->fp_status);
#endif
    RETURN();
}

/* fmsub - fmsub. */
PPC_OP(fmsub)
{
#if USE_PRECISE_EMULATION
    do_fmsub();
#else
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
    FT0 = float64_sub(FT0, FT2, &env->fp_status);
#endif
    RETURN();
}

/* fnmadd - fnmadd. - fnmadds - fnmadds. */
PPC_OP(fnmadd)
{
    do_fnmadd();
    RETURN();
}

/* fnmsub - fnmsub. */
PPC_OP(fnmsub)
{
    do_fnmsub();
    RETURN();
}

/***                     Floating-Point round & convert                    ***/
/* frsp - frsp. */
PPC_OP(frsp)
{
    FT0 = float64_to_float32(FT0, &env->fp_status);
    RETURN();
}

/* fctiw - fctiw. */
PPC_OP(fctiw)
{
    do_fctiw();
    RETURN();
}

/* fctiwz - fctiwz. */
PPC_OP(fctiwz)
{
    do_fctiwz();
    RETURN();
}

#if defined(TARGET_PPC64)
/* fcfid - fcfid. */
PPC_OP(fcfid)
{
    do_fcfid();
    RETURN();
}

/* fctid - fctid. */
PPC_OP(fctid)
{
    do_fctid();
    RETURN();
}

/* fctidz - fctidz. */
PPC_OP(fctidz)
{
    do_fctidz();
    RETURN();
}
#endif

/***                         Floating-Point compare                        ***/
/* fcmpu */
PPC_OP(fcmpu)
{
    do_fcmpu();
    RETURN();
}

/* fcmpo */
PPC_OP(fcmpo)
{
    do_fcmpo();
    RETURN();
}

/***                         Floating-point move                           ***/
/* fabs */
PPC_OP(fabs)
{
    FT0 = float64_abs(FT0);
    RETURN();
}

/* fnabs */
PPC_OP(fnabs)
{
    FT0 = float64_abs(FT0);
    FT0 = float64_chs(FT0);
    RETURN();
}

/* fneg */
PPC_OP(fneg)
{
    FT0 = float64_chs(FT0);
    RETURN();
}

/* Load and store */
#define MEMSUFFIX _raw
#include "op_helper.h"
#include "op_mem.h"
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _user
#include "op_helper.h"
#include "op_mem.h"
#define MEMSUFFIX _kernel
#include "op_helper.h"
#include "op_mem.h"
#endif

/* Special op to check and maybe clear reservation */
void OPPROTO op_check_reservation (void)
{
    if ((uint32_t)env->reserve == (uint32_t)(T0 & ~0x00000003))
        env->reserve = -1;
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_check_reservation_64 (void)
{
    if ((uint64_t)env->reserve == (uint64_t)(T0 & ~0x00000003))
        env->reserve = -1;
    RETURN();
}
#endif

/* Return from interrupt */
#if !defined(CONFIG_USER_ONLY)
void OPPROTO op_rfi (void)
{
    do_rfi();
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_rfid (void)
{
    do_rfid();
    RETURN();
}
#endif
#endif

/* Trap word */
void OPPROTO op_tw (void)
{
    do_tw(PARAM1);
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_td (void)
{
    do_td(PARAM1);
    RETURN();
}
#endif

#if !defined(CONFIG_USER_ONLY)
/* tlbia */
PPC_OP(tlbia)
{
    do_tlbia();
    RETURN();
}

/* tlbie */
void OPPROTO op_tlbie (void)
{
    do_tlbie();
    RETURN();
}

#if defined(TARGET_PPC64)
void OPPROTO op_tlbie_64 (void)
{
    do_tlbie_64();
    RETURN();
}
#endif

#if defined(TARGET_PPC64)
void OPPROTO op_slbia (void)
{
    do_slbia();
    RETURN();
}

void OPPROTO op_slbie (void)
{
    do_slbie();
    RETURN();
}
#endif
#endif

/* PowerPC 602/603/755 software TLB load instructions */
#if !defined(CONFIG_USER_ONLY)
void OPPROTO op_6xx_tlbld (void)
{
    do_load_6xx_tlb(0);
    RETURN();
}

void OPPROTO op_6xx_tlbli (void)
{
    do_load_6xx_tlb(1);
    RETURN();
}
#endif

/* 601 specific */
void OPPROTO op_load_601_rtcl (void)
{
    T0 = cpu_ppc601_load_rtcl(env);
    RETURN();
}

void OPPROTO op_load_601_rtcu (void)
{
    T0 = cpu_ppc601_load_rtcu(env);
    RETURN();
}

#if !defined(CONFIG_USER_ONLY)
void OPPROTO op_store_601_rtcl (void)
{
    cpu_ppc601_store_rtcl(env, T0);
    RETURN();
}

void OPPROTO op_store_601_rtcu (void)
{
    cpu_ppc601_store_rtcu(env, T0);
    RETURN();
}

void OPPROTO op_load_601_bat (void)
{
    T0 = env->IBAT[PARAM1][PARAM2];
    RETURN();
}
#endif /* !defined(CONFIG_USER_ONLY) */

/* 601 unified BATs store.
 * To avoid using specific MMU code for 601, we store BATs in
 * IBAT and DBAT simultaneously, then emulate unified BATs.
 */
#if !defined(CONFIG_USER_ONLY)
void OPPROTO op_store_601_batl (void)
{
    int nr = PARAM1;

    env->IBAT[1][nr] = T0;
    env->DBAT[1][nr] = T0;
    RETURN();
}

void OPPROTO op_store_601_batu (void)
{
    do_store_601_batu(PARAM1);
    RETURN();
}
#endif /* !defined(CONFIG_USER_ONLY) */

/* PowerPC 601 specific instructions (POWER bridge) */
/* XXX: those micro-ops need tests ! */
void OPPROTO op_POWER_abs (void)
{
    if (T0 == INT32_MIN)
        T0 = INT32_MAX;
    else if (T0 < 0)
        T0 = -T0;
    RETURN();
}

void OPPROTO op_POWER_abso (void)
{
    do_POWER_abso();
    RETURN();
}

void OPPROTO op_POWER_clcs (void)
{
    do_POWER_clcs();
    RETURN();
}

void OPPROTO op_POWER_div (void)
{
    do_POWER_div();
    RETURN();
}

void OPPROTO op_POWER_divo (void)
{
    do_POWER_divo();
    RETURN();
}

void OPPROTO op_POWER_divs (void)
{
    do_POWER_divs();
    RETURN();
}

void OPPROTO op_POWER_divso (void)
{
    do_POWER_divso();
    RETURN();
}

void OPPROTO op_POWER_doz (void)
{
    if ((int32_t)T1 > (int32_t)T0)
        T0 = T1 - T0;
    else
        T0 = 0;
    RETURN();
}

void OPPROTO op_POWER_dozo (void)
{
    do_POWER_dozo();
    RETURN();
}

void OPPROTO op_load_xer_cmp (void)
{
    T2 = xer_cmp;
    RETURN();
}

void OPPROTO op_POWER_maskg (void)
{
    do_POWER_maskg();
    RETURN();
}

void OPPROTO op_POWER_maskir (void)
{
    T0 = (T0 & ~T2) | (T1 & T2);
    RETURN();
}

void OPPROTO op_POWER_mul (void)
{
    uint64_t tmp;

    tmp = (uint64_t)T0 * (uint64_t)T1;
    env->spr[SPR_MQ] = tmp >> 32;
    T0 = tmp;
    RETURN();
}

void OPPROTO op_POWER_mulo (void)
{
    do_POWER_mulo();
    RETURN();
}

void OPPROTO op_POWER_nabs (void)
{
    if (T0 > 0)
        T0 = -T0;
    RETURN();
}

void OPPROTO op_POWER_nabso (void)
{
    /* nabs never overflows */
    if (T0 > 0)
        T0 = -T0;
    xer_ov = 0;
    RETURN();
}

/* XXX: factorise POWER rotates... */
void OPPROTO op_POWER_rlmi (void)
{
    T0 = rotl32(T0, T2) & PARAM1;
    T0 |= T1 & PARAM2;
    RETURN();
}

void OPPROTO op_POWER_rrib (void)
{
    T2 &= 0x1FUL;
    T0 = rotl32(T0 & INT32_MIN, T2);
    T0 |= T1 & ~rotl32(INT32_MIN, T2);
    RETURN();
}

void OPPROTO op_POWER_sle (void)
{
    T1 &= 0x1FUL;
    env->spr[SPR_MQ] = rotl32(T0, T1);
    T0 = T0 << T1;
    RETURN();
}

void OPPROTO op_POWER_sleq (void)
{
    uint32_t tmp = env->spr[SPR_MQ];

    T1 &= 0x1FUL;
    env->spr[SPR_MQ] = rotl32(T0, T1);
    T0 = T0 << T1;
    T0 |= tmp >> (32 - T1);
    RETURN();
}

void OPPROTO op_POWER_sllq (void)
{
    uint32_t msk = -1;

    msk = msk << (T1 & 0x1FUL);
    if (T1 & 0x20UL)
        msk = ~msk;
    T1 &= 0x1FUL;
    T0 = (T0 << T1) & msk;
    T0 |= env->spr[SPR_MQ] & ~msk;
    RETURN();
}

void OPPROTO op_POWER_slq (void)
{
    uint32_t msk = -1, tmp;

    msk = msk << (T1 & 0x1FUL);
    if (T1 & 0x20UL)
        msk = ~msk;
    T1 &= 0x1FUL;
    tmp = rotl32(T0, T1);
    T0 = tmp & msk;
    env->spr[SPR_MQ] = tmp;
    RETURN();
}

void OPPROTO op_POWER_sraq (void)
{
    env->spr[SPR_MQ] = rotl32(T0, 32 - (T1 & 0x1FUL));
    if (T1 & 0x20UL)
        T0 = -1L;
    else
        T0 = (int32_t)T0 >> T1;
    RETURN();
}

void OPPROTO op_POWER_sre (void)
{
    T1 &= 0x1FUL;
    env->spr[SPR_MQ] = rotl32(T0, 32 - T1);
    T0 = (int32_t)T0 >> T1;
    RETURN();
}

void OPPROTO op_POWER_srea (void)
{
    T1 &= 0x1FUL;
    env->spr[SPR_MQ] = T0 >> T1;
    T0 = (int32_t)T0 >> T1;
    RETURN();
}

void OPPROTO op_POWER_sreq (void)
{
    uint32_t tmp;
    int32_t msk;

    T1 &= 0x1FUL;
    msk = INT32_MIN >> T1;
    tmp = env->spr[SPR_MQ];
    env->spr[SPR_MQ] = rotl32(T0, 32 - T1);
    T0 = T0 >> T1;
    T0 |= tmp & msk;
    RETURN();
}

void OPPROTO op_POWER_srlq (void)
{
    uint32_t tmp;
    int32_t msk;

    msk = INT32_MIN >> (T1 & 0x1FUL);
    if (T1 & 0x20UL)
        msk = ~msk;
    T1 &= 0x1FUL;
    tmp = env->spr[SPR_MQ];
    env->spr[SPR_MQ] = rotl32(T0, 32 - T1);
    T0 = T0 >> T1;
    T0 &= msk;
    T0 |= tmp & ~msk;
    RETURN();
}

void OPPROTO op_POWER_srq (void)
{
    T1 &= 0x1FUL;
    env->spr[SPR_MQ] = rotl32(T0, 32 - T1);
    T0 = T0 >> T1;
    RETURN();
}

/* POWER instructions not implemented in PowerPC 601 */
#if !defined(CONFIG_USER_ONLY)
void OPPROTO op_POWER_mfsri (void)
{
    T1 = T0 >> 28;
    T0 = env->sr[T1];
    RETURN();
}

void OPPROTO op_POWER_rac (void)
{
    do_POWER_rac();
    RETURN();
}

void OPPROTO op_POWER_rfsvc (void)
{
    do_POWER_rfsvc();
    RETURN();
}
#endif

/* PowerPC 602 specific instruction */
#if !defined(CONFIG_USER_ONLY)
void OPPROTO op_602_mfrom (void)
{
    do_op_602_mfrom();
    RETURN();
}
#endif

/* PowerPC 4xx specific micro-ops */
void OPPROTO op_405_add_T0_T2 (void)
{
    T0 = (int32_t)T0 + (int32_t)T2;
    RETURN();
}

void OPPROTO op_405_mulchw (void)
{
    T0 = ((int16_t)T0) * ((int16_t)(T1 >> 16));
    RETURN();
}

void OPPROTO op_405_mulchwu (void)
{
    T0 = ((uint16_t)T0) * ((uint16_t)(T1 >> 16));
    RETURN();
}

void OPPROTO op_405_mulhhw (void)
{
    T0 = ((int16_t)(T0 >> 16)) * ((int16_t)(T1 >> 16));
    RETURN();
}

void OPPROTO op_405_mulhhwu (void)
{
    T0 = ((uint16_t)(T0 >> 16)) * ((uint16_t)(T1 >> 16));
    RETURN();
}

void OPPROTO op_405_mullhw (void)
{
    T0 = ((int16_t)T0) * ((int16_t)T1);
    RETURN();
}

void OPPROTO op_405_mullhwu (void)
{
    T0 = ((uint16_t)T0) * ((uint16_t)T1);
    RETURN();
}

void OPPROTO op_405_check_ov (void)
{
    do_405_check_ov();
    RETURN();
}

void OPPROTO op_405_check_sat (void)
{
    do_405_check_sat();
    RETURN();
}

void OPPROTO op_405_check_ovu (void)
{
    if (likely(T0 >= T2)) {
        xer_ov = 0;
    } else {
        xer_ov = 1;
        xer_so = 1;
    }
    RETURN();
}

void OPPROTO op_405_check_satu (void)
{
    if (unlikely(T0 < T2)) {
        /* Saturate result */
        T0 = -1;
    }
    RETURN();
}

#if !defined(CONFIG_USER_ONLY)
void OPPROTO op_load_dcr (void)
{
    do_load_dcr();
    RETURN();
}

void OPPROTO op_store_dcr (void)
{
    do_store_dcr();
    RETURN();
}

/* Return from critical interrupt :
 * same as rfi, except nip & MSR are loaded from SRR2/3 instead of SRR0/1
 */
void OPPROTO op_40x_rfci (void)
{
    do_40x_rfci();
    RETURN();
}

void OPPROTO op_rfci (void)
{
    do_rfci();
    RETURN();
}

void OPPROTO op_rfdi (void)
{
    do_rfdi();
    RETURN();
}

void OPPROTO op_rfmci (void)
{
    do_rfmci();
    RETURN();
}

void OPPROTO op_wrte (void)
{
    msr_ee = T0 >> 16;
    RETURN();
}

void OPPROTO op_4xx_tlbre_lo (void)
{
    do_4xx_tlbre_lo();
    RETURN();
}

void OPPROTO op_4xx_tlbre_hi (void)
{
    do_4xx_tlbre_hi();
    RETURN();
}

void OPPROTO op_4xx_tlbsx (void)
{
    do_4xx_tlbsx();
    RETURN();
}

void OPPROTO op_4xx_tlbsx_ (void)
{
    do_4xx_tlbsx_();
    RETURN();
}

void OPPROTO op_4xx_tlbwe_lo (void)
{
    do_4xx_tlbwe_lo();
    RETURN();
}

void OPPROTO op_4xx_tlbwe_hi (void)
{
    do_4xx_tlbwe_hi();
    RETURN();
}
#endif

/* SPR micro-ops */
/* 440 specific */
void OPPROTO op_440_dlmzb (void)
{
    do_440_dlmzb();
    RETURN();
}

void OPPROTO op_440_dlmzb_update_Rc (void)
{
    if (T0 == 8)
        T0 = 0x2;
    else if (T0 < 4)
        T0 = 0x4;
    else
        T0 = 0x8;
    RETURN();
}

#if !defined(CONFIG_USER_ONLY)
void OPPROTO op_store_pir (void)
{
    env->spr[SPR_PIR] = T0 & 0x0000000FUL;
    RETURN();
}

void OPPROTO op_load_403_pb (void)
{
    do_load_403_pb(PARAM1);
    RETURN();
}

void OPPROTO op_store_403_pb (void)
{
    do_store_403_pb(PARAM1);
    RETURN();
}

void OPPROTO op_load_40x_pit (void)
{
    T0 = load_40x_pit(env);
    RETURN();
}

void OPPROTO op_store_40x_pit (void)
{
    store_40x_pit(env, T0);
    RETURN();
}

void OPPROTO op_store_booke_tcr (void)
{
    store_booke_tcr(env, T0);
    RETURN();
}

void OPPROTO op_store_booke_tsr (void)
{
    store_booke_tsr(env, T0);
    RETURN();
}

#endif /* !defined(CONFIG_USER_ONLY) */

#if defined(TARGET_PPCSPE)
/* SPE extension */
void OPPROTO op_splatw_T1_64 (void)
{
    T1_64 = (T1_64 << 32) | (T1_64 & 0x00000000FFFFFFFFULL);
    RETURN();
}

void OPPROTO op_splatwi_T0_64 (void)
{
    uint64_t tmp = PARAM1;

    T0_64 = (tmp << 32) | tmp;
    RETURN();
}

void OPPROTO op_splatwi_T1_64 (void)
{
    uint64_t tmp = PARAM1;

    T1_64 = (tmp << 32) | tmp;
    RETURN();
}

void OPPROTO op_extsh_T1_64 (void)
{
    T1_64 = (int32_t)((int16_t)T1_64);
    RETURN();
}

void OPPROTO op_sli16_T1_64 (void)
{
    T1_64 = T1_64 << 16;
    RETURN();
}

void OPPROTO op_sli32_T1_64 (void)
{
    T1_64 = T1_64 << 32;
    RETURN();
}

void OPPROTO op_srli32_T1_64 (void)
{
    T1_64 = T1_64 >> 32;
    RETURN();
}

void OPPROTO op_evsel (void)
{
    do_evsel();
    RETURN();
}

void OPPROTO op_evaddw (void)
{
    do_evaddw();
    RETURN();
}

void OPPROTO op_evsubfw (void)
{
    do_evsubfw();
    RETURN();
}

void OPPROTO op_evneg (void)
{
    do_evneg();
    RETURN();
}

void OPPROTO op_evabs (void)
{
    do_evabs();
    RETURN();
}

void OPPROTO op_evextsh (void)
{
    T0_64 = ((uint64_t)((int32_t)(int16_t)(T0_64 >> 32)) << 32) |
        (uint64_t)((int32_t)(int16_t)T0_64);
    RETURN();
}

void OPPROTO op_evextsb (void)
{
    T0_64 = ((uint64_t)((int32_t)(int8_t)(T0_64 >> 32)) << 32) |
        (uint64_t)((int32_t)(int8_t)T0_64);
    RETURN();
}

void OPPROTO op_evcntlzw (void)
{
    do_evcntlzw();
    RETURN();
}

void OPPROTO op_evrndw (void)
{
    do_evrndw();
    RETURN();
}

void OPPROTO op_brinc (void)
{
    do_brinc();
    RETURN();
}

void OPPROTO op_evcntlsw (void)
{
    do_evcntlsw();
    RETURN();
}

void OPPROTO op_evand (void)
{
    T0_64 &= T1_64;
    RETURN();
}

void OPPROTO op_evandc (void)
{
    T0_64 &= ~T1_64;
    RETURN();
}

void OPPROTO op_evor (void)
{
    T0_64 |= T1_64;
    RETURN();
}

void OPPROTO op_evxor (void)
{
    T0_64 ^= T1_64;
    RETURN();
}

void OPPROTO op_eveqv (void)
{
    T0_64 = ~(T0_64 ^ T1_64);
    RETURN();
}

void OPPROTO op_evnor (void)
{
    T0_64 = ~(T0_64 | T1_64);
    RETURN();
}

void OPPROTO op_evorc (void)
{
    T0_64 |= ~T1_64;
    RETURN();
}

void OPPROTO op_evnand (void)
{
    T0_64 = ~(T0_64 & T1_64);
    RETURN();
}

void OPPROTO op_evsrws (void)
{
    do_evsrws();
    RETURN();
}

void OPPROTO op_evsrwu (void)
{
    do_evsrwu();
    RETURN();
}

void OPPROTO op_evslw (void)
{
    do_evslw();
    RETURN();
}

void OPPROTO op_evrlw (void)
{
    do_evrlw();
    RETURN();
}

void OPPROTO op_evmergelo (void)
{
    T0_64 = (T0_64 << 32) | (T1_64 & 0x00000000FFFFFFFFULL);
    RETURN();
}

void OPPROTO op_evmergehi (void)
{
    T0_64 = (T0_64 & 0xFFFFFFFF00000000ULL) | (T1_64 >> 32);
    RETURN();
}

void OPPROTO op_evmergelohi (void)
{
    T0_64 = (T0_64 << 32) | (T1_64 >> 32);
    RETURN();
}

void OPPROTO op_evmergehilo (void)
{
    T0_64 = (T0_64 & 0xFFFFFFFF00000000ULL) | (T1_64 & 0x00000000FFFFFFFFULL);
    RETURN();
}

void OPPROTO op_evcmpgts (void)
{
    do_evcmpgts();
    RETURN();
}

void OPPROTO op_evcmpgtu (void)
{
    do_evcmpgtu();
    RETURN();
}

void OPPROTO op_evcmplts (void)
{
    do_evcmplts();
    RETURN();
}

void OPPROTO op_evcmpltu (void)
{
    do_evcmpltu();
    RETURN();
}

void OPPROTO op_evcmpeq (void)
{
    do_evcmpeq();
    RETURN();
}

void OPPROTO op_evfssub (void)
{
    do_evfssub();
    RETURN();
}

void OPPROTO op_evfsadd (void)
{
    do_evfsadd();
    RETURN();
}

void OPPROTO op_evfsnabs (void)
{
    do_evfsnabs();
    RETURN();
}

void OPPROTO op_evfsabs (void)
{
    do_evfsabs();
    RETURN();
}

void OPPROTO op_evfsneg (void)
{
    do_evfsneg();
    RETURN();
}

void OPPROTO op_evfsdiv (void)
{
    do_evfsdiv();
    RETURN();
}

void OPPROTO op_evfsmul (void)
{
    do_evfsmul();
    RETURN();
}

void OPPROTO op_evfscmplt (void)
{
    do_evfscmplt();
    RETURN();
}

void OPPROTO op_evfscmpgt (void)
{
    do_evfscmpgt();
    RETURN();
}

void OPPROTO op_evfscmpeq (void)
{
    do_evfscmpeq();
    RETURN();
}

void OPPROTO op_evfscfsi (void)
{
    do_evfscfsi();
    RETURN();
}

void OPPROTO op_evfscfui (void)
{
    do_evfscfui();
    RETURN();
}

void OPPROTO op_evfscfsf (void)
{
    do_evfscfsf();
    RETURN();
}

void OPPROTO op_evfscfuf (void)
{
    do_evfscfuf();
    RETURN();
}

void OPPROTO op_evfsctsi (void)
{
    do_evfsctsi();
    RETURN();
}

void OPPROTO op_evfsctui (void)
{
    do_evfsctui();
    RETURN();
}

void OPPROTO op_evfsctsf (void)
{
    do_evfsctsf();
    RETURN();
}

void OPPROTO op_evfsctuf (void)
{
    do_evfsctuf();
    RETURN();
}

void OPPROTO op_evfsctuiz (void)
{
    do_evfsctuiz();
    RETURN();
}

void OPPROTO op_evfsctsiz (void)
{
    do_evfsctsiz();
    RETURN();
}

void OPPROTO op_evfststlt (void)
{
    do_evfststlt();
    RETURN();
}

void OPPROTO op_evfststgt (void)
{
    do_evfststgt();
    RETURN();
}

void OPPROTO op_evfststeq (void)
{
    do_evfststeq();
    RETURN();
}

void OPPROTO op_efssub (void)
{
    T0_64 = _do_efssub(T0_64, T1_64);
    RETURN();
}

void OPPROTO op_efsadd (void)
{
    T0_64 = _do_efsadd(T0_64, T1_64);
    RETURN();
}

void OPPROTO op_efsnabs (void)
{
    T0_64 = _do_efsnabs(T0_64);
    RETURN();
}

void OPPROTO op_efsabs (void)
{
    T0_64 = _do_efsabs(T0_64);
    RETURN();
}

void OPPROTO op_efsneg (void)
{
    T0_64 = _do_efsneg(T0_64);
    RETURN();
}

void OPPROTO op_efsdiv (void)
{
    T0_64 = _do_efsdiv(T0_64, T1_64);
    RETURN();
}

void OPPROTO op_efsmul (void)
{
    T0_64 = _do_efsmul(T0_64, T1_64);
    RETURN();
}

void OPPROTO op_efscmplt (void)
{
    do_efscmplt();
    RETURN();
}

void OPPROTO op_efscmpgt (void)
{
    do_efscmpgt();
    RETURN();
}

void OPPROTO op_efscfd (void)
{
    do_efscfd();
    RETURN();
}

void OPPROTO op_efscmpeq (void)
{
    do_efscmpeq();
    RETURN();
}

void OPPROTO op_efscfsi (void)
{
    do_efscfsi();
    RETURN();
}

void OPPROTO op_efscfui (void)
{
    do_efscfui();
    RETURN();
}

void OPPROTO op_efscfsf (void)
{
    do_efscfsf();
    RETURN();
}

void OPPROTO op_efscfuf (void)
{
    do_efscfuf();
    RETURN();
}

void OPPROTO op_efsctsi (void)
{
    do_efsctsi();
    RETURN();
}

void OPPROTO op_efsctui (void)
{
    do_efsctui();
    RETURN();
}

void OPPROTO op_efsctsf (void)
{
    do_efsctsf();
    RETURN();
}

void OPPROTO op_efsctuf (void)
{
    do_efsctuf();
    RETURN();
}

void OPPROTO op_efsctsiz (void)
{
    do_efsctsiz();
    RETURN();
}

void OPPROTO op_efsctuiz (void)
{
    do_efsctuiz();
    RETURN();
}

void OPPROTO op_efststlt (void)
{
    T0 = _do_efststlt(T0_64, T1_64);
    RETURN();
}

void OPPROTO op_efststgt (void)
{
    T0 = _do_efststgt(T0_64, T1_64);
    RETURN();
}

void OPPROTO op_efststeq (void)
{
    T0 = _do_efststeq(T0_64, T1_64);
    RETURN();
}

void OPPROTO op_efdsub (void)
{
    union {
        uint64_t u;
        float64 f;
    } u1, u2;
    u1.u = T0_64;
    u2.u = T1_64;
    u1.f = float64_sub(u1.f, u2.f, &env->spe_status);
    T0_64 = u1.u;
    RETURN();
}

void OPPROTO op_efdadd (void)
{
    union {
        uint64_t u;
        float64 f;
    } u1, u2;
    u1.u = T0_64;
    u2.u = T1_64;
    u1.f = float64_add(u1.f, u2.f, &env->spe_status);
    T0_64 = u1.u;
    RETURN();
}

void OPPROTO op_efdcfsid (void)
{
    do_efdcfsi();
    RETURN();
}

void OPPROTO op_efdcfuid (void)
{
    do_efdcfui();
    RETURN();
}

void OPPROTO op_efdnabs (void)
{
    T0_64 |= 0x8000000000000000ULL;
    RETURN();
}

void OPPROTO op_efdabs (void)
{
    T0_64 &= ~0x8000000000000000ULL;
    RETURN();
}

void OPPROTO op_efdneg (void)
{
    T0_64 ^= 0x8000000000000000ULL;
    RETURN();
}

void OPPROTO op_efddiv (void)
{
    union {
        uint64_t u;
        float64 f;
    } u1, u2;
    u1.u = T0_64;
    u2.u = T1_64;
    u1.f = float64_div(u1.f, u2.f, &env->spe_status);
    T0_64 = u1.u;
    RETURN();
}

void OPPROTO op_efdmul (void)
{
    union {
        uint64_t u;
        float64 f;
    } u1, u2;
    u1.u = T0_64;
    u2.u = T1_64;
    u1.f = float64_mul(u1.f, u2.f, &env->spe_status);
    T0_64 = u1.u;
    RETURN();
}

void OPPROTO op_efdctsidz (void)
{
    do_efdctsiz();
    RETURN();
}

void OPPROTO op_efdctuidz (void)
{
    do_efdctuiz();
    RETURN();
}

void OPPROTO op_efdcmplt (void)
{
    do_efdcmplt();
    RETURN();
}

void OPPROTO op_efdcmpgt (void)
{
    do_efdcmpgt();
    RETURN();
}

void OPPROTO op_efdcfs (void)
{
    do_efdcfs();
    RETURN();
}

void OPPROTO op_efdcmpeq (void)
{
    do_efdcmpeq();
    RETURN();
}

void OPPROTO op_efdcfsi (void)
{
    do_efdcfsi();
    RETURN();
}

void OPPROTO op_efdcfui (void)
{
    do_efdcfui();
    RETURN();
}

void OPPROTO op_efdcfsf (void)
{
    do_efdcfsf();
    RETURN();
}

void OPPROTO op_efdcfuf (void)
{
    do_efdcfuf();
    RETURN();
}

void OPPROTO op_efdctsi (void)
{
    do_efdctsi();
    RETURN();
}

void OPPROTO op_efdctui (void)
{
    do_efdctui();
    RETURN();
}

void OPPROTO op_efdctsf (void)
{
    do_efdctsf();
    RETURN();
}

void OPPROTO op_efdctuf (void)
{
    do_efdctuf();
    RETURN();
}

void OPPROTO op_efdctuiz (void)
{
    do_efdctuiz();
    RETURN();
}

void OPPROTO op_efdctsiz (void)
{
    do_efdctsiz();
    RETURN();
}

void OPPROTO op_efdtstlt (void)
{
    T0 = _do_efdtstlt(T0_64, T1_64);
    RETURN();
}

void OPPROTO op_efdtstgt (void)
{
    T0 = _do_efdtstgt(T0_64, T1_64);
    RETURN();
}

void OPPROTO op_efdtsteq (void)
{
    T0 = _do_efdtsteq(T0_64, T1_64);
    RETURN();
}
#endif /* defined(TARGET_PPCSPE) */